Flashback to 2005…

Portal Home Page and System Architecture - 2005
It really began before that…

- **Mid 1990s** – Community recognized the value of archiving Intelligent Transportation Systems (ITS) data
 - Evaluation
 - Planning
 - Performance measurement

- **1998** - FHWA ITS Program Plan addendum with Archived Data User Service (ADUS) vision
 - Articulates need to collect, retain and distribute ITS data

- **2004** - Portal created with a NSF grant to Robert Bertini

- **2005** - TransPort adopted Portland State University (PSU) as the region's official archiving entity in the region's ITS Architecture.

- **2015** – Archives now commonplace (iPEMS, RITIS, DriveNET, ITDb)
Portal today…

Portland-Vancouver Transportation Data Archive

- Policy of Open Data
- Publicly-funded (Thanks to NSF, FHWA, Metro, RTC, TREC)
- Focus on open-source software
- ~3 TB PostgreSQL Database

speed, count, travel time, weigh-in-motion, variable speed

Portal Data Archive

Travel Time, Traffic Signal, Bicycle Count, Pedestrian Push-Button

Freeway
ODOT, WSDOT, Lane County

Arterial
City of Portland, Clark County, Clackamas County, Washington County, Gresham, Tigard, Beaverton, Vancouver

Transit
TriMet, C-TRAN

Ons, Offs, On-Time Performance

Other
Weather, Weigh-in-Motion
Let’s start at the home page...

2005 Portal Home Page
The Home Page today...

Portal’s Own Map!

Vancouver, WA

New Sensors & New Data Feed
Home Page – Evolution

- Portal's Own Map!
 - 2005 map was a link to the ODOT web page
 - Allows custom mapping – current and historical speeds

- Geographic Expansion – Vancouver, WA, Central Lane, OR
 - Smaller region, but active transportation systems planning organization
 - Integrate across different systems
 - WSDOT feed structure different than ODOT feed structure.
 - WSDOT identifies detectors with strings, ODOT with integers.
 - WSDOT added a 20-second feed for compatibility with ODOT

- New Oregon Sensors and New Type of Sensing
 - Infill sensors, high-definition radar

- New Oregon Data Feed
 - ODOT DAC
FIGURE 4 Sample volume plot for I-5 North Going Street loop detector station, March 24, 2005.
Timeseries Speed & Volume Plot - 2015

- Updated Selectors
- Upstream/Downstream Buttons
- Two Quantities
- Updated technology
- Data download
Timeseries Plot – Evolution

- Updated Selectors
 - Separate date and hours
 - Add day of week

- Added upstream/downtream/opposite direction buttons

- Updated technology
 - HighCharts for plotting
 - Hover option to view data values
 - Data download
Portal: Arterial

Arterial Detection Stations
Portal: Arterial

Single-Day Speed Volume Plot
City of Portland Travel Time Map
Portal: Travel Time (Bluetooth)

City of Portland Travel Time Plot
Arterial - Evolution

- Current data sources
 - City of Portland TransSuite Central Signal System
 - Includes signals from surrounding area
 - Includes bicycle loop detectors
 - City of Portland Travel Time (Bluetooth) system
 - Oregon Department of Transportation Travel Time system
 - Clark County (WA) Wavetronix system

- Gathering arterial data has been a challenge
 - Freeway systems already had established data feeds
 - Arterial data systems are very different from each other
 - Multiple data formats and feed structures
Portal: Transit

- Combines GTFS (General Transit Feed Specification) with AVL/APC (Automatic Vehicle Location/Automatic Passenger Counter) data
Transit - Evolution

- Current data sources
 - TriMet quarterly transit data - passenger census, on-time performance (AVL/APC systems)
 - GTFS

- Planned data sources (near future)
 - TriMet daily transit data
 - C-Tran quarterly transit data (same AVL/APC vendor as TriMet)

- Performance metric maps
 - Ons/offs, on-time performance, utilized capacity
Portal: Weigh-In-Motion Data

<table>
<thead>
<tr>
<th>Data for most recent two months:</th>
<th>11/2013</th>
<th>12/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of trucks observed (thousands)</td>
<td>1353.98</td>
<td>1092.26</td>
</tr>
<tr>
<td>Average # of trucks per day</td>
<td>45.13</td>
<td>35.23</td>
</tr>
<tr>
<td>Average weight of five-axle trucks (kips)</td>
<td>53.42</td>
<td>52.28</td>
</tr>
<tr>
<td>Total # of trucks over 80 kips</td>
<td>57.9</td>
<td>41.84</td>
</tr>
<tr>
<td>Percent of total trucks over 80 kips</td>
<td>4.28</td>
<td>3.83</td>
</tr>
<tr>
<td>Total # trucks over 105.5 kips</td>
<td>2.56</td>
<td>1.74</td>
</tr>
<tr>
<td>Percent of trucks over 105.5 kips</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Total # of trucks observed with transponder (thousands)</td>
<td>394.57</td>
<td>329.6</td>
</tr>
<tr>
<td>Percent of total trucks observed with transponder</td>
<td>29.14</td>
<td>30.18</td>
</tr>
<tr>
<td>Total station-hours of data</td>
<td>15533</td>
<td>14662</td>
</tr>
<tr>
<td>Percent complete</td>
<td>98.06</td>
<td>89.58</td>
</tr>
<tr>
<td>Stations reporting in month (of 23)</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>
Portal: Weigh-In-Motion Data
USES OF PORTAL
ATM Project Development

SOUTHBOUND Speed Data for OR 217

Southbound OR 217 Congestion Plot
(Figure Credit: Jennifer Bachman, DKS Associates)
Oregon 217 ATM Scenario Using Portal Data

(Figure Credit: Carl S. Olson, DKS Associates)

Variable Speed Sign & Detector Information

<table>
<thead>
<tr>
<th>MPH Step</th>
<th>Distance</th>
<th>VAS Location</th>
<th>Detection Type</th>
<th>Inside Lane Speed</th>
<th>Outside Lane Speed</th>
<th>Γ-3 Lane Speed (if 3 lanes)</th>
<th>Crash Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.73</td>
<td>US 26 Walker Rd</td>
<td>Loop</td>
<td>58</td>
<td>53</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.67</td>
<td>BH Hwy</td>
<td>Loop</td>
<td>58</td>
<td>59</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.89</td>
<td>Allen Blvd</td>
<td>Loop</td>
<td>60</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1.36</td>
<td>Hall Blvd</td>
<td>Loop</td>
<td>42</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1.11</td>
<td>Greenburg</td>
<td>Loop</td>
<td>56</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1.39</td>
<td>72nd Ave</td>
<td>Loop</td>
<td>55</td>
<td>55</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Lane by lane speeds

<table>
<thead>
<tr>
<th>Row Lx</th>
<th>Average of Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1081</td>
<td>31.6</td>
</tr>
<tr>
<td>1082</td>
<td>43.2</td>
</tr>
<tr>
<td>1551</td>
<td>57.5</td>
</tr>
<tr>
<td>1552</td>
<td>59.4</td>
</tr>
<tr>
<td>1553</td>
<td>54.4</td>
</tr>
<tr>
<td>1559</td>
<td>60.0</td>
</tr>
<tr>
<td>1560</td>
<td>59.3</td>
</tr>
<tr>
<td>1566</td>
<td>51.3</td>
</tr>
<tr>
<td>1567</td>
<td>42.1</td>
</tr>
<tr>
<td>1573</td>
<td>41.6</td>
</tr>
<tr>
<td>1574</td>
<td>34.9</td>
</tr>
<tr>
<td>1580</td>
<td>60.6</td>
</tr>
<tr>
<td>1501</td>
<td>53.0</td>
</tr>
<tr>
<td>1507</td>
<td>60.4</td>
</tr>
<tr>
<td>1588</td>
<td>54.0</td>
</tr>
<tr>
<td>1594</td>
<td>56.0</td>
</tr>
<tr>
<td>1595</td>
<td>52.0</td>
</tr>
<tr>
<td>1608</td>
<td>55.1</td>
</tr>
<tr>
<td>1603</td>
<td>51.3</td>
</tr>
<tr>
<td>1610</td>
<td>47.1</td>
</tr>
<tr>
<td>1783</td>
<td>57.7</td>
</tr>
<tr>
<td>1987</td>
<td>24.9</td>
</tr>
</tbody>
</table>
ATM Project Development

Oregon 217 ATM Scenario Using Portal Data
(Figure Credit: Carl S. Olson, DKS Associates)
Connecting the Loop: Research -> Planning -> Implementation -> Evaluation
Travel Model Usage: *Base Year Network Assignments for Travel Demand Modeling.*

Cutline Analysis For Traffic Demand Modeling

(Figure Credit: Peter Bosa, Metro)
Other Uses...

- Educational Use
 - Cloud Data Management
 - Civil and Environmental Engineering Curriculum

- Agency Performance Reporting

- Oregon Department of Transportation Bottleneck Analysis
 - Corridor Bottleneck Operational Study
 - Bottleneck Analysis

- Powell Blvd Signal Analysis

- Portland Arterial Concept of Operations

- I-84 Traffic Management Plan

- Ronler ATMS Project (Washington Cty)
Going Forward…

- Usability
- Arterial Data Visualization
 - Verification of Traffic Signal Programming
 - Data Quality
- Transit Daily Data
- New Data Sources
 - C-TRAN Transit Data
 - Port of Portland Data
 - Variable Speed and Travel Time Sign Data
 - Vehicle Length Data
- Expansion
 - Arterial Data from cities and counties (Clackamas, Washington, Beaverton, Tigard)
 - Central Lane, OR
Big Data and Transportation...

- **Increased Volume and Variety of Transportation Data**
 - Improved sensor and mobile device technology
 - Realization that data is too valuable to delete
 - ADUS - ITS Program Plan addendum 1998
 - Decreased storage costs

- **Increased Demand for Data-Driven Decision Making (MAP-21)**

 - **Freeways**
 - Inductive Loops
 - High-Definition Radar
 - Third-Party
 - **Transit**
 - AVL/APC
 - GTFS
 - **Arterial**
 - Measured Travel Time
 - Traffic Signal Systems
 - **Safety**
 - Incident Reports
 - Crash Reports
 - **Bicycle/Pedestrian**
 - Automated
 - Manual

Ideas credit: David DeWitt, Microsoft/UW-Madison, SQL Server PASS Talk 2011

Big Data and Transportation...

- **Data Integration (a.k.a. Fusion, Linkage)**
 - ODOT Integers vs. WSDOT strings
 - Varied Arterial Signal and Bluetooth Systems
 - Corridor Flow
 - Portland’s I-84/Powell Corridor has: car, light rail, bus even bike

- **Data Bias**
 - “Can I use this data for that purpose?”
 - Capturing and communicating that information
THANK YOU!

http://portal.its.pdx.edu
http://demo.portal.its.pdx.edu

tufte@pdx.edu
DOT Data Sources (Freeway)

- ODOT DAQ
 - XML Feed
 - 20 second granularity
 - automated station inventory file

- ODOT
 - Loop Detectors
 - High-definition radar
 - Travel Time
 - Variable Speed and Travel Time Sign Messages

- Lane County
 - High-definition radar

- OR-WA Archive

- WSDOT
 - Loop Detectors
 - High-definition radar

Planned:
ODOT
- Length Data
Arterial Data Sources

- **City of Portland**
 - Travel Time
 - Travel time data gathered from devices by scripts on CoP servers
 - Data uploaded to Portal hourly
 - Processing scripts calculate travel times

- **City of Portland**
 - Signal System, including MOE Logs (TransSuite) and Bicycle Counts
 - Central Signal Server is Shared

- **Washington & Clackamas County**
 - Signal System (TransSuite)

- **Portal OR-WA Archive**
 - Hourly data feed created by TransSuite
 - Data uploaded to PSU hourly (sftp)

- **Clark County**
 - Wavetronix
 - Data generated using Wavetronix report-generation system
 - Data uploaded to PSU nightly

- **Planned:**
 - Clark County
 - Travel Time
 - City of Vancouver
 - Wavetronix
 - Signal System (ATMS.Now)
Transit Data Sources

- Portal Archive import processing combines PAX and GTFS data
- Quarterly PAX data exported
- PAX data inserted in Enterprise Database
- Data is cleaned and aggregated
- GTFS data published publicly
- No enterprise database (yet)
- Process to be determined

TriMet
- AVL/APC (Init)
- GTFS Data

Portal OR-WA Archive

C-Tran
- AVL/APC (Init)
- GTFS
Portal: Freeways

This material is based upon work supported by the National Science Foundation under Grant No. 0206667, the Oregon Department of Transportation, the Oregon Transportation Research and Education Consortium, the Southwest Washington Regional Transportation Council, the Federal Highway Administration, and by grants distributed through Metro. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations.