
CS510 Advanced Topics in Concurrency

Jonathan Walpole

Read-Copy Update (RCU)

The Problem
How can we know when its safe to reclaim

memory without paying too high a cost?
- especially in the read path

Possible Approaches
Reference counts

- increment count when a reference is
taken, decrement count when reference
is dropped

- requires multiple atomic read-modify-
write instructions and memory barriers in
each read section

- very slow and non-scalable for readers!

Possible Approaches
Hazard Pointers

- readers update their own hazard pointer
list when taking and dropping references

- don’t need atomic read-modify-write
instructions, just regular stores which are
atomic if word sized and word aligned

- but we need at least two memory
barriers, and potentially two per hazard
pointer update

- memory barriers are expensive!

But How Could We Do Better?
Batching and amortizing costs

- we need to know that a reader is done, but we
don’t need to know immediately!
- delaying the communication allows multiple read

sections to share the costs of a barrier
- you pay by using more memory than necessary

- we need to know that no thread is using this
item, but it may be cheaper to track read
completion on a group or system wide basis,
rather than per item
- can be cheap to determine that no threads are reading
- the cost is extra memory usage

RCU
RCU (read-copy update) is a collection of

primitives for safely deferring memory
reclamation in an efficient and scalable
way
- but they can be used for much more

than that!

Why Call It RCU?
The “copy” part of RCU comes from the use

of multiple versions of an object
- writers perform updates by creating a

new copy
- readers read from the old copy
- multiple versions (copies) enable readers

and writers of the same data item to run
concurrently

Immutability?
This sounds like an immutable data model

- But if we never update something in place how
do new readers find the new version?

Pointers are mutable (i.e., updated in place)
- written using word size, word aligned stores,

which are atomic on all current architectures
- but is atomicity enough?

RCU has a publish primitive for updating pointers
- it includes the necessary order-constraining

instructions (memory barriers and compiler
directives)

Write Side With a Reordering Problem
1 struct foo {
2 int a;
3 int b;
4 int c;
5  };
6  struct foo *gp = NULL;
7
8 /* . . . */
9
10 p = kmalloc(sizeof(*p), GFP_KERNEL);
11 p->a = 1;
12 p->b = 2;
13 p->c = 3;
14 gp = p;

Solution Using RCU
p->a = 1;
p->b = 2;
p->c = 3;
rcu_assign_pointer(gp, p);

rcu_assign_pointer()
-  is opaque to the compiler
-  contains the appropriate memory barrier to prevent

hardware reordering
-  and then does the assignment

Preventing Reordering
Does preventing reordering on the write side

guarantee that the uninitialized data will
not be visible to readers?
- read-side reordering must be prevented

too!

Read Side With Several Problems
p = gp;
if (p != NULL) {

 do_something_with(p->a, p->b, p->c);
}

Problems:
 - What if p is concurrently freed?
 - Some architectures (DEC Alpha) can reorder lines 1-3

Solution Using RCU
1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 if (p != NULL) {
4 do_something_with(p->a, p->b, p->c);
5 }
6 rcu_read_unlock();

What Do These Statements Do?

rcu_read_lock and rcu_read_unlock delimit
a kind of critical section
-  it excludes the rcu garbage collector
-  objects can not be freed
-  does not exclude concurrent writers!

rcu_dereference()
- reads the pointer, then executes whatever

memory barrier is necessary to prevent
reordering

Summary of RCU Primitives
rcu_assign_pointer

- prevents write side reordering that could
break publishing

rcu_dereference
- prevents read side reordering that could

break publishing
rcu_read_lock and rcu_read_unlock

- prevent memory reclamation
- but do not prevent concurrent writing!

RCU-Based ADTs
Linux defines various ADTs including lists,

hash tables, RB trees, radix trees ...
- Supported operations include iterators

that simplify programming
- Each ADT has a wide selection of

operations to allow for different
optimization cases (i.e., they are not that
abstract)

- Each has support for RCU-based
synchronization

Linux Lists

RCU Primitives
Publish Retract Subscribe

Pointers rcu_assign_pointer() rcu_assign_pointer(..., NULL) rcu_dereference() 		

Lists list_add_rcu() list_del_rcu() list_for_each_entry_rcu()
		

list_add_tail_rcu()

list_replace_rcu()

Hlists hlist_add_after_rcu() hlist_del_rcu() hlist_for_each_entry_rcu()
		

hlist_add_before_rcu

hlist_add_head_rcu()

hlist_replace_rcu()

RCU Publish in List Operations
1 struct foo {
2  struct list_head list;
3  int a;
4  int b;
5  int c;
6  };
7  LIST_HEAD(head);
8 
9  /* . . . */
10 
11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 list_add_rcu(&p->list, &head);

RCU Reading in List Operations
1 rcu_read_lock();
2  list_for_each_entry_rcu(p, head, list) {

 do_something_with(p->a, p->b, p->c);
3  }
4  rcu_read_unlock();

Deletion (and freeing)
1 p = search(head, key);
2 if (p != NULL) {
3 list_del_rcu(&p->list);
4 synchronize_rcu();
5 kfree(p);
6 }

Deferring Reclamation
How long do we have to wait before its safe

to reclaim (free) an object?
- until all readers have finished reading?

- no, that’s too strong!
- if new readers picked up a newer version we

don’t need to wait for them to finish
- we just need to wait for readers who might be

reading the version we want to reclaim

Deferring for a Grace Period

Time

RCU Primitives for Deferring
Does a writer need to wait while reclamation

is deferred?
RCU provides synchronous and asynchronous

primitives for deferring an action (typically
memory reclamation)
- synchronize_rcu
- call_rcu

Example – synchronize_rcu
1 p = search(head, key);
2 if (p != NULL) {
3 list_del_rcu(&p->list);
4 synchronize_rcu();
5 kfree(p);
6 }

Initial State of List

After list_del_rcu()

After synchronize_rcu

After Free

Replacing a List Element
1 struct foo {
2 struct list_head list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8
9 /* . . . */
10
11 p = search(head, key);
12 if (p == NULL) {
13 /* Take appropriate action, unlock, and return. */
14 }
15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

Initial State

Allocation of New Element

Partial Initialization of New Element

Partial Initialization

Initialization Complete

After Publishing

After synchronize_rcu

After Free

How Does RCU Know When Its Safe?
Could use reference counts or hazard

pointers, but that’s expensive, especially in
the read path

RCU batches work and amortizes costs
- different implementations of RCU make

different choices, even within the Linux
kernel

- we’ll look at some examples

Non-Preemptable Kernel Example
Basic rule:

- Readers must not give up the CPU (yield or sleep) during
a read side critical section

RCU read side primitives need do nothing!
- so long as barriers enforced by act of yielding or sleeping!

Synchronize RCU can be as simple as:

 1 for_each_online_cpu(cpu)
 2 run_on(cpu);

Why?

The Key Idea

Writer removes last global pointer to object
-  it is now unreachable by new readers
-  .. but it might still be in use by existing readers

Now writer waits until a context switch has
been observed on all CPUs, before freeing
-  if readers guarantee not to allow a context

switch while in a read critical section
-  then no reader that was active at the start of

this wait will still be active at the end!

Preemptable Kernels?
RCU read side primitives must disable and re-

enable preemption
- do such actions have to include a barrier?

What if we’re running untrusted, i.e., at user
level?
-  we’re preemptable and we can’t disable it!
- could we apply same techniques in a thread

library?

User Level RCU Implementations
Approach 1:

- reader threads signal quiescent states explicitly
(i.e., periodically call into the RCU)

- RCU keeps track of all threads states
- a quiescent state occurs between read sections
- frequency of calling quiescent states determines

trade-off between read side overhead and
memory overhead
- need not be once per object or read section!
- but they do need a memory barrier!

User Level RCU Implementations
Approach 2

- readers have a flag to indicate active reading
- RCU maintains a global counter of grace

periods
-  readers copy counter value at start of read

section
- synchronize_rcu updates the counter and

waits until all reader threads are either not
in a read section or have advanced beyond
the old value

- like batched/amortized hazard pointers!

Similarities to Hazard Pointers

It requires readers to write something locally
It requires communication between the readers and

the thread waiting to free
But readers don’t have to write for every object they

read
Memory barriers needed per read section, not per

object
So, its cheaper for readers
But more memory is tied up, and for longer

Problems with Approach 2
It is susceptible to counter overflow using 32

bit counters (its ok with 64 bit counters on
current architectures)

overflow problem is fixed by an approach
that uses “phases” instead of counting
- if a reader is observed to go through two phase

transitions it can not possibly be reading the
data to be deleted

Memory Barrier Optimization
Both approaches 1 and 2 (and the fix) require

memory barriers in the read-side primitives
-  these are expensive!

They can be removed/amortized so long as the
writer knows each reading thread will have
executed a memory barrier before collection
occurs
- this can be forced, by the writer, by sending

signals to all the active reading threads and
waiting for an acknowledgement

- signal handling includes a memory barrier

Summary
We have mechanisms for concurrent reading

and writing
They let us safely reclaim memory
There are many different ways to implement

them, making different trade-offs
- which is most appropriate for your

situation?

RCU Ordering Guarantees

RCU is useful for much more than deferred
memory reclamation!

Synchronize RCU gives a useful ordering
guarantee
- Readers will not disagree about the order of

writes that are separated by a synchronize_rcu
wait (a grace period)

- Can use this to gain sequentially consistent
ordering

RCU Ordering Guarantees

RCU Ordering Guarantees

RCU Ordering Guarantees

RCU Ordering Guarantees

Linux Kernel Memory Model

LKMM and tools (herd) understand RCU and
can check your code

Automated checking is useful, especially for
complex examples ... even for experts

Basic Rules for RCU Usage

•  Use rcu_read_lock() and rcu_read_unlock() to
guard RCU read-side critical sections.

•  Within an RCU read-side critical section, use
rcu_dereference() to dereference RCU-protected
pointers.

•  Use some solid scheme (such as locks or
semaphores) to keep concurrent updates from
interfering with each other.

Basic Rules for RCU Usage

•  Use rcu_assign_pointer() to update an RCU-
protected pointer. Protects concurrent readers
from the updater, not concurrent updates from
each other!

•  Use synchronize_rcu() after removing a data
element from an RCU-protected data structure,
but -before- reclaiming/freeing the data element,
in order to wait for the completion of all RCU
read-side critical sections that might be
referencing that data item.

