
CS510 Concurrent Systems
Jonathan Walpole

RCU Usage in Linux

History of Concurrency in Linux
Multiprocessor support 15 years ago

- via non-preemption in kernel mode
Today's Linux

- fine-grain locking
- lock-free data structures
- per-CPU data structures
- RCU

Increasing Use of RCU API

Increasing Use of RCU API

Why RCU?
Scalable concurrency
Very low overhead for readers
Concurrency between readers and writers

- writers create new versions
- reclaiming of old versions is deferred until all

pre-existing readers are finished

Why RCU?
Need for concurrent reading and writing

-  example: directory entry cache replacement

Low computation and storage overhead
-  example: storage overhead in directory cache

Deterministic completion times
- example: non-maskable interrupt handlers in

real-time systems

RCU Interface
Reader primitives

-  rcu_read_lock and rcu_read_unlock
-  rcu_dereference

Writer primitives
- synchronize_rcu
- call_rcu
- rcu_assign_pointer

A Simple RCU Implementation

Practical Implementations of RCU
The Linux kernel implementations of RCU

amortize reader costs
- waiting for all CPUs to context switch delays

writers (collection) longer than strictly necessary
- ... but makes read-side primitives very cheap

They also batch servicing of writer delays
- polling for completion is done only once per

scheduling tick or so
- thousands of writers can be serviced in a batch

RCU Usage Patterns
Wait for completion
Reference counting
Type safe memory
Publish subscribe
Reader-writer locking alternative

Wait For Completion Pattern
Waiting thread waits with
 - synchronize_rcu

Waitee threads delimit their activities with
- rcu_read_lock
- rcu_read_unlock

Example: Linux NMI Handler

Example: Linux NMI Handler

Advantages
Allows dynamic replacement of NMI handlers
Has deterministic execution time
No need for reference counts

Reference Counting Pattern
Instead of counting references (which

requires expensive synchronization among
CPUs) simply have users of a resource
execute inside RCU read-side sections

No updates, memory barriers or atomic
instructions are required!

Cost of RCU vs Reference Counting

A Use of Reference Counting Pattern
for Efficient Sending of UDP Packets

Use of Reference Counting Pattern for
Dynamic Update of IP Options

Type Safe Memory Pattern
Type safe memory is used by lock-free

algorithms to ensure completion of
optimistic concurrency control loops even
in the presence of memory recycling

RCU removes the need for this by making
memory reclamation and dereferencing
safe

... but sometimes RCU can not be used directly
e.g. in situations where the thread might block

Using RCU for Type Safe Memory
Linux slab allocator uses RCU to provide type

safe memory
Linux memory allocator provides slabs of

memory to type-specific allocators
SLAB_DESTROY_BY_RCU ensures that a slab

is not returned to the memory allocator (for
potential use by a different type-specific
allocator) until all readers of the memory
have finished

Publish Subscribe Pattern
Common pattern involves initializing new

data then making a pointer to it visible by
updating a global variable

Must ensure that compiler or CPU does not
re-order the writers or readers operations
- initialize -> pointer update
- dereference pointer -> read data

rcu_assign_pointer and rcu_dereference
ensure this!

Example Use of Publish-Subscribe for
Dynamic System Call Replacement

Example Use of Publish-Subscribe for
Dynamic System Call Replacement

Reader-Writer Locking Pattern
RCU is used instead of reader-writer locking

- it allows concurrency among readers
-  but it also allows concurrency among readers

and writers!

Its performance is much better
But it has different semantics that may affect

the application
- must be careful

Why Are R/W Locks Expensive?
A reader-writer lock keeps track of how

many readers are present
Readers and writers update the lock state
The required atomic instructions are

expensive!
- for short read sections there is no reader-reader

concurrency in practice

RCU vs Reader-Writer Locking

Example Use of RCU Instead of RWL

Example Use of RCU Instead of RWL

Semantic Differences
Consider the following example:

- writer thread 1 adds element A to a list
- writer thread 2 adds element B to a list
- concurrent reader thread 3 searching for A then

B finds A but not B
- concurrent reader thread 4 searching for B and

then A finds B but not A
This is non-linearizable, and allowed by RCU!

- Is this allowed by reader-writer locking?
- Is this correct?

Some Solutions
Insert level of indirection
Mark obsolete objects
Retry readers

Insert Level of Indirection
Does your code depend on all updates in a

write-side critical section becoming visible
to readers atomically?

If so, hide all the updates behind a single
pointer, and update the pointer using
RCU's publish-subscribe pattern

Mark Obsolete Objects/Retry Readers
Does your code depend on readers not seeing

older versions?
If so, associate a flag with each object and

set it when a new version of the object is
produced

Readers check the flag and fail or retry if
necessary

Where is RCU Used?

Which RCU Primitives Are Used Most?

Conclusions and Future Work
RCU solves real-world problems
It has significant performance, scalability and

software engineering benefits
It embraces concurrency

- which opens up the possibility of non-
linearizable behaviors!

-  this requires the programmer to cultivate a new
mindset

-  Ongoing future work: relativistic
programming

