
CS510 Concurrent Systems

Jonathan Walpole

Shared Memory Consistency
Models: A Tutorial

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Critical section is protected!

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Both processes can block, but the
critical section is still protected!

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Write Buffer With Bypass
SpeedUp:

 - Write takes 100 cycles
 - Buffering takes 1 cycle
 - So Buffer and keep going!

Problem: Read from a location with a
buffered write pending?

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Critical section is not protected!

Write Buffer With Bypass
Rule:"

"- If a write is issued, buffer it and keep executing"

Unless: there is a read from the same location
(subsequent writes don't matter), then wait for the
write to complete"

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Flag2 = 1

Flag1 = 1

Stall!

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 1

Flag2 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 1

Flag1 = 1

Is This a General Solution ?

- If each CPU has a write buffer with
bypass, and follows the rules, will the
algorithm still work correctly?

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag2 = 1 Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag2 = 1 Flag1 = 1

Dekker’s Algorithm

Process 1::
Flag1 = 1
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
If (Flag1 == 0)
 critical section

Flag2 = 0

Flag1 = 0 Flag2 = 1 Flag1 = 1

Its Broken!

How did that happen?
- write buffers are processor specific
- writes are not visible to other processors

until they hit memory

Generalization of the Problem
Dekker’s algorithm has the form:
 WX WY
 RY RX

-  The write buffer delays the writes until
after the reads!

-  It reorders the reads and writes
-  Both processes can read the value prior

to the other’s write!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

There are 4! or 24 possible orderings.

If either WX<RX or WY<RY
Then the Critical Section is protected
(Correct Behavior).

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

There are 4! or 24 possible orderings.

If either WX<RX or WY<RY
Then the Critical Section is protected
(Correct Behavior).

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

18 of the 24 orderings are OK.
But the other 6 are trouble!

Another Example

What happens if reads and writes can be
delayed by the interconnect?
-  non-uniform memory access time
-  cache misses
-  complex interconnects

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 0 Data = 0

Memory Interconnect

Non-Uniform Write Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 0 Data = 0

Memory Interconnect

Non-Uniform Write Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 0 Data = 0

Memory Interconnect

Non-Uniform Write Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 1 Data = 0

Memory Interconnect

Non-Uniform Write Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 1 Data = 0

Memory Interconnect

Non-Uniform Write Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 1 Data = 0

Memory Interconnect

Non-Uniform Write Delays

WRONG
DATA !

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 1 Data = 2000

Memory Interconnect

Non-Uniform Write Delays

What Went Wrong?
Maybe we need to acknowledge each write

before proceeding to the next?

Write Acknowledgement?
But what about reordering of reads?

- Non-Blocking Reads
-  Lockup-free Caches
-  Speculative execution
-  Dynamic scheduling

... all allow execution to proceed past a read

Acknowledging writes may not help!

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 0 Data = 0

Memory Interconnect

General Interconnect Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data (0)

Head = 0 Data = 0

Memory Interconnect

General Interconnect Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data (0)

Head = 0 Data = 2000

Memory Interconnect

General Interconnect Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data

Head = 1 Data = 2000

Memory Interconnect

General Interconnect Delays

Process 1::
Data = 2000;
Head = 1;

Process 2::
While (Head == 0) {;}
LocalValue = Data (0)

Head = 1 Data = 2000

Memory Interconnect

General Interconnect Delays

WRONG
DATA !

Generalization of the Problem
This algorithm has the form:
 WX RY
 WY RX

-  The interconnect reorders reads and writes

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

Correct behavior requires WX<RX,
WY<RY. Program requires WY<RX.
=> 6 correct orders out of 24.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

Correct behavior requires WX<RX,
WY<RY. Program requires WY<RX.
=> 6 correct orders out of 24.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Write Acknowledgment means WX < WY.
Does that Help?

Disallows only 12 out of 24.
9 still incorrect!

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Sequential Consistency for MPs
Why is it surprising that these code examples break
on a multi-processor?

What ordering property are we assuming
(incorrectly!) that multiprocessors support?

We are assuming they are sequentially consistent!

Sequential Consistency
Sequential Consistency requires that the result of
any execution be the same as if the memory
accesses executed by each processor were kept in
order and the accesses among different processors
were interleaved arbitrarily.

...appears as if a memory operation executes
atomically or instantaneously with respect to other
memory operations

 (Hennessy and Patterson, 4th ed.)

Understanding Ordering

Program Order
Compiled Order
Interleaving Order
Execution Order

Reordering
Writes reach memory, and reads see

memory, in an order different than that in
the program!
- Caused by Processor
- Caused by Multiprocessors (and Cache)
- Caused by Compilers

What Are the Choices?
If we want our results to be the same as

those of a Sequentially Consistent Model.
Do we:
- Enforce Sequential Consistency at the memory

level?
- Use Coherent (Consistent) Cache ?
- Or what ?

Enforce Sequential Consistency?

Removes virtually all optimizations

Too slow!

What Are the Choices?
If we want our results to be the same as

those of a Sequentially Consistent Model.
Do we:
- Enforce Sequential Consistency at the memory

level?
- Use Coherent (Consistent) Cache ?
- Or what ?

Cache Coherence
Multiple processors have a consistent view

of memory (i.e. MESI protocol)
But this does not say when a processor

must see a value updated by another
processor.

Cache coherency does not guarantee
Sequential Consistency!

Example: a write-through cache acts just
like a write buffer with bypass.

What Are the Choices?
If we want our results to be the same as

those of a Sequentially Consistent Model.
Do we:
- Enforce Sequential Consistency at the memory

level?
- Use Coherent (Consistent) Cache ?
- Or what ?

Involve the Programmer

Someone’s got to tell your CPU about
concurrency!

Use memory barrier / fence instructions
when order really matters!

Memory Barrier Instructions

A way to prevent reordering
- Also known as a safety net
-  Require previous instructions to complete

before allowing further execution on that CPU

Not cheap, but perhaps not often needed?
- Must be placed by the programmer
- Memory consistency model for processor tells

you what reordering is possible

Process 1::
Flag1 = 1
>>Mem_Bar<<
If (Flag2 == 0)
 critical section

Process 2::
Flag2 = 1
>>Mem_Bar<<
If (Flag1 == 0)
 critical section

Using Memory Barriers

WX"

RX"

WY"

RY"
>>Fence<<" >>Fence<<"

Fence: WX < RY" Fence: WY < RX"

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

There are 4! or 24 possible orderings.

If either WX<RX or WY<RY
Then the Critical Section is protected
(Correct Behavior)

18 of the 24 orderings are OK.
But the other 6 are trouble!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Enforce WX<RY and WY<RX.

Only 6 of the 18 good orderings are
allowed OK.
But the 6 bad ones are still forbidden!

Process 1::
Data = 2000;
>>Mem_Bar<<
Head = 1;

Process 2::
While (Head == 0) {;}
>>Mem_Bar<<
LocalValue = Data

Example 2

WX"

RX"WY"

RY"
>>Fence<<" >>Fence<<"

Fence: WX < WY" Fence: RY < RX"

WX
WX
WX
WX
WX
WX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX
RY
RY
WY
RX
WY
RX

RY
RY
WY
RX
WY
RX
WX
WX
WX
WX
WX
WX
WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY

WY
RX
RY
RY
RX
WY
WY
RX
RY
RY
RX
WY
WX
WX
WX
WX
WX
WX
RX
WY
RX
WY
RY
RY

RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
RX
WY
RX
WY
RY
RY
WX
WX
WX
WX
WX
WX

Correct behavior requires WX<RX,
WY<RY. Program requires WY<RX.
=> 6 correct orders out of 24.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

We can require WX<WY and RY<RX. Is that
enough?
Program requires WY<RX.
Thus, WX<WY<RY<RX; hence WX<RX and
WY<RY.

Only 2 of the 6 good orderings are allowed -
But all 18 incorrect orderings are forbidden.

Memory Consistency Models

Every CPU architecture has one!
- It explains what reordering of memory

operations that CPU can do

The CPUs instruction set contains memory
barrier instructions of various kinds
- These can be used to constrain reordering

where necessary
- The programmer must understand both the

memory consistency model and the memory
barrier instruction semantics!!

Memory Consistency Models

Code Portability?
Linux provides a carefully chosen set of

memory-barrier primitives, as follows:
- smp_mb(): “memory barrier” that orders both

loads and stores. This means loads and stores
preceding the memory barrier are committed
to memory before any loads and stores
following the memory barrier.

- smp_rmb(): “read memory barrier” that
orders only loads.

- smp_wmb(): “write memory barrier” that
orders only stores.

Words of Advice

- “The difficult problem is identifying the ordering
constraints that are necessary for correctness.”

- “...the programmer must still resort to reasoning
with low level reordering optimizations to
determine whether sufficient orders are
enforced.”

- “...deep knowledge of each CPU's memory-
consistency model can be helpful when
debugging, to say nothing of writing architecture-
specific code or synchronization primitives.”

Programmer's View

- What does a programmer need to do?
- How do they know when to do it?
- Compilers & Libraries can help, but still

need to use primitives in truly concurrent
programs

-  Assuming the worst and synchronizing
everything results in sequential
consistency

-  - Too slow, but may be a good way to start

Outline
•  Concurrent programming on a uniprocessor
•  The effect of optimizations on a uniprocessor
•  The effect of the same optimizations on a

multiprocessor
•  Methods for restoring sequential consistency
•  Conclusion

Conclusion

- Parallel programming on a multiprocessor
that relaxes the sequentially consistent
memory model presents new challenges

- Know the memory consistency models for
the processors you use

- Use barrier (fence) instructions to allow
optimizations while protecting your code

- Simple examples were used, there are
others much more subtle.

References
- Shared Memory Consistency Models: A Tutorial

By Sarita Adve & Kourosh Gharachorloo
- Memory Ordering in Modern Microprocessors,

Part I, Paul E. McKenney, Linux Journel, June,
2005

- Computer Architecture, Hennessy and Patterson,
4th Ed., 2007

