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Read-Copy Update (RCU) 



The Problem 
How can we know when its safe to reclaim 

memory without paying too high a cost? 
- especially in the read path 



Possible Approaches 
Reference counts 

- increment count when a reference is 
taken, decrement count when reference 
is dropped 

- requires multiple atomic read-modify-
write instructions and memory barriers in 
each read section 

- very slow and non-scalable for readers! 



Possible Approaches 
Hazard Pointers 

- readers update their own hazard pointer 
list when taking and dropping references 

- don’t need atomic read-modify-write 
instructions, just regular stores which are 
atomic if word sized and word aligned 

- but we need at least two memory 
barriers, and potentially two per hazard 
pointer update 

- memory barriers are expensive! 



But How Could We Do Better? 
Batching and amortizing costs 

-  we need to know that a reader is done, but we 
don’t need to know immediately! 
- delaying the communication allows multiple read 

sections to share the costs of a barrier 
- you pay by using more memory than necessary 

-  we need to know that no thread is using this 
item, but it may be cheaper to track read 
completion on a group or system wide basis, 
rather than per item 
- can be cheap to determine that no threads are reading 
- the cost is extra memory usage 



RCU 
RCU (read-copy update) is a collection of 

primitives for safely deferring memory 
reclamation in an efficient and scalable 
way 
- but they can be used for much more 

than that! 



Why Call It RCU? 
The “copy” part of RCU comes from the use 

of multiple versions of an object 
- writers perform updates by creating a 

new copy 
- readers read from the old copy 
- multiple versions (copies) enable readers 

and writers of the same data item to run 
concurrently 
 



Immutability? 
This sounds like an immutable data model 

-  But if we never update something in place how 
do new readers find the new version? 

Pointers are mutable (i.e., updated in place) 
-  written using word size, word aligned stores, 

which are atomic on all current architectures 
-  but is atomicity enough? 

RCU has a publish primitive for updating pointers 
-  it includes the necessary order-constraining 

instructions (memory barriers and compiler 
directives) 



Write Side With a Reordering Problem  
1   struct foo {  
2     int a; 
3     int b; 
4     int c; 
5  }; 
6  struct foo *gp = NULL;  
7   
8   /* . . . */ 
9  
10   p = kmalloc(sizeof(*p), GFP_KERNEL); 
11   p->a = 1; 
12   p->b = 2; 
13   p->c = 3; 
14   gp = p; 



Solution Using RCU 
p->a = 1; 
p->b = 2; 
p->c = 3; 
rcu_assign_pointer(gp, p); 

rcu_assign_pointer() 
-  is opaque to the compiler 
-  contains the appropriate memory barrier to prevent 

hardware reordering 
-  and then does the assignment 



Preventing Reordering 
Does preventing reordering on the write side 

guarantee that the uninitialized data will 
not be visible to readers? 
- read-side reordering must be prevented 

too! 



Read Side With Several Problems 
p = gp; 
if (p != NULL) { 

  do_something_with(p->a, p->b, p->c); 
} 

Problems: 
 -  What if p is concurrently freed? 
 -  Some architectures (DEC Alpha) can reorder lines 1-3 

 



Solution Using RCU 
1  rcu_read_lock(); 
2   p = rcu_dereference(gp); 
3   if (p != NULL) { 
4    do_something_with(p->a, p->b, p->c); 
5   } 
6   rcu_read_unlock(); 



What Do These Statements Do? 

rcu_read_lock and rcu_read_unlock delimit 
a kind of critical section 
-  it excludes the rcu garbage collector 
-  objects can not be freed 
-  does not exclude concurrent writers! 

 

rcu_dereference() 
-  reads the pointer, then executes whatever 

memory barrier is necessary to prevent 
reordering 



Summary of RCU Primitives 
rcu_assign_pointer 

- prevents write side reordering that could 
break publishing 

rcu_dereference 
- prevents read side reordering that could 

break publishing 
rcu_read_lock and rcu_read_unlock 

- prevent memory reclamation 
- but do not prevent concurrent writing! 



RCU-Based ADTs 
Linux defines various ADTs including lists, 

hash tables, RB trees, radix trees ... 
- Supported operations include iterators 

that simplify programming  
- Each ADT has a wide selection of 

operations to allow for different 
optimization cases (i.e., they are not that 
abstract) 

- Each has support for RCU-based 
synchronization 



Linux Lists 



RCU Primitives 
Publish Retract Subscribe 

Pointers rcu_assign_pointer() rcu_assign_pointer(..., NULL) rcu_dereference() 		
 

Lists list_add_rcu()  list_del_rcu() list_for_each_entry_rcu()
		

 

list_add_tail_rcu()  

list_replace_rcu() 

Hlists hlist_add_after_rcu()  hlist_del_rcu() hlist_for_each_entry_rcu()
		

 

hlist_add_before_rcu 

hlist_add_head_rcu()  

hlist_replace_rcu() 



RCU Publish in List Operations 
1  struct foo { 
2      struct list_head list; 
3      int a; 
4      int b; 
5      int c; 
6  }; 
7  LIST_HEAD(head); 
8    
9  /* . . . */ 
10    
11  p = kmalloc(sizeof(*p), GFP_KERNEL); 
12  p->a = 1; 
13  p->b = 2; 
14  p->c = 3; 
15  list_add_rcu(&p->list, &head); 



RCU Reading in List Operations 
1   rcu_read_lock(); 
2  list_for_each_entry_rcu(p, head, list) { 

 do_something_with(p->a, p->b, p->c); 
3  } 
4  rcu_read_unlock(); 



Deletion (and freeing) 
1   p = search(head, key);   
2   if (p != NULL) {  
3     list_del_rcu(&p->list);   
4     synchronize_rcu();  
5     kfree(p);   
6   } 



Deferring Reclamation 
How long do we have to wait before its safe 

to reclaim (free) an object? 
- until all readers have finished reading? 

- no, that’s too strong! 
- if new readers picked up a newer version we 

don’t need to wait for them to finish 
- we just need to wait for readers who might be 

reading the version we want to reclaim 



Deferring for a Grace Period 

Time 



RCU Primitives for Deferring 
Does a writer need to wait while reclamation 

is deferred? 
RCU provides synchronous and asynchronous 

primitives for deferring an action (typically 
memory reclamation) 
- synchronize_rcu 
- call_rcu 
 



Example – synchronize_rcu 
1   p = search(head, key);   
2   if (p != NULL) {  
3     list_del_rcu(&p->list);   
4     synchronize_rcu();  
5     kfree(p);   
6   } 



Initial State of List 



After list_del_rcu() 



After synchronize_rcu 



After Free 



Replacing a List Element 
1    struct foo {   
2      struct list_head list;   
3      int a;   
4      int b;   
5      int c;   
6   };   
7   LIST_HEAD(head);   
8    
9    /* . . . */  
10   
11   p = search(head, key);  
12   if (p == NULL) {  
13     /* Take appropriate action, unlock, and return. */  
14   }  
15   q = kmalloc(sizeof(*p), GFP_KERNEL);  
16   *q = *p;  
17   q->b = 2;  
18   q->c = 3;  
19   list_replace_rcu(&p->list, &q->list);  
20   synchronize_rcu();  
21   kfree(p); 



Initial State 



Allocation of New Element 



Partial Initialization of New Element 



Partial Initialization 



Initialization Complete 



After Publishing 



After synchronize_rcu 



After Free 



How Does RCU Know When Its Safe? 
Could use reference counts or hazard 

pointers, but that’s expensive, especially in 
the read path 

RCU batches work and amortizes costs 
- different implementations of RCU make 

different choices, even within the Linux 
kernel 

- we’ll look at some examples 



Non-Preemptable Kernel Example 
Basic rule: 

-  Readers must not give up the CPU (yield or sleep) during 
a read side critical section 

RCU read side primitives need do nothing! 
-  so long as barriers enforced by act of yielding or sleeping! 
 

Synchronize RCU can be as simple as: 
 
        1  for_each_online_cpu(cpu) 
        2                run_on(cpu); 

Why? 



The Key Idea 

Writer removes last global pointer to object 
-  it is now unreachable by new readers 
-  .. but it might still be in use by existing readers 

Now writer waits until a context switch has 
been observed on all CPUs, before freeing 
-  if readers guarantee not to allow a context 

switch while in a read critical section 
-  then no reader that was active at the start of 

this wait will still be active at the end! 



Preemptable Kernels? 
RCU read side primitives must disable and re-

enable preemption 
-  do such actions have to include a barrier? 

 

What if we’re running untrusted, i.e., at user 
level? 
-  we’re preemptable and we can’t disable it! 
-  could we apply same techniques in a thread 

library? 



User Level RCU Implementations 
Approach 1: 

-  reader threads signal quiescent states explicitly 
(i.e., periodically call into the RCU) 

-  RCU keeps track of all threads states 
-  a quiescent state occurs between read sections 
-  frequency of calling quiescent states determines 

trade-off between read side overhead and 
memory overhead 
- need not be once per object or read section! 
- but they do need a memory barrier! 



User Level RCU Implementations 
Approach 2 

- readers have a flag to indicate active reading 
- RCU maintains a global counter of grace 

periods 
-  readers copy counter value at start of read 

section 
- synchronize_rcu updates the counter and 

waits until all reader threads are either not 
in a read section or have advanced beyond 
the old value 

- like batched/amortized hazard pointers! 



Similarities to Hazard Pointers 

It requires readers to write something locally 
It requires communication between the readers and 

the thread waiting to free 
But readers don’t have to write for every object they 

read 
Memory barriers needed per read section, not per 

object 
So, its cheaper for readers 
But more memory is tied up, and for longer 



Problems with Approach 2 
It is susceptible to counter overflow using 32 

bit counters (its ok with 64 bit counters on 
current architectures) 

overflow problem is fixed by an approach 
that uses “phases” instead of counting 
-  if a reader is observed to go through two phase 

transitions it can not possibly be reading the 
data to be deleted 



Memory Barrier Optimization 
Both approaches 1 and 2 (and the fix) require 

memory barriers in the read-side primitives 
-  these are expensive! 

They can be removed/amortized so long as the 
writer knows each reading thread will have 
executed a memory barrier before collection 
occurs 
-  this can be forced, by the writer, by sending 

signals to all the active reading threads and 
waiting for an acknowledgement 

-  signal handling includes a memory barrier 



Summary 
We have mechanisms for concurrent reading 

and writing 
They let us safely reclaim memory 
There are many different ways to implement 

them, making different trade-offs 
- which is most appropriate for your 

situation? 



RCU Ordering Guarantees 

RCU is useful for much more than deferred 
memory reclamation! 

Synchronize RCU gives a useful ordering 
guarantee 
-  Readers will not disagree about the order of 

writes that are separated by a synchronize_rcu 
wait (a grace period) 

-  Can use this to gain sequentially consistent 
ordering 



RCU Ordering Guarantees 



RCU Ordering Guarantees 



RCU Ordering Guarantees 



RCU Ordering Guarantees 



Linux Kernel Memory Model 

LKMM and tools (herd) understand RCU and 
can check your code 

Automated checking is useful, especially for 
complex examples ... even for experts 



Basic Rules for RCU Usage 

•  Use rcu_read_lock() and rcu_read_unlock() to 
guard RCU read-side critical sections. 

•  Within an RCU read-side critical section, use 
rcu_dereference() to dereference RCU-protected 
pointers. 

•  Use some solid scheme (such as locks or 
semaphores) to keep concurrent updates from 
interfering with each other. 



Basic Rules for RCU Usage 

•  Use rcu_assign_pointer() to update an RCU-
protected pointer. Protects concurrent readers 
from the updater, not concurrent updates from 
each other! 

•  Use synchronize_rcu() after removing a data 
element from an RCU-protected data structure, 
but -before- reclaiming/freeing the data element, 
in order to wait for the completion of all RCU 
read-side critical sections that might be 
referencing that data item. 


