
CS510 Advanced Topics in Concurrency

Jonathan Walpole

Reasoning About Event Ordering

Making Sense Of It All

Hardware and compilers can reorder our
memory accesses, so how can we get our
head around what our program will do?

Do we always have to consider the impact of
all possible permutations?

How can we write portable code for CPUs
with different memory consistency models?

Centralized vs Distributed Systems

What makes a system distributed?

Why does distribution affect event ordering?

What does this have to do with memory
access ordering on shared memory
multiprocessors?

Time in Distributed Systems
Isn’t ordering just laying events on a time-

line?

How can we tell when an event occurs?
 - look at a clock?
 - what if we do not share the same clock?
 - our clocks may drift apart, or be offset
 - is there always a delay in communicating?
 - does the speed of light really matter?

Sequential Processes

A process is a sequence of events
Assumed to occur in one place
Define a priori total ordering of its events
Event A happens before B if it occurs before B

in the sequence
Events include sending and receiving

messages

The happens before Relation (->)

If a and b are in the same process and a occurs
before b, then a -> b

If a is the sending of a message in one process and
b is the receiving of the same message in another
process, then a -> b

If a -> b and b -> c, then a -> c
An event does not happen before itself!
Happens before defines an irreflexive partial

ordering on events

Concurrency

Two events a and b are concurrent if a does
not happen before b and b does not
happen before a

They are concurrent if they are not ordered
by the happens before relation

This does not mean that they occur at the
same physical time!

Space Time Diagrams Help

Happens Before

a -> b if you can go from a to b by following
arrows in the diagram

Arrows represent causality (or potential
causality)

Concurrent events have no causal relationship

Concurrent events may occur at different
physical times!

Logical Clocks

A clock is just a way of assigning a number
to an event

Clocks can be implemented logically to totally
order events

This ordering may disagree with physical
time!

But the partial order of events is converted
to a total order (somewhat arbitrarily)

Clock Conditions

If a -> b, then a gets a smaller clock number
than b
-  Does the converse hold?

Clock condition holds if:
C1: If a and b are in the same process, with a
before b, then C[a] < C[b]
C2: If a is a message send, and b is the receipt of
the same message, then C[a] < C[b]

With Clock Ticks

Which Clock Ticks Are Necessary?

C1 implies there must be a tick between
any two events in the same process

C2 implies that every message must cross a
tick line

Tick lines become coordinates in the space
time diagram

Stretched to Align Clock Ticks

Implementing a Logical Clock
Each CPU has a counter that increments for each

event

Counter values are carried by messages

On receipt of a message the receiver’s clock
advances to the larger of the local clock value or
the message’s clock value

CPU ID can be used to break ties between events on
different CPUs with the same clock value

Partial to Total Ordering

The tie breaking completes the partial order
to a total order

The partial order respects causality

So does the total order, but aside from that
its somewhat arbitrary

What is The Total Order Good For?

Now we have a shared clock! (of sorts)

We can solve problems as if we were on a
centralized system

But our logical clock does not agree with
physical time

Mutual Exclusion Problem

We need to agree who has the lock/resource

Requesting the resource:
 - earliest request gets it first
 - next request must wait for its release

Releasing the resource:
 - send it to “next” requester
 - everyone must agree who is next!

Correctness Conditions

A process that has been granted a resource
must release it before it can be granted to
another process

Requests must be granted in the order in
which they were made (fairness)

If every process granted a resource
eventually releases it, every request will
eventually be granted

The Algorithm

Important assumptions:
- in order message transmission
- no lost messages
- resource is initially granted to P0
- each process has its own request queue

that has the initial message in it [P0,T0]

The Algorithm (cont.)
A process requests by sending a time-stamped

request message to all processes, and puts this
message in its own queue

A process receiving a request puts it in its queue
and sends a time-stamped acknowledgement

A process releases by removing its initial request
message and sending release messages to all
processes

The Algorithm (cont.)

A process receiving a release message removes the
corresponding request message from its queue

A process is granted the resource when
-  its own request message is ordered before any other

request message in its queue
-  the process has received a message from every other

process time-stamped later than this request message

Summary

This is a kind of atomic broadcast protocol that
forces a total ordering on the request and release
commands

Processes can’t take action until they hear from all
other processes!

This implies a communication delay, which is a
consequence of the total ordering requirement

This is very much like sequential consistency, where
everyone agrees on the ordering!

Linux Kernel Memory Model

Need to write concurrent code that is
portable across architectures with different
memory consistency models

None of the hardware models are
sequentially consistent

But they are also not entirely random!

Ordering Relations in LKMM

Many different sources of ordering:
- program order (not necessarily preserved!)
- coherence order (per variable)
- reads from (write to read)
- from reads (read missed write)
- RCU (discussed later ...)

Cycles

Ordering rules out cycles!

Can’t have X<Y, Y<Z, and Z<X, because
that implies X<X

If a memory model requires accesses to be
ordered, and if a certain outcome can only
occur due to a cycle, then the memory
model disallows the outcome!

Types of Event in LKMM

Read events:
- READ_ONCE(), smp_load_acquire(), rcu_dereference()

Write events:
-  WRITE_ONCE(), smp_store_release(), atomic_set()

Fence events:
-  smp_rmb(), rcu_read_lock(), …

Allows no ordinary memory accesses!
- READ_ONCE and WRITE_ONCE disallow compiler

optimizations!

Program Order in LKMM

Program order (po)
-  X po-before Y, is written as X ->po Y
-  if X occurs before Y in the instruction stream

Sub-relation po-loc if both accesses are to the same
location

Program order is not necessarily preserved!
Preserved program order (ppo) derived from

dependencies, fences etc.

Dependency Relations

Data dependency (data)
-  value read affects value written

Address dependency (addr)
-  value read affects location accessed

Control dependency (ctrl)
- value read determines execution of other event

Data Dependency

 int x, y;

 r1 = READ_ONCE(x);
 WRITE_ONCE(y, r1 + 5);

Address Dependency

 int a[20];
 int i;

 r1 = READ_ONCE(i);
 r2 = READ_ONCE(a[r1]);

Control Dependency

 int x, y;

 r1 = READ_ONCE(x);
 if (r1)
 WRITE_ONCE(y, 1984);

Relation to Program Order

R ->data X implies R ->po X

R ->addr X implies R ->po X

R ->ctrl X implies R ->po X

Reads From (rf) Relation

Links a write to a read when the value read is the
value that was written

Has internal and external sub-relations

W ->rf R means R reads from W
W ->rfi R means R reads from W on the same CPU
W ->rfe R means R reads from W on different CPU

Assumes no load tearing (from multiple stores)

Reads From (rf) Relation

Coherence Order Relation

For each memory location, the stores occur
in a total order that all CPUs agree upon

This order must be consistent with po for
access to that location

 W ->co W’

if W comes before W’ in the coherence order

Coherence Order (co) Relation

Coherency Rules

Write-write coherence:
-  If W ->po-loc W’ then W ->co W’

Write-read coherence:
-  If W ->po-loc R then R must read from W or from some

other store which comes after W in the coherence order

Coherency Rules (cont.)

Read-write coherence:
-  If R ->po-loc W then the store which R reads from must

come before W in the coherence order

Read-read coherence:
-  If R ->po-loc R’ then either they read from the same store

or else the store read by R comes before the store read by
R' in the coherence order

This is essentially sequential consistency per variable
Stores to different locations are never ordered by co

From Reads (fr) Relation

R ->fr W if R reads from a store earlier in co than W

(R ->fr W) := (there exists W' with W' ->rf R and
W' ->co W)

 int x = 0;

 P0()
 {
 int r1;
 r1 = READ_ONCE(x);
 WRITE_ONCE(x, 2);
 }

From Reads (fr) Relation

Relationship to Time

Only rf implies a global temporal constraint!

co and fr can contradict physical time

Operational Model

A distributed system of CPUs and a memory
subsystem

Memory subsystem enforces coherence order

CPU sends stores to all other CPUs and
memory subsystem

CPU uses po-latest store to satisfy a load, or
it is satisfied from memory using co-latest
store for that CPU

Operational Model

Fences force CPUs to execute various
instructions in program order (depending
on type of fence)

They also affect the way the memory
subsystem propagates stores
- smp_wmb() forces all po-earlier stores on this

CPU to propagate before any po-later stores

Axioms of LKML
 Sequential consistency per variable

- system must obey the coherence rules
 Atomicity

-  rmw operations must be atomic (constraints co)
 Happens-before

-  all cases where po must be preserved (ppo)
-  fences between appropriate operations
-  data, addr, cntrl dependencies
-  operations on the same location (po-loc)
-  acquire-release, rfe, ...

 Propagates-before (pb)
 RCU discussed later

Example 1

Example 1 - detail

Example 2

Example 2 - detail

Automated Checking Tools

Herd tool for automated checking
Herd programs are called litmus tests
Cat language for defining memory models

-  specifies which cycles are prohibited

Example

Results

Adding Dependencies

Results

But, removing any of the dependencies would allow a cycle again!

