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> Some people say relaxed FIFO queues are not enough FIFO.

» No applications for relaxed FIFO queues.
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> Some people say relaxed FIFO queues are not enough FIFO.

» No applications for relaxed FIFO queues.

We say relaxed FIFO queue implementations can be even
more FIFO than strict FIFO queue implementations.
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1.)  Record concurrent histories of various FIFO
gueue implementations.

2.) Analyze these concurrent histories using only the
invocation times of operations.
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1.)  Record concurrent histories of various FIFO
gueue implementations.

2.) Analyze these concurrent histories using only the
invocation times of operations.

> |deally operations would take zero time
> |[ndependent of the execution time of operations
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,—[ all threads do in parallel }

for 10.000 iterations

enqueue unique element
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,—[ all threads do in parallel |

)
for 10.000 iterations
{ enqueue unique element
calculate Pi
dequeue element
\ calculate Pi

> No dequeues in the first 200 iterations to avoid empty checks
> No enqueues in the last 200 iterations to empty the queue.
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> Measure the out-of order execution of single operations
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> Only for strict FIFO queue implementations at the moment.

> Measuring relaxed implementations is future work.
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> Only for strict FIFO queue implementations at the moment.

> Measuring relaxed implementations is future work.

r—[ all threads do in parallel }

for 10.000 iterations

{ enqueue unique element
calculate Pi

,—[ one thread does }

dequeue all elements sequentially

s 11/17
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% of enqueue operations with operation-age > 0
(less is better)
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% of enqueue operations with operation-lateness > 0
(less is better)
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> \We introduced metrics to compare the behavior of various
FIFO queue implementations.

* Relaxed implementation can appear more FIFO than
strict implementations.

> Future work

» Measure operation-fairness of relaxed FIFO queue
Implementations.

* Use element-fairness to analyze implementation of other
data structures, e.qg. stacks.
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For more information about the queue implementations see
http://scal.cs.uni-salzburg.at/

Additional measurement results can be seen on
http://scal.cs.uni-salzburg.at/races12/



