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How FIFO are Relaxed FIFO Queues?

We say relaxed FIFO queue implementations can be even 
more FIFO than  strict FIFO queue implementations.

Some people say relaxed FIFO queues are not enough FIFO.
No applications for relaxed FIFO queues.
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linearizable

not linearizable

out-of-order execution
of overlapping operations

out-of-order treatment
of queue elements
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Key Idea

Record concurrent histories of various FIFO
queue implementations.

Analyze these concurrent histories using only the 
invocation times of operations.

2.)

1.)

Ideally operations would take zero time
Independent of the execution time of operations
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Element-Fairness

time

aenq

element overtakes element ab

benq adeqbdeq

element-fairness = 
number of overtakings in the zero-time linearization

Definition

zero-time linearization
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Experiments

for 10.000 iterations

calculate Pi
dequeue element 

{

}

enqueue unique element

calculate Pi

all threads do in parallel

No dequeues in the first 200 iterations to avoid empty checks.
No enqueues in the last 200 iterations to empty the queue.
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benq

operation enq ab overtakes operation enq

operation-fairness = 
number of overtakings in a concurrent history

Definition
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age (op) = 
number of operations op overtakes

lateness (op) = 
number of operations which overtake op

Definition

Definition

aenq

benq

age(enq a ) = 0
age(enq b ) = 1

lateness(enq a ) = 1
lateness(enq b ) = 0
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Experiments (2)

for 10.000 iterations

enqueue unique element{

}
calculate Pi

all threads do in parallel

Only for strict FIFO queue implementations at the moment.
Measuring relaxed implementations is future work.

dequeue all elements sequentially

one thread does
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Conclusion

Future work
Measure operation-fairness of relaxed FIFO queue 
implementations. 
Use element-fairness to analyze implementation of other
data structures, e.g. stacks.

We introduced metrics to compare the behavior of various
FIFO queue implementations.

Relaxed implementation can appear more FIFO than
strict implementations.
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Thank You

Thank You

For more information about the queue implementations see 
http://scal.cs.uni-salzburg.at/

Additional measurement results can be seen on
http://scal.cs.uni-salzburg.at/races12/


