
Chapter 1

Compensator Design

1.1 Design Procedure

1.1.1 Introduction
In this chapter we will demonstrate a procedure for designing frequency com-

pensators for the standard feedback configuration shown in Figure 1.1. G(s), as
before, represents the plant transfer function; H(s) represents the feedback gain
and is used to set the closed loop gain and Gc (s) represents the compensator.

Figure 1.1: Feedback System Block Diagram

To demonstrate the design procedure, in the sequel we will use a plant and
feedback gain with the following transfer functions:

G (s) =
Go(

1 + s
ω1

)(
1 + s

ω2

)(
1 + s

ω3

) (1.1)

H (s) = k (1.2)

where Go = 500, ω1 = 2π (10), ω2 = 2π (100), ω3 = 2π (300), and k = 0.5.
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The compensators considered in the sequel are the following:
1) Proportional (P) compensator:

Gc (s) = kp (1.3)

2) Dominant pole (I, integrator) compensator:

Gc (s) =
ωI

s
(1.4)

3) Dominant pole with zero (PI, proportional plus integrator) compensator:

Gc (s) =
ωI

s

(
1 +

s

ωz

)
(1.5)

4) Lead compensator:

Gc (s) = Gco

1 + s
ωz

1 + s
ωp

, ωz < ωp (1.6)

5) Lead with integrator and zero compensator

Gc (s) =
ωI

(
1 + s

ωz1

)(
1 + s

ωz2

)
s
(
1 + s

ωp

) (1.7)

The first three compensators may be considered to be members of the three
term controller, PID (proportional, integral, derivative), family of compensators.
We will see that as the complexity of the compensator increases the performance
also improves. The performance measures used are the rise time, settling time
and percentage overshoot of the step response. For the simpler compensators,
i.e. proportional and dominant pole compensators, only one design parameter
is needed to be found. For the most involved compensator, the lead with inte-
grator and zero compensator, there are a total of four design parameters to be
determined.

1.1.2 Uncompensated System
We start our evaluation with the uncompensated loop gain T (s) = kGc (s)G (s),

where Gc (s) = 1. The loop gain is given as

T (s) =
To(

1 + s
ω1

)(
1 + s

ω2

)(
1 + s

ω3

) (1.8)

where

To = Gok = 500 · 0.5 = 250
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Figure 1.2: Bode Plot: Uncompensated System

ω1 = 2π (10) , ω2 = 2π (100) , ω3 = 2π (300)

We construct the Bode plot of the loop gain, shown in Figure 1.2. Using this
constructed plot we can easily determine simplified (approximate) expressions
for the fc, the unity gain crossover frequency, and PM , the phase margin:

Tof1f2f3
f3
c

= 1 =⇒ fc =
3
√
Tof1f2f3 (1.9)

PM = 180− arctan

(
fc
f1

)
− arctan

(
fc
f2

)
− arctan

(
fc
f3

)
(1.10)

Equations (1.9) and (1.10) result in fc = 422 Hz and PM = −40◦.

In a similar fashion we can also determine fGM , the frequency at which the
phase reaches −180◦, and subsequently the gain margin:
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−180 = − arctan

(
fGM

f1

)
− arctan

(
fGM

f2

)
− arctan

(
fGM

f3

)
(1.11)

GM = −20 log

(
Tof1f2
f2
GM

)
(1.12)

Evaluating 1.11 and 1.12 results in fGM = 184 Hz and GM = −17.3 dB,
respectively.

Figure 1.3 is a Matlab Bode plot of the uncompensated loop gain produced
using the ’margin’ command. Matlab uses the unapproximated transfer func-
tion models and so is able to accurately determine the margins and associated
frequencies: fc = 385 Hz, PM = −36.1◦, fGM = 184 Hz and GM = −14.8 dB.
A side by side comparison of these results with those from the asymptotic line
analysis is shown in Table 1.1.

Table 1.1: Uncompensated System margins

PM (◦) fC (Hz) GM (dB) fGM(Hz)
Asymptotes -40 422 -17.3 184
Matlab -36.1 385 -14.8 184

The phase margin test indicates that the uncompensated closed loop system is
unstable. A Matlab time domain simulation of the step response of the uncom-
pensated system is shown in Figure 1.4. The output quickly becomes unbounded
for the unit step input indicative of an unstable system. So compensation is
needed to make the system stable and further to improve the performance.

1.1.3 Proportional Compensated System
In our first compensator design we will assess the efficacy of using a propor-

tional compensator:

Gc (s) = kp (1.13)

kp simply represents a constant gain. Note that the effect of varying the value
of kp is to raise and lower the magnitude Bode plot while keeping the phase
plot unaffected. So the value of kp can be set to obtain a unity gain crossover
frequency (fc) which results in an acceptable phase margin.

Generally the design procedure would require that asymptotic Bode plots
for the now compensated loop gain be constructed, however, in the case of a
proportional compensator, since the shape of the plots (magnitude and phase)
are unchanged we need simply to replace any occurrences of the To with kpTo
in Figure 1.2 and proceed accordingly.
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Figure 1.3: Matlab Analysis of Uncompensated System
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Figure 1.4: Matlab Analysis of Uncompensated System
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As a general rule of thumb, to obtain an acceptable phase margin (generally
45◦ ≤ PM ≤ 60◦) one usually sets the unity gain crossover frequency (fc)
to occur in the segment of the asymptotic magnitude plot that has a slope of
−20dB/dec. From the constructed magnitude plot we find

kpTof1
fc

= 1 =⇒ fc = kpTof1 (1.14)

We can substitute the above equation for fc into the phase margin equation
shown next to determine the required value of kp.

PM = 180− arctan

(
fc
f1

)
− arctan

(
fc
f2

)
− arctan

(
fc
f3

)
= 180− arctan (kpTo)− arctan

(
kpTof1

f2

)
− arctan

(
kpTof1

f3

)
(1.15)

With a desired value of phase margin of PM = 45◦ equation (1.15) evaluates
to kp = 0.0311 and fc = 77.65.

Using the obtained value of kp an evaluation of the compensated loop gain
with the unapproximated transfer functions was performed by Matlab and is
shown in Figure 1.5 where we see that the obtained phase margin is 55◦. This
value, due to the approximate nature of our design equations, turns out to more
than required, but nonetheless acceptable. Had it not been so, one could simply
iterate.

A step response simulation of the proportional compensated closed-loop sys-
tem is shown in Figure 1.6. A summary of all the performance results (as
furnished by the Matlab stepinfo function) are given in the table 1.2. There
we see in particular that the overshoot, rise-time, settling-time and steady-state
error values are 20%, 2.9 ms, 15.4 ms and −11%, respectively.

Table 1.2: Proportionally Compensated System Performance Features

Proportional Compensation
Characteristics Value
Overshoot 20 %
Rise time 2.9 ms
Settling time 15.4 ms
Steady-state error −11 %
Bandwidth 63.4 Hz
Phase margin 54.7◦

Gain margin 15.4 dB
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1.1.4 Dominant Pole Compensated System
The next form of frequency compensation to be discussed is the dominant

pole compensation. As the name suggests a pole is inserted in the loop gain
which dominates the dynamics of the loop. That is to say that the frequency
response of the loop gain up to the unity gain crossover frequency is mainly
determined by the dominant pole. To achieve this the pole needs to be placed
at a frequency much lower (usually a decade or so) than the lowest pole or zero
of the uncompensated loop gain. This requirement unfortunately reduces the
loop bandwidth and subsequently the speed of response. However, compensator
design is simplified and good stability margins may be easily obtained. If the
pole is placed at zero frequency then this represents an integrator which will
result in obtaining a zero steady state error characteristic.

In the design that follows, an integrator is employed so that the compensator
transfer function is given by:

Gc (s) =
ωI

s

where ωI = 2π · fI is an appropriately chosen design constant. It represents
the frequency at which the compensator gain is at unity. Figure 1.7 shows the
Bode plot asymptotes for the magnitude and phase of this compensator.

|ωIs |

fI
f

−20dB/dec

1 ⇒ 0dB

fI

ωI
s −90◦

Figure 1.7: Bode Plot: Dominant Pole Compensator

Design of the compensator now consists of selecting an appropriate compen-
sator parameter, fI .

Figure 1.8 shows the graphical construction of the phase asymptotes for the
loop gain with the compensator. Note that because the plant’s transfer func-
tion is third order (with no zeros), it features a phase shift of −270◦ at high
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frequencies. Also, since the next higher frequency f2 ≥ 10 · f1 the phase shift
at f1 is −45◦ . Furthermore, the compensator contributes its own −90◦ phase
shift and does so for all frequencies. Consequently, the total phase shift of the
compensated open loop transfer function at f1 is −135◦. Consequently, in this
design the frequency f1 is chosen to be the unity gain crossover frequency of the
overall system, so that we get a +45◦ phase margin.

Figure 1.9 shows how the plant and compensator transfer functions combine
to produce the magnitude response of the compensated loop. To achieve a phase
margin that is +45◦, we require the magnitude at f1 to equal 1 (0dB), therefore
fc = f1.

fITo

f1
= 1

fI =
f1
To

=
10

250
= 0.04

The dominant pole compensator in this case is:

Gc (s) =
ωI

s
=

2π · 0.04
s

Figure 1.10 shows resulting gain and phase asymptotic construction of the
Bode plot. We next run the full, unapproximated, compensated loop transfer
function through the Matlab ’margin’ command to verify the design results.
Figure 1.11 shows the results obtained. In particular, a phase margin of PM =
45.9◦ with a unity gain crossover frequency fc = 7.84 Hz was obtained, which
compares favorably with the design values of PM = 45◦ and fc = f1 = 10 Hz.

Figure 1.12 shows the unit step response of the dominant pole compensated
closed loop system. It is clearly seen that zero steady state response has been
attained but not without going through significant overshoot first. The features
of the closed loop system are summarized in the Table 1.3.

Table 1.3: Dominant Pole Compensated System Features

Dominant Pole Compensation
Characteristics Value
Peak amplitude 22.2% overshoot
Rise time 24.5 ms
Settling time 136.5 ms
Steady-state error 0 %
Bandwidth 7.84 Hz
Phase margin 45.9◦

Gain margin 18.2 dB
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1.1.5 Dominant Pole Compensated System with zero
The dominant pole compensator of the previous section, while stable and

featuring zero steady state error performance, exhibits several undesirable char-
acteristics which include a large overshoot and long settling time. In our effort
to achieve stability, we have sacrificed the bandwidth of the system. Unfortu-
nately, the lower the bandwidth, the slower the response. Thus, we need to
increase the bandwidth to speed up the response. This can be done by adding a
zero to the compensator that will cancel the lowest frequency pole of the plant.
By doing this, the canceled pole no longer affects the phase lag seen at the gain
crossover frequency. For our system, the 10 Hz pole is canceled so that the re-
maining poles at 100 and 300 Hz are now the poles which limit the bandwidth.
Accordingly we will be able to extend the bandwidth by a decade.

The transfer function for the new compensator is given by

Gc (s) =
ωI

s

(
1 +

s

ωz

)
where

ωz = ω1

The compensated loop gain T (s) = kGc(s)G(s) with this compensator now
becomes:

T (s) =
ToωI

s
(
1 + s

ω2

)(
1 + s

ω3

)
The construction of the compensated magnitude plot is shown in Figure 1.13

where the uncompensated plant and compensator magnitude asymptotes are
combined. The final magnitude and phase plots using the asymptotic construc-
tion procedure is shown in Figure 1.14. Using the low frequency magnitude
asymptote we see that at the unity gain crossover frequency fc

TofI
fc

= 1

=⇒ fc = TofI (1.16)

The general expression for ϕf , the phase response at an arbitrary frequency
f is given by:

ϕf = −90− arctan

(
f

f2

)
− arctan

(
f

f3

)
, ∀f (1.17)
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Consequently the phase margin is given by:

PM = 180 + ϕfc

= 90− arctan

(
fc
f2

)
− arctan

(
fc
f3

)
= 90− arctan

(
TofI
f2

)
− arctan

(
TofI
f3

)
(1.18)

With a design value of PM = 45◦ the required value of fI is solved using
Equation (1.18) to yield fI = 0.258 so that ωI = 2πfI = 1.623. This results,
using (1.16), in a gain crossover frequency, fc = 64.58 Hz.

To verify the design procedure the unapproximated loop gain transfer function
is run through the Matlab ’margin’ command which produces the plot shown
in Figure 1.15. The obtained phase margin and bandwidth are seen to be
PM = 51◦ and fc = 56 Hz. The bandwidth has been greatly improved.

The unit step response of the closed loop system is shown in Figure 1.16. A
summary of the performance using this compensator is shown in Table 1.4.

Table 1.4: Dominant Pole with Zero Compensated System Features

Dominant Pole with Zero Compensation
Characteristics Value
Overshoot 17.48%
Rise time 3.4 ms
Settling time 17.5 ms
Steady-state error 0 %
Bandwidth 55.5 Hz
Phase margin 50.5 degree
Gain margin 15.8 dB

1.1.6 Dominant Pole Compensated System with zero, im-
proved phase margin

The addition of the zero to dominant pole compensation has allowed us to
increase the speed of response by extending bandwidth. This is manifested in
the time domain response by a substantial decrease in the rise and settling times.
However, the overshoot, while slightly improved, may be seen as overly large.
Nevertheless, it too may be reduced by appreciating the fact that overshoot and
phase margin are inversely related. So we will increase the phase margin to
reduce the overshoot.
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Using the same compensator as in the previous section, we will now redesign
it to achieve a phase margin of 60◦. The zero frequency is left unchanged, so
that fz = f1, but a new value of fI will be determined to achieve the desired 60◦

phase margin. Solving equation (1.18), now with PM = 60 we see the required
value of fI = 0.1636 so that ωI = 2πfI = 1.0276.

To verify the design the Bode plot of the loop gain was produced using the
’margin’ command in Matlab. This plot is shown in figure 1.17. We see that
a phase margin of 62◦ was achieved with a bandwidth of 37.9 Hz. Of course
the extension in phase margin is necessarily accompanied by a reduction in
bandwidth.

The step response of the closed loop system is shown in Figure 1.18. The
resulting performance characteristics are tabulated in the Table 1.5. There we
see that the overshoot has been reduced to 6.1%. Recall that a phase margin of
45◦ had previously resulted in a 17.48% overshoot. This reduction in overshoot
has been attained at the expense of an increase in rise time. However, the
settling time has been slightly reduced.

Table 1.5: Dominant Pole with Zero (Improved PM) Compensated System Fea-
tures

Dominant Pole with Zero Compensation (Improved Margin)
Characteristics Value
Overshoot 6.10 %
Rise time 5.3 ms
Settling time 15.9 ms
Steady-state error 0
Bandwidth 37.9 Hz
Phase margin 62 degree
Gain margin 19.8 dB

1.1.7 Lead Compensated System
Next we consider the case of using a lead compensator, the transfer function

of which is given by:

Gc (s) = Gco

1 + s
ωz

1 + s
ωp

, ωz < ωp (1.19)

The design of this compensator requires the appropriate determination of the
three variables, Gco , fz and fp, the low frequency gain, zero frequency and pole
frequency, respectively. Note in particular that the zero frequency is required to
be at a lower value than the pole frequency. This constraint exists so that the
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phase response, first starting at zero at low frequencies, becomes positive, i.e.
leads, as the frequency increases before returning to zero at high frequencies. In
essence, the lead compensator provides a phase boost that is adjustable based
on the pole and zero frequencies. The maximum phase boost ϕmax possible is
ϕmax = 90◦ and occurs at a frequency fϕmax

which is the geometric mean of
the zero and pole frequencies of the compensator. The geometric mean of two
numbers represents the midpoint between these numbers when represented on
a logarithmic scale.

fϕmax
=

√
fzfp (1.20)

The compensator also provides a gain boost at higher frequencies so that
with proper design it can both extend loop bandwidth while increasing the
phase margin. Proper design of the compensator requires that the frequency of
maximum boost afforded by this compensator is set to the unity gain crossover
frequency, fc. The asymptotic Bode plot of the lead compensator is shown in
Figure 1.19.

When the compensator is placed in the loop, the loop gain of the system now
becomes:

T (s) =
ToGco

(
1 + s

ωz

)
(
1 + s

ωp

)(
1 + s

ω1

)(
1 + s

ω2

)(
1 + s

ω3

)
The construction of the asymptotic magnitude response from the constituent

parts is shown in Figure 1.20. Both the resulting magnitude and phase asymp-
totic responses of the loop gain are shown in Figure 1.21. As for previous
compensators, the annotations on these plots are used in the design procedure.
The exact expression for the phase ϕ is given by:

ϕf = arctan

(
f

fz

)
− arctan

(
f

fp

)
− arctan

(
f

f1

)
− arctan

(
f

f2

)
− arctan

(
f

f3

)
, ∀f (1.21)

Consequently the phase margin is given by:

PM = 180 + ϕfc

= 180 + arctan

(
fc
fz

)
− arctan

(
fc
fp

)
− arctan

(
fc
f1

)
− arctan

(
fc
f2

)
− arctan

(
fc
f3

)
(1.22)
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As mentioned previously, we will set the unity gain crossover frequency fc
to the maximum phase boost frequency fϕmax so that using equation (1.20) we
have:

fc = fϕmax

=
√

fzfp (1.23)

In order to minimize the effect on the phase margin of the phase lag due
to the compensator pole we will set this pole frequency an order of magnitude
above the crossover frequency:

fp = 10fc (1.24)

Equation (1.24) together with equation (1.23) results in a relationship be-
tween the zero and pole frequencies of the compensator:

fp = 100fz (1.25)

We can use the zero frequency of the compensator to cancel the pole fre-
quency f2 of the plant, so that fz = f2. This together with equations (1.25)
and (1.22) may be used to determine the unity gain crossover frequency, fc, for
a given desired phase margin. For a margin of 60◦ we find fc = 187 Hz.

From the magnitude asymptote we see that

ToGcof1
fc

= 1 (1.26)

so that for a given fc we can solve for the required compensator low frequency
gain Gco :

Gco =
fc

Tof1
(1.27)

For our design we obtain a value of Gco = 0.0749.

To verify our design we produce the plot using the Matlab ’margin’ command
on the unapproximated transfer functions of the compensated loop. This is
shown in Figure 1.22. There we find that the obtained phase margin is PM =
63.9◦ with fc = 164 Hz, which validates our design procedure.

The unit step response of the closed loop system with this compensation is
shown in Figure 1.23. The features of the step response are presented in the
Table 1.6. We see, due to the extended bandwidth, that the speed of response,
represented by the rise and settling times is quite good. Percentage overshoot
is also relatively low due to the 60◦ phase margin employed. However, as there
is no longer an integrator in the forward path, the steady state error is now
non-zero. This will be remedied in the next and final compensator design.
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Table 1.6: Lead Compensation

Lead Compensation
Feature Value
Overshoot 8.06 %
Rise time 1.3 ms
Settling time 3.9 ms
Steady-state error -5.07%
Bandwidth 164 Hz
Phase margin 63.9◦

Gain margin 35.1 dB

1.1.8 Lead Compensated System with integrator and zero
In this final compensator design, we will augment the lead compensator of

the previous section with an integrator and zero. The integrator is added to
provide the closed loop system with a zero steady state error performance. This
is contrasted with the approach previously discussed where the integrator was
primarily used to as the dominant pole. In the present case by canceling lower
frequency poles, we’re able to extend the unity gain bandwidth of the loop
gain to obtain quick closed loop response. The zero is added to leave the high
frequency magnitude and phase response unchanged from the lead compensator
case.

The transfer function of the compensator considered here is given by:

Gc (s) =
ωI

(
1 + s

ωz1

)(
1 + s

ωz2

)
s
(
1 + s

ωp

) (1.28)

The parameters ωz2 and ωp correspond to ωz and ωp of the lead compensator
design, which leaves ωI and ωz1 to be determined. ωz1 can be simply set to ω1.
The low frequency gain of the lead compensator of the previous section was
denoted Gco . This was the value of the loop magnitude at f1 (in particular, and
below this frequency, in general). To maintain this value of gain at f1 we will
adjust ωI to achieve this. The low frequency magnitude asymptote is given by
fI
f so that at f1 we have

fI
f1

= Gco =⇒ fI = Gcof1 (1.29)

This completes the design of this compensator. To verify our design we
produce the plot using the Matlab ’margin’ command on the unapproximated
transfer functions of the compensated loop. This is show in figure 1.24. There
we find that the obtained phase margin is PM = 60◦ with fc = 164 Hz, which
very closely agrees with the results obtained for the lead compensator.
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Next, we exam the step response of the closed loop system which is shown
in Figure 1.25. It is clear that now we have zero steady state error. Further
performance features are given in the Table 1.7.

Table 1.7: Lead Compensation with integrator and zero

Lead Compensation with integrator and zero
Feature Value
Overshoot 8.31 %
Rise time 1.3 ms
Settling time 4.0 ms
Steady-state error 0%
Bandwidth 164 Hz
Phase margin 60.4◦

Gain margin 34.8 dB

1.1.9 Summary
The following table shows the summary of all of the results.
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Figure 1.11: Matlab Analysis of Dominant Pole Compensated System
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Figure 1.12: Step Response of the Dominant Pole Compensated System
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Figure 1.13: Dominant Pole with Zero Magnitude Construction
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Figure 1.15: Loop Gain and Phase Response of the Dominant Pole Compensated
System with Zero
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Figure 1.16: Step Response of the Dominant Pole with Zero Compensated Sys-
tem
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Figure 1.17: Matlab Analysis of Dominant Pole Compensated System with Zero
(Improved Margin)
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Figure 1.18: Step Response of the Dominant Pole with Zero Compensated Sys-
tem (Improved Margin)
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Figure 1.22: Matlab Analysis of Lead Compensated System
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Figure 1.23: Step Response of the Lead Compensated System
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Figure 1.24: Matlab Analysis of Lead Compensated System with integrator and
zero
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Figure 1.25: Step Response of the Lead Compensated System with integrator
and zero
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Table 1.8: Summary of Compensators

G (s) = Go(
1+ s

ω1

)(
1+ s

ω2

)(
1+ s

ω3

)
H (s) = k

where Go = 500, ω1 = 2π (10), ω2 = 2π (100), ω3 = 2π (300), and k = 0.5.

Gc(s) Gc(s)
parameters

fc
(Hz)

ϕPM

(deg)
GM
(dB)

OS
(%)

tr
(ms)

ts
(ms)

ERR
(%)

1 (uncompensated) none 385 −36 −15 na na na ∞

kp kp = 0.03 63 55 15 20 2.9 15.4 −11

ωI

s ωI = 0.25 7.8 46 18 22 25 137 0

ωI

s

(
1 + s

ωz

)
ωI = 1.62

ωz = 2π(10)

56 51 16 17 3.4 18 0

ωI

s

(
1 + s

ωz

)
ωI = 1.03

ωz = 2π(10)

38 62 20 6 5.3 16 0

Gco

1+ s
ωz

1+ s
ωp

Gco = 0.075

ωz = 2π(100)

ωp = 2π(10, 000)

164 64 35 8.1 1.3 3.9 -5

ωI

(
1+ s

ωz1

)(
1+ s

ωz2

)
s
(
1+ s

ωp

) ωI = 4.71

ωz1
= 2π(10)

ωz2 = 2π(100)

ωp = 2π(10, 000)

164 60 35 8.3 1.3 4 0

30 © Richard Tymerski, 2025



1.1.10 MATLAB Code

1 function compensators
2

3 clear all;
4 close all;
5

6 t = linspace(0, 0.35, 10000);
7 f = logspace(−1, 4, 1000);
8 w = 2*pi*f;
9 s = tf('s');

10

11 Go = 500;
12 f1 = 10;
13 f2 = 100;
14 f3 = 300;
15

16 w1 = 2*pi*f1;
17 w2 = 2*pi*f2;
18 w3 = 2*pi*f3;
19 k = 0.5;
20 To = Go*k;
21 yf = 2;
22

23 %====================================================================
24 %====================================================================
25 % UNCOMPENSATED
26 %====================================================================
27

28 G = Go/((1+s/w1)*(1+s/w2)*(1+s/w3));
29

30 titl = 'Uncompensated System';
31 Gc = 1;
32

33 xlmt = [0.325 0.35];
34 disp(titl)
35 analysis(Gc, G, k, w, titl, t, xlmt, yf)
36

37 % RiseTime: 0.0031
38 % SettlingTime: 0.3500
39 % SettlingMin: −9.9007e+79
40 % SettlingMax: −8.9587e+79
41 % Overshoot: 0
42 % Undershoot: 55.0478
43 % Peak: 9.9007e+79
44 % PeakTime: 0.3500
45

46 %====================================================================
47 %====================================================================
48 % Proportional Compensation
49 %====================================================================
50

51 fn = @(kp) 135 − atand(To*f1*kp/f1) − atand(To*f1*kp/f2) ...
52 − atand(To*f1*kp/f3);
53

54 kp = fzero(fn, 0) % kp = 0.0311
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55 fc = To*f1*kp % fc = 77.6459
56

57 titl = 'Proportional Compensation';
58 Gc = kp;
59

60 xlmt = [0 0.035];
61 disp(titl)
62 analysis(Gc, G, k, w, titl, t, xlmt, yf)
63

64 % RiseTime: 0.0029
65 % SettlingTime: 0.0154
66 % SettlingMin: 1.6011
67 % SettlingMax: 2.1341
68 % Overshoot: 20.4502
69 % Undershoot: 0
70 % Peak: 2.1341
71 % PeakTime: 0.0068
72

73 %====================================================================
74 %====================================================================
75 % Dominant Pole Compensation
76 %====================================================================
77

78 titl = 'Dominant Pole Compensation';
79 wI = w1/To % 0.2513
80 Gc = wI/s;
81

82 xlmt = [0 0.3];
83 disp(titl)
84 analysis(Gc, G, k, w, titl, t, xlmt, yf)
85

86 % RiseTime: 0.0245
87 % SettlingTime: 0.1365
88 % SettlingMin: 1.8000
89 % SettlingMax: 2.4440
90 % Overshoot: 22.2103
91 % Undershoot: 0
92 % Peak: 2.4440
93 % PeakTime: 0.0580
94

95 %====================================================================
96 %====================================================================
97 % Dominant Pole With Zero Compensation
98 %====================================================================
99

100 titl = 'Dominant Pole With Zero Compensation';
101

102 fn = @(fI) 45 − atand(To*fI/f2) − atand(To*fI/f3);
103 fI = fzero(fn, 0)
104

105 fc = To*fI % 64.58
106 wI = 2*pi*fI % 1.623
107 Gc = wI/s*(1+s/w1);
108

109

110 xlmt = [0 0.030];
111 disp(titl)
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112 analysis(Gc, G, k, w, titl, t, xlmt, yf)
113

114 % RiseTime: 0.0034
115 % SettlingTime: 0.0175
116 % SettlingMin: 1.8012
117 % SettlingMax: 2.3496
118 % Overshoot: 17.4798
119 % Undershoot: 0
120 % Peak: 2.3496
121 % PeakTime: 0.0079
122

123 %====================================================================
124 %====================================================================
125 % Dominant Pole With Zero Compensation (Improved Phase Margin)
126 %====================================================================
127

128 titl = 'Dominant Pole With Zero Compensation (Improved PM)';
129

130 fn = @(fI) 30 − atand(To*fI/f2) − atand(To*fI/f3);
131 fI = fzero(fn, 0)
132

133 fc = To*fI % 40.88
134 wI = 2*pi*fI % 1.0276
135 Gc = wI/s*(1+s/w1);
136

137 xlmt = [0 0.03];
138 disp(titl)
139 analysis(Gc, G, k, w, titl, t, xlmt, yf)
140

141 % RiseTime: 0.0053
142 % SettlingTime: 0.0159
143 % SettlingMin: 1.8014
144 % SettlingMax: 2.1219
145 % Overshoot: 6.0951
146 % Undershoot: 0
147 % Peak: 2.1219
148 % PeakTime: 0.0113
149

150 %====================================================================
151 %====================================================================
152 % Lead Compensation
153 %====================================================================
154

155 fz = 100 % = f2
156 fp = 100*fz
157 fn = @(fc) 120 + atand(fc/fz) − atand(fc/f1) ...
158 − atand(fc/f2) − atand(fc/f3) − atand(fc/fp);
159 fc = fzero(fn, 0) % 187
160 Gco = fz*fc/(To*f1*f2) % 0.0749
161 wz = 2*pi*fz;
162 wp = 2*pi*fp;
163

164 titl = 'Lead Compensation';
165 Gc = Gco*(1+s/wz)/(1+s/wp);
166

167 xlmt = [0 0.008];
168 disp(titl)
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169 analysis(Gc, G, k, w, titl, t, xlmt, yf)
170

171 % RiseTime: 0.0013
172 % SettlingTime: 0.0039
173 % SettlingMin: 1.7192
174 % SettlingMax: 2.0517
175 % Overshoot: 8.0633
176 % Undershoot: 0
177 % Peak: 2.0517
178 % PeakTime: 0.0027
179

180 %====================================================================
181 %====================================================================
182 % Combined Compensation
183 %====================================================================
184

185 titl = 'Combined Compensator';
186 % fc, unity gain xover frequency: same value as for lead compensator
187 wI = 2*pi*fc/To % 4.7
188 wz1 = w1;
189 wz2 = w2;
190 % wp: use the same value as for lead compensator
191 Gc = wI*(1+s/wz1)*(1+s/wz2)/(s*(1+s/wp));
192

193 xlmt = [0 0.008];
194 disp(titl)
195 analysis(Gc, G, k, w, titl, t, xlmt, yf)
196

197 % RiseTime: 0.0013
198 % SettlingTime: 0.0040
199 % SettlingMin: 1.8121
200 % SettlingMax: 2.1662
201 % Overshoot: 8.3110
202 % Undershoot: 0
203 % Peak: 2.1662
204 % PeakTime: 0.0027
205 end
206

207

208 function s = analysis(Gc, G, k, w, titl, t, xlmt, yf)
209

210 % loop gain
211 L = Gc*G*k;
212

213 figure
214 [mag, phase] = bode(L,w);
215 margin(mag, phase, w);
216

217 h = gcr;
218 h.AxesGrid.Xunits = 'Hz';
219 h.AxesGrid.TitleStyle.FontSize = 12;
220 h.AxesGrid.XLabelStyle.FontSize = 12;
221 h.AxesGrid.YLabelStyle.FontSize = 12;
222

223 %======================================
224

225 % closed loop gain
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226 Gs = 1/k * L/(1+L);
227

228 % Plot of Step response results
229 figure
230 yout = step(Gs, t);
231 plot(t, yout);
232 grid on;
233 title(titl,'FontSize',12);
234 xlabel('Time (sec)','FontSize',12);
235 ylabel('Magnitude','FontSize',12);
236 xlim(xlmt);
237

238 % Time Domain Analysis Parameters
239 s = stepinfo(yout,t);
240 ss_error = (yout(end)−yf)/yf * 100
241 end
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