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Reasoning About Event Ordering 



Making Sense Of It All 

Hardware and compilers can reorder our 
memory accesses, so how can we get our 
head around what our program will do? 

 

Do we always have to consider the impact of 
all possible permutations? 

 

How can we write portable code for CPUs 
with different memory consistency models? 



Centralized vs Distributed Systems 

What makes a system distributed? 
 

Why does distribution affect event ordering? 
 

What does this have to do with memory 
access ordering on shared memory 
multiprocessors? 



Time in Distributed Systems 
Isn’t ordering just laying events on a time-

line? 
 

How can we tell when an event occurs? 
 - look at a clock? 
 - what if we do not share the same clock? 
 - our clocks may drift apart, or be offset 
 - is there always a delay in communicating? 
 - does the speed of light really matter? 



Sequential Processes 

A process is a sequence of events 
Assumed to occur in one place 
Define a priori total ordering of its events 
Event A happens before B if it occurs before B 

in the sequence 
Events include sending and receiving 

messages 
 



The happens before Relation (->) 

If a and b are in the same process and a occurs 
before b, then a -> b 

If a is the sending of a message in one process and 
b is the receiving of the same message in another 
process, then a -> b 

If a -> b and b -> c, then a -> c 
An event does not happen before itself! 
Happens before defines an irreflexive partial 

ordering on events  



Concurrency 

Two events a and b are concurrent if a does 
not happen before b and b does not 
happen before a  

They are concurrent if they are not ordered 
by the happens before relation 

This does not mean that they occur at the 
same physical time! 



Space Time Diagrams Help 



Happens Before 

a -> b if you can go from a to b by following 
arrows in the diagram 

 

Arrows represent causality (or potential 
causality) 

 

Concurrent events have no causal relationship 
 

Concurrent events may occur at different 
physical times! 



Logical Clocks 

A clock is just a way of assigning a number 
to an event 

 

Clocks can be implemented logically to totally 
order events 

This ordering may disagree with physical 
time! 

But the partial order of events is converted 
to a total order (somewhat arbitrarily) 

 



Clock Conditions 

If a -> b, then a gets a smaller clock number 
than b 
-  Does the converse hold? 
 

Clock condition holds if: 
C1: If a and b are in the same process, with a 
before b, then C[a] < C[b] 
C2: If a is a message send, and b is the receipt of 
the same message, then C[a] < C[b] 



With Clock Ticks 



Which Clock Ticks Are Necessary? 

C1 implies there must be a tick between 
any two events in the same process 

 

C2 implies that every message must cross a 
tick line 

 

Tick lines become coordinates in the space 
time diagram 

 
 



Stretched to Align Clock Ticks 



Implementing a Logical Clock 
Each CPU has a counter that increments for each 

event 
 

Counter values are carried by messages 
 

On receipt of a message the receiver’s clock 
advances to the larger of the local clock value or 
the message’s clock value 

 

CPU ID can be used to break ties between events on 
different CPUs with the same clock value 



Partial to Total Ordering 

The tie breaking completes the partial order 
to a total order 

 

The partial order respects causality 
 

So does the total order, but aside from that 
its somewhat arbitrary 



What is The Total Order Good For? 

Now we have a shared clock! (of sorts) 
 

We can solve problems as if we were on a 
centralized system 

 

But our logical clock does not agree with 
physical time 



Mutual Exclusion Problem 

We need to agree who has the lock/resource 
 

Requesting the resource: 
 - earliest request gets it first 
 - next request must wait for its release 

 

Releasing the resource: 
 - send it to “next” requester 
 - everyone must agree who is next! 



Correctness Conditions 

A process that has been granted a resource 
must release it before it can be granted to 
another process 

 

Requests must be granted in the order in 
which they were made (fairness) 

 

If every process granted a resource 
eventually releases it, every request will 
eventually be granted 



The Algorithm 

Important assumptions: 
- in order message transmission 
- no lost messages 
- resource is initially granted to P0 
- each process has its own request queue 

that has the initial message in it [P0,T0] 
 



The Algorithm (cont.) 
A process requests by sending a time-stamped 

request message to all processes, and puts this 
message in its own queue 

 

A process receiving a request puts it in its queue 
and sends a time-stamped acknowledgement 

 

A process releases by removing its initial request 
message and sending release messages to all 
processes 



The Algorithm (cont.) 

A process receiving a release message removes the 
corresponding request message from its queue 

 

A process is granted the resource when 
-  its own request message is ordered before any other 

request message in its queue 
-  the process has received a message from every other 

process time-stamped later than this request message 



Summary 

This is a kind of atomic broadcast protocol that 
forces a total ordering on the request and release 
commands 

 

Processes can’t take action until they hear from all 
other processes! 

 

This implies a communication delay, which is a 
consequence of the total ordering requirement 

 

This is very much like sequential consistency, where 
everyone agrees on the ordering! 



Linux Kernel Memory Model 

Need to write concurrent code that is 
portable across architectures with different 
memory consistency models 

 

None of the hardware models are 
sequentially consistent 

 

But they are also not entirely random! 
 



Ordering Relations in LKMM 

Many different sources of ordering: 
- program order (not necessarily preserved!) 
- coherence order (per variable) 
- reads from (write to read) 
- from reads (read missed write) 
- RCU (discussed later ...) 



Cycles 

Ordering rules out cycles! 
 

Can’t have X<Y, Y<Z, and Z<X, because 
that implies X<X 

 

If a memory model requires accesses to be 
ordered, and if a certain outcome can only 
occur due to a cycle, then the memory 
model disallows the outcome! 



Types of Event in LKMM 

Read events: 
-  READ_ONCE(), smp_load_acquire(), rcu_dereference() 

Write events: 
-  WRITE_ONCE(), smp_store_release(), atomic_set() 

Fence events: 
-  smp_rmb(), rcu_read_lock(), … 

Allows no ordinary memory accesses! 
-  READ_ONCE and WRITE_ONCE disallow compiler 

optimizations! 



Program Order in LKMM 

Program order (po) 
-  X po-before Y, is written as X ->po Y 
-  if X occurs before Y in the instruction stream 
 

Sub-relation po-loc if both accesses are to the same 
location 

 

Program order is not necessarily preserved! 
Preserved program order (ppo) derived from 

dependencies, fences etc. 



Dependency Relations 

Data dependency (data) 
-  value read affects value written 
 

Address dependency (addr) 
-  value read affects location accessed 
 

Control dependency (ctrl) 
-  value read determines execution of other event 

 



Data Dependency 

 int x, y; 
 

 r1 = READ_ONCE(x); 
 WRITE_ONCE(y, r1 + 5); 



Address Dependency 

 int a[20]; 
 int i; 

 
 r1 = READ_ONCE(i); 
 r2 = READ_ONCE(a[r1]); 



Control Dependency 

 int x, y; 
 

 r1 = READ_ONCE(x); 
 if (r1) 
  WRITE_ONCE(y, 1984); 



Relation to Program Order 

R ->data X implies R ->po X 
 

R ->addr X implies R ->po X 
 

R ->ctrl X implies R ->po X 



Reads From (rf) Relation 

Links a write to a read when the value read is the 
value that was written 

Has internal and external sub-relations 
 

W ->rf R  means R reads from W 
W ->rfi R  means R reads from W on the same CPU 
W ->rfe R  means R reads from W on different CPU 
 
Assumes no load tearing (from multiple stores) 



Reads From (rf) Relation 



Coherence Order Relation 

For each memory location, the stores occur 
in a total order that all CPUs agree upon 

 

This order must be consistent with po for 
access to that location 

 

    W ->co W’   
 

if W comes before W’ in the coherence order 



Coherence Order (co) Relation 



Coherency Rules 

Write-write coherence: 
-  If W ->po-loc W’ then W ->co W’ 
 

Write-read coherence: 
-  If W ->po-loc R then R must read from W or from some 

other store which comes after W in the coherence order 



Coherency Rules (cont.) 

Read-write coherence: 
-  If R ->po-loc W then the store which R reads from must 

come before W in the coherence order 
 

Read-read coherence: 
-  If R ->po-loc R’ then either they read from the same store 

or else the store read by R comes before the store read by 
R' in the coherence order 

This is essentially sequential consistency per variable 
Stores to different locations are never ordered by co 



From Reads (fr) Relation 

R ->fr W if R reads from a store earlier in co than W 
 

(R ->fr W) := (there exists W' with W' ->rf R and 
W' ->co W) 

 

 int x = 0; 
 

 P0() 
 { 
  int r1; 
  r1 = READ_ONCE(x); 
  WRITE_ONCE(x, 2); 
 } 



From Reads (fr) Relation 



Relationship to Time 

Only rf implies a global temporal constraint! 
 

co and fr can contradict physical time 



Operational Model 

A distributed system of CPUs and a memory 
subsystem 

 

Memory subsystem enforces coherence order 
 

CPU sends stores to all other CPUs and 
memory subsystem  

 

CPU uses po-latest store to satisfy a load, or 
it is satisfied from memory using co-latest 
store for that CPU 



Operational Model 

Fences force CPUs to execute various 
instructions in program order (depending 
on type of fence)  

 

They also affect the way the memory 
subsystem propagates stores 
-  smp_wmb() forces all po-earlier stores on this 

CPU to propagate before any po-later stores 



Axioms of LKML 
 Sequential consistency per variable 

-  system must obey the coherence rules 
 Atomicity 

-  rmw operations must be atomic (constraints co) 
 Happens-before 

-  all cases where po must be preserved (ppo) 
-  fences between appropriate operations 
-  data, addr, cntrl dependencies 
-  operations on the same location (po-loc) 
-  acquire-release, rfe, ... 

 Propagates-before (pb) 
 RCU .... discussed later 



Example 1 



Example 1 - detail 



Example 2 



Example 2 - detail 



Automated Checking Tools 

Herd tool for automated checking 
Herd programs are called litmus tests 
Cat language for defining memory models 

-  specifies which cycles are prohibited 
 



Example 



Results 



Adding Dependencies 



Results 

But, removing any of the dependencies would allow a cycle again! 


