
CS510 Concurrent Systems 
Jonathan Walpole 



Transactional Memory: Architectural 
Support for Lock-Free Data Structures  

By Maurice Herlihy and J. Eliot B. Moss 
1993 



Outline 
Review of synchronization approaches 
Transactional memory (TM) concept 
A hardware-based TM implementation 

-  Core additions 
-  ISA additions 
-  Transactional cache 
-  Cache coherence protocol changes 

Validation and results 
Conclusions 



A pessimistic approach based on mutual exclusion and blocking 
-  Easy to understand and use 
-  Does not scale well 
-  Not composable 

Locking 

Lo-priority 

Holds Lock X 

Hi-priority Pre-emption Can’t proceed 

Priority Inversion 

Holds Lock X 
De-scheduled Can’t proceed 

Ex: Quantum expiration, 
Page Fault, other interrupts 

Proc A Proc B 

Convoying 

Can’t proceed 
Deadlock 

Can’t proceed 

Get Lock X 

Get Lock X 

Holds Lock Y 
Get Lock X 

Holds Lock X 
Get Lock Y 

High context 
switch overhead 

Med-priority 

Proc C 



Lock-Free Synchronization 
Non-Blocking, optimistic approach 

-  Uses atomic operations such as CAS, LL&SC 
-  Limited to operations on single-word or double-words 

Avoids common problems seen with locking 
-  no priority inversion, no convoying, no deadlock 

Difficult programming logic makes it hard to use 



Wish List 
Simple programming logic (easy to use) 
No priority inversion, convoying or deadlock 
Equivalent or better performance than locking 

-  Less data copying 
No restrictions on data set size or contiguity 
Composable 
Wait-free 
. . . 

. . . Enter Transactional Memory (TM) … 



What is a Transaction? 
Transaction: a finite sequence of revocable operations, executed by a 

process, that satisfies two properties: 
1.  Serializability 

-  the steps of one transaction are not seen to be interleaved 
with the steps of another transaction 

-  all processes agree on the order of transaction execution 
2. Atomicity 

-  Each transaction either aborts or commits 
-  Abort: all tentative changes of the transaction are discarded 
-  Commit: all tentative changes of the transaction take effect 

immediately 

This paper assumes that a process executes one transaction at a time 
-  Transactions do not nest (ie. not composable) 
-  Transactions do not overlap 



What is Transactional Memory? 
Transactional Memory (TM) is a lock-free, non-blocking 

concurrency control mechanism based on transactions  

TM allows programmers to define customized atomic operations 
that apply to multiple, independently chosen memory 
locations 

TM is non-blocking 
-  Multiple transactions execute optimistically, in parallel, on 

different CPU’s 
-  If a conflict occurs only one can succeed, others can retry 



Basic  Transaction Concept 

Atomicity 

True concurrency 

How is validity determined? 

Optimistic execution 

Serialization is ensured if only one transaction commits and others abort 
Linearization is ensured by atomicity of validate, commit, and abort operations 

How to COMMIT? 

How to ABORT? 

Changes must be revocable! 



TM Primitives 

LT   - Load Transactional 
LTX   - Load Transactional Exclusive 
ST   - Store Transactional 
Validate 
Commit 
Abort 



TM vs. Non-Blocking Algorithm 

// HW makes changes PERMANENT 

// TM 
While (1) { 

  curCnt = LTX(&cnt); 

  if (Validate()) { 

    int c = curCnt+1; 

    ST(&cnt, c); 

    if (Commit()) 
          return; 
  } 

} 

// Non-Block 
While (1) { 

  curCnt = LL(&cnt); 

  // Copy object 

  if (Validate(&cnt)) { 

    int c = curCnt + 1; 

    if (SC(&cnt, c)) 
          return; 
  } 

} 

// Do work 



Hardware or Software TM? 
TM may be implemented in hardware or software 

-  Many SW TM library packages exist (C++, C#, Java, 
Haskell, Python, etc.) 

-  2-3 orders of magnitude slower than other 
synchronization approaches 

This paper focuses on a hardware implementation of TM 
-  better performance than SW for reasonable cost 
-  Minor tweaks to CPUs 

-  core, instruction set, caches, bus and cache coherency 
protocols ... 

-  Uses cache-coherency protocol to maintain transactional 
memory consistency 

-  Hardware implementation without software cache 
overflow handling is problematical 



Core Changes 
Each CPU maintains two additional Status Register bits 

TACTIVE  
-  flag set if a transaction is in progress on this CPU 

TSTATUS 
- flag set if the active transaction has conflicted with 

another transaction 

TACTIVE TSTATUS MEANING 
False DC No tx active 

True False Orphan tx - executing, conflict detected, will abort 

True True Active tx - executing, no conflict yet detected 



Instruction Set Changes 
LT:  load from shared memory to register 
ST:  tentative write of register to shared memory 

  becomes visible upon successful COMMIT 
LTX:  LT + intent to write to same location later 

  A performance optimization for early conflict detection 

VALIDATE:  Verify consistency of read set 
ABORT:  Unconditionally discard all updates 
COMMIT:  Attempt to make tentative updates permanent 



TM Conflict Detection 

LOAD and STORE are supported but do not affect tx’s READ or WRITE set 
-  Semantics are left to implementation 
-  Interaction between tx and non-tx operations to same address is generally a 

programming error 
-  If LOAD/STORE are not viewed as committed transactions, with conflict potential, 

non-linearizable outcomes are possible. 

Tx Dependencies Definition 

Tx Abort Condition Diagram* 

*Subject to arbitration 

(as in Reader/Writer paradigm) 



TM Cache Architecture 

Tx Cache 
-  Fully-associative, otherwise how would address collisions be handled? 
-  Single-cycle COMMIT and ABORT 
-  Small - size is implementation dependent 
-  Holds all tentative writes without propagating to other caches or memory 
-  Upon ABORT modified lines set to INVALID state 
-  Upon COMMIT, lines can be snooped by other processors, lines written 

back to memory upon replacement 



HW TM Leverages Cache Protocol 
M - cache line only in current cache and is 

modified 
E - cache line only in current cache and is 

not modified 
S - cache line in current cache and possibly 

other caches and is not modified 
I - invalid cache line 

Tx commit logic detects the following 
events (akin to R/W locking): 

Local read, remote write 
!  S -> I 
!  E -> I 

Local write, remote write 
!  M -> I 

Local write, remote read 
M, snoop read, write back -> S 

Works with bus-based (snoopy cache) or 
network-based (directory) 
architectures 



Protocol Changes: Cache States 

Every transactional operation allocates 2 cache line entries 



ISA: TM Verification Operations 

Orphan = TACTIVE==TRUE && TSTATUS==FALSE 
Tx continues to execute, but will fail at commit 

Commit does not force write back to memory 
Memory written only when CL is evicted or invalidated 

Conditions for calling ABORT 
Interrupts 
Tx cache overflow 



TM Memory Access 
Tx Op Allocation 

For reference !  Tx requests REFUSED by BUSY response 
–  Tx aborts and retries (after exponential backoff?) 
–  Prevents deadlock or continual mutual aborts 

!  Exponential backoff not implemented in HW 
–  Performance is parameter sensitive 
–  Benchmarks appear not to be optimized 



TM – Snoopy Cache Actions 

Both Regular and Tx Cache snoop on the bus 
Main memory responds to all L1 read misses 
Main memory responds to cache line replacement  WRITE ‘s 
If TSTATUS==FALSE, Tx cache acts as Regular cache (for NORMAL entries) 



Experimental Platform 
Implemented in Proetus - execution driven simulator from MIT 

-  Two versions of TM implemented 
-  Goodman’s snoopy protocol for bus-based architectures 
-  Chaiken directory protocol for (simulated) Alewife machine 

-  32 Processors 
-  memory latency of 4 clock cycles 
-  1st level cache latency of 1 clock cycles 

2048x8B Direct-mapped regular cache 
64x8B fully-associative Tx cache 

-  Strong Memory Consistency Model 



Comparisons 
Compare TM to 4 alternative approaches 

-  Software 
-  TTS (test-and-test-and-set) spinlock with exponential backoff [TTS 

Lock] 
-  SW queuing [MCS Lock] 

Process unable to lock puts itself in the queue, eliminating poll time 

-  Hardware 
-  LOAD_LINKED/STORE_COND with exponential backoff [LL/SC Direct/

Lock] 
-  Hardware queuing [QOSB] 

Queue maintenance incorporated into cache-coherency protocol 
Goodman’s QOSB protocol - head in memory elements in unused CL’s 



Test Methodology 
Benchmarks 

-  Counting 
-  LL/SC directly used on the single-word counter variable 

-  Producer & Consumer 
-  Doubly-Linked List 

All benchmarks do a fixed amount of work 



Counting Benchmark 

N processes increment shared counter 2^16/n times, n=1 to 32 
Short CS with 2 shared-mem accesses, high contention 
In absence of contention, TTS makes 5 references to mem for each increment 

RD + test-and-set to acquire lock + RD and WR in CS + release lock 
TM requires only 3 mem accesses  

RD & WR to counter and then COMMIT (no bus traffic) 



Counting Benchmark Results 

LL/SC outperforms TM 
- LL/SC applied directly to counter variable, no explicit commit required 
- For other benchmarks, adv lost as shared object spans multiple words – only way to use LL/SC is as a spin lock 

TM has higher throughput than all other mechanisms at most levels of concurrency 
- TM uses no explicit locks and so fewer accesses to memory (LL/SC -2, TM-3,TTS-5) 

TTS Lock 

MCS Lock - SWQ 

QOSB - HWQ 

TM 

LL/SC Direct 

TTS Lock 

TM 

LL/SC Direct 

MCS Lock - SWQ 

QOSB - HWQ 



Producer/Consumer Benchmark 

N/2 producers and N/2 consumers share a bounded buffer, initially empty 
Benchmark finishes when 2^16 operations have completed 



Producer/Consumer Results 

QOSB - HWQ 

TTS Lock 

TM 

LL/SC Direct 

MCS Lock - SWQ 

TM 

QOSB - HWQ 

LL/SC Direct 

MCS Lock - SWQ 

TTS Lock 



Doubly-Linked List Benchmark 
N processes share a doubly linked list 

-  Head & Tail pointers anchor the list 
-  Process Dequeues an item by removing the item pointed by 

tail and then Enqueues it by adding it at head 
-  Removing the last item sets both Head & Tail to NULL 
-  Inserting the first item into an empty list set’s both Head & 

Tail to point to the new item 

Benchmark finishes when 2^16 operations have completed 



Doubly-Linked List Benchmark 
Concurrency difficult to exploit by conventional means 

State dependent concurrency is not simple to recognize using locks 
-  Enquerers don’t know if they must lock tail-ptr until after they have 

locked head-ptr & vice-versa for dequeuers 
-  Queue non-empty: each Tx modifies head or tail but not both, so 

enqueuers can (in principle) execute without interference from 
dequeuers and vice-versa 

-  Queue Empty: Tx must modify both pointers and enqueuers and 
dequeuers conflict 

Locking techniques use only single lock 
-  Lower throughput as single lock prohibits overlapping of enqueues 

and dequeues 

TM  naturally permits this kind of parallelism 



Doubly-Linked List Benchmark 



Doubly-Linked List Results 

Concurrency difficult to exploit by conventional means 
State dependent concurrency is not simple to recognize using locks 

Enquerers don’t know if it must lock tail-ptr until after it has locked head-ptr & vice-versa for dequeuers 
Queue non-empty: each Tx modifies head or tail but not both, so enqueuers can (in principle) execute without 

interference from dequeuers and vice-versa 
Queue Empty: Tx must modify both pointers and enqueuers and dequeuers conflict 

Locking techniques uses only single lock 
Lower thruput as single lock prohibits overlapping of enqueues and dequeues 

TM  naturally permits this kind of parallelism 

MCS Lock - SWQ 

MCS Lock - SWQ 

TM 
TM 

QOSB - HWQ 

QOSB - HWQ 

TTS Lock 

TTS Lock 

LL/SC Direct 

LL/SC Direct 



Advantages of TM 
TM matches or outperforms atomic update locking techniques 

for simple benchmarks 

TM uses no locks and thus has fewer memory accesses 

TM avoids priority inversion, convoying and deadlock 

TM’s programming semantics are fairly easy 

Complex non-blocking algorithms, such as doubly-linked list, 
are more realizable usingTM 

Allows true concurrency? 
-  It allows disjoint access concurrency 
-  Should be scalable (for small transaction sizes) 



Disadvantages of TM 
TM can not perform undoable operations such as I/O 

Single cycle commit and abort restrict size of 1st level cache 
and hence Tx size 

Portability is restricted by transactional cache size 

Algorithm tuning benefits from SW based adaptive backoff and 
transactional cache overflow handling 

Long transactions have high risk of being aborted by an 
interrupt, scheduling conflict or transactional conflict 

Weaker consistency models require explicit barriers at start and 
end, impacting performance 



Disadvantages of TM 
Complications that make it more difficult to implement in 

hardware: 
-  Multi-level caches 
-  Nested Transactions (required for composability) 
-  Cache coherency complexity on many-core SMP and 

NUMA architectures 

Theoretically subject to starvation 
-  Adaptive backoff strategy suggested fix - authors used 

exponential backoff 

Poor debugger support 



Summary 
Wish Granted? Comment 

Simple programming model Yes Very elegant 

Avoids priority inversion, 
convoying and deadlock 

Yes Inherent in NB approach 

Equivalent or better 
performance than lock-
based approach 

Yes Only for very small and 
short tx’s 

No restrictions on data set 
size or contiguity 

No Limited by practical 
considerations 

Composable No Possible but would add 
significant HW complexity 

Wait-free No Possible but would add 
significant HW complexity 



Summary 
TM is a novel multi-processor architecture which allows easy 

lock-free multi-word synchronization in hardware 

TM is losely based on the concept of Database Transactions 

TM overcomes the single/double-word limitation of CAS and 
LL/SC 

TM implementation exploits cache-coherency mechanisms 


