
CS510 Concurrent Systems

Jonathan Walpole

A Methodology for Implementing
Highly Concurrent Data Objects

Concurrent Object
l  A data structure shared by concurrent processes

l  Traditionally implemented using locks

l  Problem: in asynchronous systems slow/failed
processes impede fast processes

l  Alternative approaches include non-blocking and
wait-free concurrent objects
... but these are hard to write!
... and hard to understand!

Goals

Make it easy to write concurrent objects
(automatable method)

Make them as easy to reason about as sequential
objects (linearizability)

Preserve as much performance as possible

The Plan

Write sequential object first

Transform it to a concurrent one (automatically)

Ensure it is linearizable

Use load-linked, store conditional for non-blocking

Transform non-blocking implementation to wait-free
implementation when necessary

Non-Blocking Concurrency
l  Non-blocking: after a finite number of steps at

least one process must complete

l  Wait-free: every process must complete after a
finite number of steps

l  A system that is merely non-blocking is prone to
starvation

l  A wait-free system protects against starvation

The Methodology

l  Sequential objects must be total, i.e., well
defined on all valid states of the data

l  It must also have no side effects

l  Why?

Load-Linked Store Conditional
Load-linked copies a memory location

Store conditional stores to a memory location,
only if the location load-linked has not been
accessed

No ABA, but it can suffer from spurious failures!
 - for example, due to cache line replacement
 - or execution of a new load-linked on a different location

Small Object Method

Reads memory
pointer using
load_linked

Copies
version into

another block

Applies
sequential

operation to the
copy

Calls
store_conditional

to swing the
pointer from the
old to the new

On success
transformation

complete

On failure
retry

What if one thread reads while another is modifying,
can the copy be corrupted?
-  to prevent access to incomplete state, two version

counters are used (check[0] and check[1])
-  Updates: a thread updates check[0], then does the

modification, then updates check[1]
-  Copies: a thread reads check[1], copies the

version, then reads check[0]

Is This Safe?

Small Objects Cont. - Code
!

int Pqueue_deq(Pqueue_type **Q){!
!...!
!while(1){!

! !old_pqueue = load_linked(Q);!
! !old_version = &old_pqueue->version;!
! !new_version = &new_pqueue->version;!
! !new_pqueue->check[0] = new_pqueue->check[1] + 1;!

! !first = old_pqueue->check[1];!
! !copy(old_version, new_version);!
! !last = old_pqueue->check[0];!
! !if (first == last){!

! ! result = pqueue_deq(new_version);!
! ! new_pqueue->check[1] = new_pqueue->check[0] + 1;!
! ! if (store_conditional(Q, new_version))break;!

! !}!
!}!
!new_pqueue = old_pqueue;!
!return result;!

}!

Preventing the race
condition!

Copy the old, new data.

If the check values do not
match, loop again. We
failed.

If the check values DO
match, now we can perform
our dequeue operation!

Try to publicize the new
heap via
store_conditional,
which could fail and we loop
back.

Reclaim the memory!

Return our priority queue
result.

Simple Non-Blocking Algorithm vs. Spin-Lock

Why Does It Perform So Poorly?

Small Objects Cont. – Back Off
! !...!
! !if (first == last)!
! !{!

! ! result = pqueue_deq(new_version);!
! ! if (store_conditional(Q, new_version)) break;!
! !}!
! !if (max_delay < DELAY_LIMIT) max_delay = 2 * max_delay;!
! !delay = random() % max_delay;!
! !for (i = 0; i < delay; i++);!

!} /* end while*/!
!new_pqueue = old_pqueue;!
!return result;!

}!

When the consistency
check or the
store_conditional fails,
introduce back-off for a
random amount of time!

Effect of Adding Backoff

Why Does It Still Perform Poorly?

Other Problems
Long operations struggle to finish

They are repeatedly forced to retry by short operations

The approach is subject to starvation!

How can we fix this?

Small Objects – Wait Free
Each process declares its intended operations
ahead of time, using an invocation structure

 - name, arguments, and toggle bit to determine if
 invocation is old or new

The results of each operation are recorded in a
response structure

 - result value, toggle bit

Every process tries to do every other processes
operations before doing its own!!!!

 - but only one succeeds (exactly one succeeds!)

...!!
announce[P].op_name = DEQ_CODE;!
new_toggle = announce[P].toggle = !announce[P].toggle;!
if (max_delay> 1) max_delay = max_delay >> 1; !

!
while(((*Q)->responses[P].toggle != new_toggle) !!

! !|| ((*Q)->responses[P].toggle != new_toggle)){!

! !old_pqueue = load_linked(Q);!
! !old_version = &old_pqueue->version;!
! !new_version = &new_pqueue->version;!
! !first = old_pqueue->check[1];!

! !memcopy(old_version, new_version, sizeof(pqueue_type));!
! !last = old_pqueue->check[0];!
! !if (first == last){!

! ! result = pqueue_deq(new_version);!
! ! apply(announce, Q); ! ! !
! ! if (store_conditional(Q, new_version)) break;!
! !}!

! !if (max_delay < DELAY_LIMIT) max_delay = 2 * max_delay;!
! !delay = random() % max_delay;!
! !for (i = 0; i < delay; i++);!
!}!

!new_pqueue = old_pqueue;!
!return result;!

}!

Small Objects – Wait Free
Record your operation

Flip the toggle bit

?

apply all pending operations to
the NEW version
Commit the new version

Doing The Work of Others
void apply (inv_type announce[MAX_PROCS], pqueue_type *object){

 int i;
 for (i = 0; i < MAX_PROCS; i++){
 if(announce[i].toggle != object->res_types[i].toggle){

 switch(announce[i].op_name){
 case ENG_CODE:
 object->res_type[i].value =

 pqueue_enq(&ojbect->version, announce[i].arg);
 break;
 case DEQ_CODE:
 object->res_type[i].value =

 pqueue_deq(&ojbect->version, announce[i].arg);
 break;
 default:

 fprintf(stderr, “Unknown operation code \n”);
 exit(1);
 };
 object->res_types[i].toggle = announce[i].toggle;

 }
 }

}

Small Objects Cont. – Wait Free
Small Object, Non-Blocking
(back-off)

Small Object, Wait Free (back-
off)

Wait-Free Performance Sucks!

Why?

Large Concurrent Objects
- Cannot be copied in a single block
- Represented by a set of blocks linked by pointers
- The programmer is responsible for determining

 which blocks of the object to copy
- The less copying the better the performance

Summary & Contributions
Foundation for transforming sequential
implementations to concurrent ones

-  uses LL and SC
-  simplifies programming complexity
-  could be performed by a compiler
-  maintains a “reasonable” level of performance?

