Andreas Haas, Christoph M. Kirsch,
Michael Lippautz, Hannes Payer

University of Salzburg

RACES Workshop, October 2012

(strict FIFO queue implementations) (relaxed FIFO queue implementations)

2/17

(strict FIFO queue implementations) (relaxed FIFO queue implementations)

linearizable with respect to
strict FIFO queue semantics

2/17

(strict FIFO queue implementations) (relaxed FIFO queue implementations)

linearizable with respect to linearizable with respect to
strict FIFO queue semantics relaxed FIFO queue semantics

2/17

(strict FIFO queue implementations) (relaxed FIFO queue implementations)

linearizable with respect to linearizable with respect to
strict FIFO queue semantics relaxed FIFO queue semantics

bounded
out-of-order treatment
of queue elements
possible

2/17

(

strict FIFO queue implementations

linearizable with respect to

strict FIFO queue semantics

operations/ms (more is better)

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

) (relaxed FIFO queue implementations)

linearizable with respect to

relaxed FIFO queue semantics

50

60

70

80

bounded

possible

out-of-order treatment
of queue elements

2/17

(strict FIFO queue implementations

linearizable with respect to
strict FIFO queue semantics

) (relaxed FIFO queue implementations)

linearizable with respect to

operations/ms (more is better)

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

relaxed FIFO queue semantics

E\E/E\E—;]

number of threads

US k-FIFO (k=80) ———

50 60 70 80

bounded
out-of-order treatment
of queue elements
possible

2/17

strict FIFO queue implementations

linearizable with respect to
strict FIFO queue semantics

operations/ms (more is better)

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

) (relaxed FIFO queue implementations)

linearizable with respect to
relaxed FIFO queue semantics

bounded
out-of-order treatment
of queue elements
possible

]

number of threads

US k-FIFO (k=80) ———
RR Scal (p=80) —l}—
2RA Scal (p=80) —~—

> Some people say relaxed FIFO queues are not enough FIFO.

» No applications for relaxed FIFO queues.

3/17

> Some people say relaxed FIFO queues are not enough FIFO.

» No applications for relaxed FIFO queues.

We say relaxed FIFO queue implementations can be even
more FIFO than strict FIFO queue implementations.

3/17

time

4/17

oint
: ena (B)

Y t
' eng (@))@ ' deq@)g ' de;(@ A

>
time

4/17

oint
: ena (B)

B N [\/ linearizable]
¥_3%¢

eng (@) deq (b) deq (@)
v)é v w— s 1)

>
time

4/17

linearization
point

[‘/ linearizable]

eng @
eng 8(deq @ deq @
\) \ L | 1)
am a a >
time
1o ®y
enq@ ' deq@ N ' deq@ 4
time >

4/17

linearization
point

[\/ linearizable]

eng (b)
enq 8(deq @ deq @
v t ¥ t $
% X— % R
time
4 & () A [)(not Iinearizable]
GHQ@ i deq (b) A ' deq (@) A
time >

4/17

linearization
point

out-of-order execution
of overlapping operations

eng (b)

f.

[‘/ linearizable]

' deq @)Q ' de;(@ I\

>

enq@

time

(

of queue elements

out-of-order treatment J

1o ®y

[X not linearizable]
y P® 4 @

>

time

4/17

1.) Record concurrent histories of various FIFO
gueue implementations.

2.) Analyze these concurrent histories using only the
invocation times of operations.

5/17

1.) Record concurrent histories of various FIFO
gueue implementations.

2.) Analyze these concurrent histories using only the
invocation times of operations.

> |deally operations would take zero time

5/17

1.) Record concurrent histories of various FIFO
gueue implementations.

2.) Analyze these concurrent histories using only the
invocation times of operations.

> |deally operations would take zero time
> |[ndependent of the execution time of operations

5/17

time

6/17

t enq@ tenq@ tdeq@ tdeq@

time
[zero-time linearization]

6/17

element @ overtakes element @

| |

t enq@ tenq@ tdeq@ ideq@

time
[zero-time linearization]

6/17

element @ overtakes element @

| |

t enq@ tenq@ tdeq@ ideq@

[zero-time linearization]

,—(Definition)
element-fairness =

number of overtakings in the zero-time linearization

\

y

time

6/17

,—[all threads do in parallel }

for 10.000 iterations

enqueue unique element

dequeue element

7/17

,—[all threads do in parallel]

)

for 10.000 iterations
{

enqueue unique element
calculate Pi

dequeue element
calculate Pi

7/17

,—[all threads do in parallel |

)
for 10.000 iterations
{ enqueue unique element
calculate Pi
dequeue element
\ calculate Pi

> No dequeues in the first 200 iterations to avoid empty checks
> No enqueues in the last 200 iterations to empty the queue.

7/17

element-fairness per element

(logscale, less is better)

80 threads

1000 |

100

=
o
1 1 IIIIIII

0.1 '

0 1000

2000 4000 8000 16000 32000 64000

computational load (logscale)

8/17

element-fairness per element

(logscale, less is better)

80 threads
1000 I I I I I I

100

=
o

%

0.1 | | | | | |
0 1000 2000 4000 8000 16000 32000 64000

computational load (logscale)

LB ——
MS ——
FC —x—

8/17

element-fairness per element

(logscale, less is better)

80 threads

1000 g | | | | | | 3

100 = 3

I . :

) > i

B = sl

10 E
0.1 | | | | | |

0 1000 2000 4000 8000 16000 32000 64000

computational load (logscale)

LB —— US k-FIFO (k=80) —=—
MS ——
FC —¥—

8/17

element-fairness per element

(logscale, less is better)

80 threads

1000 I I I I | I
¢ = = B S < = j>
100 = 3
ji . :
E < i
B E ol
10—m— E
—
0.1 | | | | | |

0 1000 2000 4000 8000 16000 32000 64000

computational load (logscale)

LB —— US k-FIFO (k=80) ——+—
MS —<— RR Scal (p=80) —m—
FC —x— 2RA Scal (p=80) ——

8/17

> Measure the out-of order execution of single operations

9/17

> Measure the out-of order execution of single operations

> Observation: Linearization points induce a strict order on
the queue operations

9/17

> Measure the out-of order execution of single operations
> Observation: Linearization points induce a strict order on

the queue operations

time

9/17

> Measure the out-of order execution of single operations
> Observation: Linearization points induce a strict order on

the queue operations

time

9/17

operation enq (b) overtakes operation enq @

operation enq (b) overtakes operation enq @

! enq@
A VAR

Definition _ _
operation-fairness =

number of overtakings in a concurrent history

| Definition | \

age (op) =
number of operations op overtakes

10/17

| Definition | N

age (op) =
number of operations op overtakes
. y,
age(enq (@) =0
] ® age(enq (b)) = 1
enq
2 t

10/17

(—(Definition) ~\

age (op) =
number of operations op overtakes

.
(—(Definition) N\
lateness (op) =

number of operations which overtake op
. y,

age(enq (@) =0
age(enq (b)) = 1

E(eng @*

10/17

)
(—(Definition |

age (op) =

number of operations op overtakes

)
(—(Definition)

lateness (op) =

number of operations which overtake op

y,

eng @*

age(enq (@) =

age(enq (b)) =

lateness(enq (@) =
lateness(enq (b)) =

10/17

> Only for strict FIFO queue implementations at the moment.

> Measuring relaxed implementations is future work.

11/17

> Only for strict FIFO queue implementations at the moment.

> Measuring relaxed implementations is future work.

r—[all threads do in parallel }

for 10.000 iterations

{ enqueue unique element
calculate Pi

11/17

> Only for strict FIFO queue implementations at the moment.

> Measuring relaxed implementations is future work.

r—[all threads do in parallel }

for 10.000 iterations

{ enqueue unique element
calculate Pi

,—[one thread does }

dequeue all elements sequentially

s 11/17

maximum operation-age
(logscale, less is better)

=
o

80 threads

2000 4000 8000 16000
computational load (logscale)

32000 64000

LB —+— MS —¢— FC —¢—

12/17

maximum operation-lateness
(logscale, less is better)

100000

10000

1000

100

10

80 threads

1000

2000 4000 8000 16000 32000 64000
computational load (logscale)

LB —+— MS —¢— FC —¢—

13/17

% of enqueue operations with operation-age > 0
(less is better)

80 threads

\ T |
80 -
60 |-
40
20—k —k O E—
0 I I I I I I
0 1000 2000 4000 8000 16000 32000 64000

computational load (logscale)

LB —— MS —¢—

FC —¢—

14/17

% of enqueue operations with operation-lateness > 0
(less is better)

100

80

60

40

20

80 threads

) —

2000 4000 8000

16000 32000 64000

computational load (logscale)

LB —— MS —¢—

FC —*—

15/17

> \We introduced metrics to compare the behavior of various
FIFO queue implementations.

* Relaxed implementation can appear more FIFO than
strict implementations.

> Future work

» Measure operation-fairness of relaxed FIFO queue
Implementations.

* Use element-fairness to analyze implementation of other
data structures, e.qg. stacks.

16/17

For more information about the queue implementations see
http://scal.cs.uni-salzburg.at/

Additional measurement results can be seen on
http://scal.cs.uni-salzburg.at/races12/

