CS510 Advanced Topics in Concurrency

- » Portland State

Threads Cannot Be
Implemented as a Library

Portland State

UNIVER SITY

: A’i.":':'*?

Reasoning About Programs

What are the valid outcomes for this program?
Is it valid for both r1 and r2 to contain 0 ?

Initialization: x =y = 0;
Thread 1 Thread 2
X

1; y
. r2

1;
rl H

I PortlanSiN |§EtRaS|tTeY

Sequential Consistency

If your intuition is based on sequential consistency,
you may think that r1 = r2 = 0 is invalid

But sequential consistency does not hold on most
(any?) modern architectures
- Compilers may reorder memory operations under the
(invalid) assumption that the program is sequential!

- Hardware may reorder memory operations, as we will see
in the next class

- You are expected to use memory barriers if this hardware reordering
would be problematic for your program!

The Problem

Languages such as C and C++ do not support
concurrency
- C/C++ compilers do not implement it

Threads are implemented in library routines (i.e. Pthreads)

The compiler, unaware of threads, reorders operations as if
it was dealing with a sequential program

Some of this reordering is invalid for concurrent programs

But C programs with Pthreads work just fine
... don't they?

Portland State

UNIVERSITY

The Pthreads Solution

Pthreads defines synchronization primitives
- Pthread_mutex_lock
- Pthread_mutex_unlock

Programmers must use them to prevent concurrent
access to memory
- Define critical sections and protect them with mutex locks
- Do not allow “data races” in the program

. | e = 8 Portland State

Pthreads Synch. Primitives

Lock and unlock must be implemented carefully
because they themselves contain data races!
- Use memory barriers to prevent hardware reordering
- Disable optimizations to prevent compiler reordering

This seems ok, doesn’t it?
- Lock and unlock are implemented carefully

- The code between lock and unlock is executed sequentially
due to mutual exclusion enforced by locks

- The code outside the critical section has no races

i . . L : POrtland |§EtRaSItTeY

The Catch

The programmer needs to determine where there is a
race in order to place the locking primitives

How can the programmer tell whether there is a data
race?

- Need to reason about ordering of memory operations to
determine if there is a race

- This requires the programming language to formally define
a memory model
- C/ C++ do not! ... well, they didn't before now
- Without a memory model, how can you tell if there is a race?

- Portland State

Example

Does this program contain a race?
- Is it possible for either x or y to be modified?
- Isx ==y == 1 a possible outcome?

Initially: x =y = 0;

if (x == 1) ++y;
if (y == 1) ++x;

Y POrtlanﬁiN |§EtRaS|tTeY

Valid Compiler Transformations

Assuming sequential consistency, there is no race
But sequential consistency is a bad assumption!

Also, a compiler could legally transform

if (x == 1) ++y; ++y; if (x 1= 1) --y;
if (y == 1) ++x; fo ++x; if (y != 1) --x;

This transformation produces a race!
How can the compiler know not to do this?

. | e = 8 Portland State

The Programmer’s Problem

Programmer needs to know the constraints on
compiler or hardware memory reordering in order
to determine whether there is a race

- Then needs to prevent the race by using the mutual
exclusion primitives

- Some CPUs define a formal memory consistency model

- But the C programming language doesn’t define a formal

memory model, so its not possible to answer the first
question with confidence in all cases!

PortlanuClN |§EtREsl|tTeY

The Compiler Developer’s Problem

Com
ord

nilers need to know about concurrency in
er to know that its not OK to use certain

sequential optimizations

- Code transformations that are valid for
sequential programs but not concurrent ones

- Alternatively, the compiler must be conservative
all the time, leading to performance degradation

f

or sequential programs

Portland State

: ‘{:; 7S

Another Example
Rewriting adjacent data (bit fields)

struct { int a:17; int b:15 } x;

If thread 1 updates x.a and thread 2 updates
X.b, is there a race?

Portland State

UNIVERSITY

Another Example

Rewriting adjacent data (bit fields)

struct { int a:17; int b:15 } x;

X.a = 42 possibly implemented by the compiler as ...
{
tmp = Xx; // Read both fields into a
// 32 bit temporary variable
tmp &= ~0x1ffff; // Mask off old a;
tmp |= 42; // Or in new value
X = tmp; // Overwrite all of x

. | e = 8 Portland State

The Programmer’s Problem

An update to x.a also updates x.b by side effect!

- There appears to be no race in the program, but this
transparent compiler optimization creates one

- Mutual exclusion primitives should have been used!
... but a separate lock for x.a and x.b will not do either!

If x.a and x.b are protected using separate locks a
thread updating only x.a would need to also acquire
the lock for x.b

- How is the programmer to know this?

. S G Portlang State

The Compiler Developer’s Problem

How can you know that this optimization (which is fine
for a sequential program) is not ok?
- If your language has no concept of concurrency?

The granularity of memory operations (bit, byte, word
etc) is architecture specific

- Programs that need to know this kind of detail are not
portable!

- If the language defined a minimum granularity for atomic
updates, what should it be?

Portland State

UNIVERSITY

Register Promotion

Register promotion can also introduce updates where
there were none before.

Example: conditional locking for multithreading:

for (...) {

if (mt) pthread mutex lock (...);
X T tee X eee
if (mt) pthread mutex unlock (...);

Portland State

UNIVERSITY

: A’i.":':'*?

Register Promotion

Register promotion can also introduce updates where
there were non before.

Example: conditional locking for multithreading:

Transformed to

Portland State

UNIVERSITY

Register Promotion

Register promotion can also introduce updates where
there were non before.

Example: conditional locking for multithreading

r = X;
for (...) {
if (mt) {
X = r; pthread mutex lock (...); r = X;
}
Y = co0 T oo
if (mt) {

X = r; pthread mutex unlock (...); r = X;

}

Portland State

UNIVERSITY

The Problem

The variable x is now accessed outside the critical
section

The compiler caused this problem (i.e., broke the
program)
- but how is the compiler supposed to know this is a mistake

if it is unaware of concurrency and hence unaware of critical
sections?

Bottom line: the memory abstraction is under-defined!

. . & PortlanﬁiN §Et£‘te

Other Problems

Sticking to the Pthreads rules prevents important
performance optimizations
- not just in the compiler

It also makes programs based on non-blocking
synchronization illegal!

- NBS programs contain data races, by definition!

Even with a formal memory model, how would we
extend the Pthreads approach to cover NBS?

Portland State

UNIVER SITY

C++11 Memory Model

Compiler optimizations are not allowed to
introduce data races!
- can be controlled via compilation flags

Atomic types and operations
- implemented via mutual exclusion
- or by lock-free algorithms
- or directly by underlying atomic instructions

RGP Portland State

Avoiding Data Races

Compiler optimizations must not introduce
stores on code paths that don’t have them

Packed data:

- each field/object is its own memory location

- compiler not allowed to write other memory locations
- packing small fields in to a word is no longer allowed
- use half-word or byte operations

- bit fields can still race ... could be implemented using
CAS

Portland State

: A’i.":':'*?

Avoiding Data Races (cont.)

Ongoing analysis of existing optimizations to
see if they generate races or not ...

Portland State

UNIVER SITY

POT d

Atomic Types

Operations on atomic types are indivisible

Memory coherence enforced per object
- each object has a single modification order
- atomic writes to the object are serialized

Choice of synchronization modes

- memory ordering semantics defined per
operation

Ongoing work on lock-free implementations
of atomic types

Portland State

Synchronization Modes

Memory model synchronization modes give a
choice of memory ordering semantics
- Sequentially Consistent (strong, the default)
- Acquire Release (weaker)
- Consume (even weaker)
- Relaxed (weakest)

Portland State

Sequentially Consistent

-Thread 1- ~-Thread 2-
y =1 if (x.load() == 2)
Xx.store (2); assert (y == 1)

Portland State

UNIVERSITY

Sequentially Consistent

-Thread 1- -Thread 2-
y =1 if (x.load() == 2)
X.store (2); assert (y == 1)

The assert can not fail
Happens-before order exists between all operations

Portland State

UNIVERSITY

Sequentially Consistent

a=>0
y =20
b=1
-Thread 1- -Thread 2-
Xx = a.load() while (y.load() != b)
y.store (b) $
while (a.load() == x) a.store(1l)

’

The final loop in thread 1 is not infinite!
Atomic operations are optimization barriers (like opaque functions)

Reordering can happen between them, but not across them!

- b4 Portland State

Sequentially Consistent

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)

y.store (10)
}

- - Portland State

Sequentially Consistent

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)
y.store (10)
}

Neither assert can fail

Portland State

UNIVERSITY

Relaxed

-Thread 1-
y.store (20, memory order relaxed)
x.store (10, memory order relaxed)

-Thread 2-
if (x.load (memory order relaxed) == 10)
{
assert (y.load(memory order relaxed) == 20) /* assert A */
y.store (10, memory order relaxed)
}
-Thread 3-
if (y.load (memory order relaxed) == 10)

assert (x.load(memory order relaxed) == 10) /* assert B */

Portland State

UNIVERSITY

Relaxed

-Thread 1-
y.store (20, memory order relaxed)
x.store (10, memory order relaxed)

-Thread 2-
if (x.load (memory order relaxed) == 10)

{

assert (y.load(memory order relaxed) == 20) /* assert A */
y.store (10, memory order relaxed)

}

~Thread 3-
if (y.load (memory order relaxed) == 10)
assert (x.load(memory order relaxed) == 10) /* assert B */

Either assert can fail !
No ordering is enforced (no happens before edges)
Only coherence order per variable is enforced

Portland State

UNIVERSITY

Relaxed

-Thread 1-
x.store (1, memory order relaxed)
x.store (2, memory order relaxed)

-Thread 2-

y = X.load (memory order relaxed)
z = X.load (memory order relaxed)
assert (y <= z)

Portland State

UNIVERSITY

Relaxed

-Thread 1-
x.store (1, memory order relaxed)
x.store (2, memory order relaxed)

-Thread 2-

y = X.load (memory order relaxed)
z = X.load (memory order relaxed)
assert (y <= z)

This assert can not fail (stores to same variable in same thread)
Once thread 2 has seen 2 in x, it can not see an earlier value.

Coherence order of x matches order of stores to x from thread 1

Portland State

UNIVERSITY

Acquire Release

-Thread 1-
y.store (20, memory order release);

-Thread 2-
x.store (10, memory order release);

-Thread 3-
assert (y.load (memory order acquire) == 20 && x.load (memory order acquire) == 0)

-Thread 4-
assert (y.load (memory order acquire) == 0 && x.load (memory order acquire) == 10)

Portland State

UNIVERSITY

Acquire Release

~-Thread 1-
y.store (20, memory order release);

-Thread 2-
x.store (10, memory order release);

-Thread 3-
assert (y.load (memory order acquire) == 20 && x.load (memory order acquire) == 0)

-Thread 4-
assert (y.load (memory order acquire) == 0 && x.load (memory order acquire) == 10)

Like sequential consistency, but only for dependent variables, not between
independent reads of independent writes
Both asserts can pass, because no ordering is implied between thread 1 and 2

Sequential consistency would require that if one passes the other must fail

Portland State

UNIVERSITY

Acquire Release

~-Thread 1-
y = 20;
x.store (10, memory order release);

-Thread 2-
if (x.load(memory order acquire) == 10)
assert (y == 20);

- »~ | Portland State

Acquire Release

~-Thread 1-
y = 20;
x.store (10, memory order release);

-Thread 2-
if (x.load(memory order acquire) == 10)
assert (y == 20);

Assert can not fail, because store to y happens before
store to x, even though y is not atomic.

Portland State

UNIVERSITY

Consume

-Thread 1-

n=1

m=1

p.store (&n, memory order release)

-Thread 2-

t = p.load (memory order acquire);
assert(*t == 1 && m == 1);
~-Thread 3-

t = p.load (memory order consume);
assert(*t == 1 && m == 1);

No happens-before ordering on non-dependent variables
Assert in thread 2 is true
Assert in thread 3 can fail

Portland State

UNIVERSITY

Consume

-Thread 1-
n=1
m=1

p.store (&n, memory order release)

-Thread 2-

t = p.load (memory order acquire);
assert(*t == 1 && m == 1);
-Thread 3-

t = p.load (memory order consume);
assert(*t == 1 && m == 1);

- Portland State

Review: Sequentially Consistent

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)

y.store (10)
}

Portland State

UNIVERSITY

Review: Sequentially Consistent

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)
y.store (10)
}

All threads see the same state

Both asserts are true

- b4 Portland State

Review: Acquire Release

~-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
X.store (10); assert (y.load() == 20) assert (x.load() == 10)

y.store (10)
}

Portland State

UNIVERSITY

Review: Acquire Release

~-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)
y.store (10)
}

Only the two threads involved see the same state
Thread 2’s assert is true

Thread 3’s assert can fail, since thread 1 and 3 have not synchronized

Portland State

UNIVERSITY

Review: Relaxed

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)

y.store (10)
}

- b4 Portland State

Review: Relaxed

-Thread 1- -Thread 2- -Thread 3-
y.store (20); if (x.load() == 10) { if (y.load() == 10)
x.store (10); assert (y.load() == 20) assert (x.load() == 10)
y.store (10)
}

Both asserts can fail

