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Threads Cannot  Be 
Implemented as a Library 



Reasoning About Programs 
What are the valid outcomes for this program? 

Is it valid for both r1 and r2 to contain 0 ? 

Thread 1

x  = 1;
r1 = y;

Thread 2

y  = 1;
r2 = x;

Initialization: x = y = 0;



Sequential Consistency 
If your intuition is based on sequential consistency, 

you may think that r1 = r2 = 0 is invalid 

But sequential consistency does not hold on most 
(any?) modern architectures 
-  Compilers may reorder memory operations under the 

(invalid) assumption that the program is sequential! 
-  Hardware may reorder memory operations, as we will see 

in the next class 
-  You are expected to use memory barriers if this hardware reordering 

would be problematic  for your program! 



The Problem 
Languages such as C and C++ do not support 

concurrency 
-  C/C++ compilers do not implement it 
-  Threads are implemented in library routines (i.e. Pthreads) 
-  The compiler, unaware of threads, reorders operations as if 

it was dealing with a sequential program 
-  Some of this reordering is invalid for concurrent programs 

But C programs with Pthreads work just fine 
  … don’t they?  



The Pthreads Solution 
Pthreads defines synchronization primitives 

-  Pthread_mutex_lock 
-  Pthread_mutex_unlock 

Programmers must use them to prevent concurrent 
access to memory 
-  Define critical sections and protect them with mutex locks 
 - Do not allow “data races” in the program 



Pthreads Synch. Primitives 
Lock and unlock must be implemented carefully 

because they themselves contain data races! 
-  Use memory barriers to prevent hardware reordering 
-  Disable optimizations to prevent compiler reordering 

This seems ok, doesn’t it? 
-  Lock and unlock are implemented carefully 
-  The code between lock and unlock is executed sequentially 

due to mutual exclusion enforced by locks 
-  The code outside the critical section has no races 



The Catch 
The programmer needs to determine where there is a 

race in order to place the locking primitives 

How can the programmer tell whether there is a data 
race? 
-  Need to reason about ordering of memory operations to 

determine if there is a race 
-  This requires the programming language to formally define 

a memory model 
-  C / C++ do not! ... well, they didn’t before now 
-  Without a memory model, how can you tell if there is a race? 



Example 
Does this program contain a race? 

-  Is it possible for either x or y to be modified? 
-  Is x == y == 1 a possible outcome? 

Initially: x = y = 0;

if (x == 1) ++y;
if (y == 1) ++x;



Valid Compiler Transformations 
Assuming sequential consistency, there is no race 

But sequential consistency is a bad assumption! 

Also, a compiler could legally transform 

if (x == 1) ++y;
if (y == 1) ++x;

++y; if (x != 1) --y;
++x; if (y != 1) --x;to 

This transformation produces a race! 
How can the compiler know not to do this? 



The Programmer’s Problem 
Programmer needs to know the constraints on 

compiler or hardware memory reordering in order 
to determine whether there is a race 
-  Then needs to prevent the race by using the mutual 

exclusion primitives 
-  Some CPUs define a formal memory consistency model 
-  But the C programming language doesn’t define a formal 

memory model, so its not possible to answer the first 
question with confidence in all cases! 



The Compiler Developer’s Problem 
Compilers need to know about concurrency in 

order to know that its not OK to use certain 
sequential optimizations 
-  Code transformations that are valid for 

sequential programs but not concurrent ones 
-  Alternatively, the compiler must be conservative 

all the time, leading to performance degradation 
for sequential programs 



Another Example 
Rewriting adjacent data (bit fields) 

If thread 1 updates x.a and thread 2 updates 
x.b, is there a race? 

struct { int a:17; int b:15 } x;



Another Example 
Rewriting adjacent data (bit fields) 
struct { int a:17; int b:15 } x;

x.a = 42    possibly implemented by the compiler as … 

{
tmp = x; // Read both fields into a

// 32 bit temporary variable
tmp &= ~0x1ffff; // Mask off old a;
tmp |= 42; // Or in new value
x = tmp; // Overwrite all of x

}



The Programmer’s Problem 
An update to x.a also updates x.b by side effect! 

-  There appears to be no race in the program, but this 
transparent compiler optimization creates one 

-  Mutual exclusion primitives should have been used! 
… but a separate lock for x.a and x.b will not do either! 

If x.a and x.b are protected using separate locks a 
thread updating only x.a would need to also acquire 
the lock for x.b 
-  How is the programmer to know this? 



The Compiler Developer’s Problem 
How can you know that this optimization (which is fine 

for a sequential program) is not ok? 
-  If your language has no concept of concurrency? 

The granularity of memory operations (bit, byte, word 
etc) is architecture specific 
-  Programs that need to know this kind of detail are not 

portable! 
-  If the language defined a minimum granularity for atomic 

updates, what should it be? 



Register Promotion 
Register promotion can also introduce updates where 

there were none before. 
Example: conditional locking for multithreading: 

for (...) {
...
if (mt) pthread_mutex_lock (...);
x = ... x ...
if (mt) pthread_mutex_unlock (...);

}



Register Promotion 
Register promotion can also introduce updates where 

there were non before. 
Example: conditional locking for multithreading: 

    Transformed to 



Register Promotion 
Register promotion can also introduce updates where 

there were non before. 
Example: conditional locking for multithreading 

r = x;
for (...) {

...
if (mt) {

x = r; pthread_mutex_lock (...); r = x;
}
r = ... r ...
if (mt) {

x = r; pthread_mutex_unlock (...); r = x;
}

}



The Problem 
The variable x is now accessed outside the critical 

section 
The compiler caused this problem (i.e., broke the 

program) 
-  but how is the compiler supposed to know this is a mistake 

if it is unaware of concurrency and hence unaware of critical 
sections? 

Bottom line: the memory abstraction is under-defined! 



Other Problems 
Sticking to the Pthreads rules prevents important 

performance optimizations 
-  not just in the compiler 

It also makes programs based on non-blocking 
synchronization illegal! 
-  NBS programs contain data races, by definition! 

Even with a formal memory model, how would we 
extend the Pthreads approach to cover NBS? 



C++11 Memory Model 

Compiler optimizations are not allowed to 
introduce data races! 
 - can be controlled via compilation flags 

Atomic types and operations 
-  implemented via mutual exclusion 
-  or by lock-free algorithms 
-  or directly by underlying atomic instructions 



Avoiding Data Races 

Compiler optimizations must not introduce 
stores on code paths that don’t have them 

Packed data: 
-  each field/object is its own memory location 
-  compiler not allowed to write other memory locations 
-  packing small fields in to a word is no longer allowed 
-  use half-word or byte operations 
-  bit fields can still race ... could be implemented using 

CAS 



Avoiding Data Races (cont.) 

Ongoing analysis of existing optimizations to 
see if they generate races or not ... 



Atomic Types 

Operations on atomic types are indivisible 
Memory coherence enforced per object 

-  each object has a single modification order 
-  atomic writes to the object are serialized 

Choice of synchronization modes 
-  memory ordering semantics defined per 

operation 

Ongoing work on lock-free implementations 
of atomic types 



Synchronization Modes 

Memory model synchronization modes give a 
choice of memory ordering semantics 
-  Sequentially Consistent (strong, the default) 
-  Acquire Release (weaker) 
-  Consume (even weaker) 
-  Relaxed (weakest) 



Sequentially Consistent 



Sequentially Consistent 

The assert can not fail 
Happens-before order exists between all operations 



Sequentially Consistent 

The final loop in thread 1 is not infinite! 

Atomic operations are optimization barriers (like opaque functions) 

Reordering can happen between them, but not across them! 



Sequentially Consistent 



Sequentially Consistent 

Neither assert can fail 



Relaxed 



Relaxed 

Either assert can fail ! 
No ordering is enforced (no happens before edges) 
Only coherence order per variable is enforced 



Relaxed 



Relaxed 

This assert can not fail (stores to same variable in same thread)  
Once thread 2 has seen 2 in x, it can not see an earlier value. 
Coherence order of x matches order of stores to x from thread 1 



Acquire Release 



Acquire Release 

Like sequential consistency, but only for dependent variables, not between 
independent reads of independent writes 

Both asserts can pass, because no ordering is implied between thread 1 and 2 

Sequential consistency would require that if one passes the other must fail 



Acquire Release 



Acquire Release 

Assert can not fail, because store to y happens before 
store to x, even though y is not atomic. 



Consume 

No happens-before ordering on non-dependent variables 
Assert in thread 2 is true 
Assert in thread 3 can fail 



Consume 



Review: Sequentially Consistent 



Review: Sequentially Consistent 

All threads see the same state 
Both asserts are true 



Review: Acquire Release 



Review: Acquire Release 

Only the two threads involved see the same state 

Thread 2’s assert is true 

Thread 3’s assert can fail, since thread 1 and 3 have not synchronized 



Review: Relaxed 



Review: Relaxed 

Both asserts can fail 


