
1/17

Title

RACES Workshop, October 2012

How FIFO is Your Concurrent FIFO Queue?

Andreas Haas, Christoph M. Kirsch, 
Michael Lippautz, Hannes Payer

University of Salzburg



2/17

Strict vs. Relaxed FIFO Queues

strict FIFO queue implementations relaxed FIFO queue implementations



2/17

Strict vs. Relaxed FIFO Queues

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations relaxed FIFO queue implementations



2/17

Strict vs. Relaxed FIFO Queues

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations

linearizable with respect to 
relaxed FIFO queue semantics

relaxed FIFO queue implementations



2/17

Strict vs. Relaxed FIFO Queues

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations

linearizable with respect to 
relaxed FIFO queue semantics

relaxed FIFO queue implementations

bounded 
out-of-order treatment 

of queue elements
possible



2/17

Strict vs. Relaxed FIFO Queues

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 10 20 30 40 50 60 70 80

op
er

at
io

ns
/m

s 
(m

or
e 

is
 b

et
te

r)

number of threads

LB
MS
FC

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations

linearizable with respect to 
relaxed FIFO queue semantics

relaxed FIFO queue implementations

bounded 
out-of-order treatment 

of queue elements
possible



2/17

Strict vs. Relaxed FIFO Queues

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 10 20 30 40 50 60 70 80

op
er

at
io

ns
/m

s 
(m

or
e 

is
 b

et
te

r)

number of threads

LB
MS
FC

US k-FIFO (k=80)

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations

linearizable with respect to 
relaxed FIFO queue semantics

relaxed FIFO queue implementations

bounded 
out-of-order treatment 

of queue elements
possible



2/17

Strict vs. Relaxed FIFO Queues

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 10 20 30 40 50 60 70 80

op
er

at
io

ns
/m

s 
(m

or
e 

is
 b

et
te

r)

number of threads

2RA Scal (p=80)

LB
MS
FC

US k-FIFO (k=80)
RR Scal (p=80)

linearizable with respect to 
strict FIFO queue semantics

strict FIFO queue implementations

linearizable with respect to 
relaxed FIFO queue semantics

relaxed FIFO queue implementations

bounded 
out-of-order treatment 

of queue elements
possible



3/17

How FIFO are Relaxed FIFO Queues?

Some people say relaxed FIFO queues are not enough FIFO.
No applications for relaxed FIFO queues.



3/17

How FIFO are Relaxed FIFO Queues?

We say relaxed FIFO queue implementations can be even 
more FIFO than  strict FIFO queue implementations.

Some people say relaxed FIFO queues are not enough FIFO.
No applications for relaxed FIFO queues.



4/17

Example

time

aenq

benq

adeqbdeq



4/17

Example

linearization 
point

time

aenq

benq

adeqbdeq



4/17

Example

linearization 
point

time

aenq

benq

adeqbdeq

linearizable



4/17

Example

linearization 
point

time

aenq

benq

adeqbdeq

time

aenq

benq

adeqbdeq

linearizable



4/17

Example

linearization 
point

time

aenq

benq

adeqbdeq

time

aenq

benq

adeqbdeq

linearizable

not linearizable



4/17

Example

linearization 
point

time

aenq

benq

adeqbdeq

time

aenq

benq

adeqbdeq

linearizable

not linearizable

out-of-order execution
of overlapping operations

out-of-order treatment
of queue elements



5/17

Key Idea

Record concurrent histories of various FIFO
queue implementations.

Analyze these concurrent histories using only the 
invocation times of operations.

2.)

1.)



5/17

Key Idea

Record concurrent histories of various FIFO
queue implementations.

Analyze these concurrent histories using only the 
invocation times of operations.

2.)

1.)

Ideally operations would take zero time



5/17

Key Idea

Record concurrent histories of various FIFO
queue implementations.

Analyze these concurrent histories using only the 
invocation times of operations.

2.)

1.)

Ideally operations would take zero time
Independent of the execution time of operations



6/17

Element-Fairness

time

aenq

benq

adeqbdeq



6/17

Element-Fairness

time

aenq benq adeqbdeq

zero-time linearization



6/17

Element-Fairness

time

aenq

element overtakes element ab

benq adeqbdeq

zero-time linearization



6/17

Element-Fairness

time

aenq

element overtakes element ab

benq adeqbdeq

element-fairness = 
number of overtakings in the zero-time linearization

Definition

zero-time linearization



7/17

Experiments

for 10.000 iterations

dequeue element 

{

}

enqueue unique element

all threads do in parallel



7/17

Experiments

for 10.000 iterations

calculate Pi
dequeue element 

{

}

enqueue unique element

calculate Pi

all threads do in parallel



7/17

Experiments

for 10.000 iterations

calculate Pi
dequeue element 

{

}

enqueue unique element

calculate Pi

all threads do in parallel

No dequeues in the first 200 iterations to avoid empty checks.
No enqueues in the last 200 iterations to empty the queue.



8/17

Element-Fairness per Element

0.1

1

10

100

1000

0 1000 2000 4000 8000 16000 32000 64000

el
em

en
t-f

ai
rn

es
s 

pe
r e

le
m

en
t

(lo
gs

ca
le

, l
es

s 
is

 b
et

te
r)

computational load (logscale)

80 threads



8/17

Element-Fairness per Element

0.1

1

10

100

1000

0 1000 2000 4000 8000 16000 32000 64000

el
em

en
t-f

ai
rn

es
s 

pe
r e

le
m

en
t

(lo
gs

ca
le

, l
es

s 
is

 b
et

te
r)

computational load (logscale)

80 threads

LB
MS
FC



8/17

Element-Fairness per Element

0.1

1

10

100

1000

0 1000 2000 4000 8000 16000 32000 64000

el
em

en
t-f

ai
rn

es
s 

pe
r e

le
m

en
t

(lo
gs

ca
le

, l
es

s 
is

 b
et

te
r)

computational load (logscale)

80 threads

LB
MS
FC

US k-FIFO (k=80)



8/17

Element-Fairness per Element

0.1

1

10

100

1000

0 1000 2000 4000 8000 16000 32000 64000

el
em

en
t-f

ai
rn

es
s 

pe
r e

le
m

en
t

(lo
gs

ca
le

, l
es

s 
is

 b
et

te
r)

computational load (logscale)

80 threads

LB
MS
FC

US k-FIFO (k=80)
RR Scal (p=80)

2RA Scal (p=80)



9/17

Operation-Fairness

Measure the out-of order execution of single operations



9/17

Operation-Fairness

Observation: Linearization points induce a strict order on
the queue operations

Measure the out-of order execution of single operations



9/17

Operation-Fairness

time

aenq

benq

adeqbdeq

Observation: Linearization points induce a strict order on
the queue operations

Measure the out-of order execution of single operations



9/17

Operation-Fairness

time

aenq

benq

adeqbdeq

Observation: Linearization points induce a strict order on
the queue operations

Measure the out-of order execution of single operations



aenq

benq



aenq

benq

operation enq ab overtakes operation enq



aenq

benq

operation enq ab overtakes operation enq

operation-fairness = 
number of overtakings in a concurrent history

Definition



10/17

Operation-Age and Operation-Lateness

age (op) = 
number of operations op overtakes

Definition



10/17

Operation-Age and Operation-Lateness

age (op) = 
number of operations op overtakes

Definition

aenq

benq

age(enq a ) = 0
age(enq b ) = 1



10/17

Operation-Age and Operation-Lateness

age (op) = 
number of operations op overtakes

lateness (op) = 
number of operations which overtake op

Definition

Definition

aenq

benq

age(enq a ) = 0
age(enq b ) = 1



10/17

Operation-Age and Operation-Lateness

age (op) = 
number of operations op overtakes

lateness (op) = 
number of operations which overtake op

Definition

Definition

aenq

benq

age(enq a ) = 0
age(enq b ) = 1

lateness(enq a ) = 1
lateness(enq b ) = 0



11/17

Experiments (2)

Only for strict FIFO queue implementations at the moment.
Measuring relaxed implementations is future work.



11/17

Experiments (2)

for 10.000 iterations

enqueue unique element{

}
calculate Pi

all threads do in parallel

Only for strict FIFO queue implementations at the moment.
Measuring relaxed implementations is future work.



11/17

Experiments (2)

for 10.000 iterations

enqueue unique element{

}
calculate Pi

all threads do in parallel

Only for strict FIFO queue implementations at the moment.
Measuring relaxed implementations is future work.

dequeue all elements sequentially

one thread does



12/17

Maximum Operation-Age

1

10

100

0 1000 2000 4000 8000 16000 32000 64000

m
ax

im
um

 o
pe

ra
tio

n-
ag

e
(lo

gs
ca

le
, l

es
s 

is
 b

et
te

r)

computational load (logscale)

80 threads

LB MS FC



13/17

Maximum Operation-Lateness

10

100

1000

10000

100000

0 1000 2000 4000 8000 16000 32000 64000

m
ax

im
um

 o
pe

ra
tio

n-
la

te
ne

ss
(lo

gs
ca

le
, l

es
s 

is
 b

et
te

r)

computational load (logscale)

80 threads

LB MS FC



14/17

Number of Overtaking Operations

0

20

40

60

80

100

0 1000 2000 4000 8000 16000 32000 64000%
 o

f e
nq

ue
ue

 o
pe

ra
tio

ns
 w

ith
 o

pe
ra

tio
n-

ag
e 

>
 0

(le
ss

 is
 b

et
te

r)

computational load (logscale)

80 threads

LB MS FC



15/17

Number of Overtaken Operations

0

20

40

60

80

100

0 1000 2000 4000 8000 16000 32000 64000

%
 o

f e
nq

ue
ue

 o
pe

ra
tio

ns
 w

ith
 o

pe
ra

tio
n-

la
te

ne
ss

 >
 0

(le
ss

 is
 b

et
te

r)

computational load (logscale)

80 threads

LB MS FC



16/17

Conclusion

Future work
Measure operation-fairness of relaxed FIFO queue 
implementations. 
Use element-fairness to analyze implementation of other
data structures, e.g. stacks.

We introduced metrics to compare the behavior of various
FIFO queue implementations.

Relaxed implementation can appear more FIFO than
strict implementations.



17/17

Thank You

Thank You

For more information about the queue implementations see 
http://scal.cs.uni-salzburg.at/

Additional measurement results can be seen on
http://scal.cs.uni-salzburg.at/races12/


