
CS510 Concurrent Systems

Jonathan Walpole

A Lock-Free
Multiprocessor OS Kernel

The Synthesis Kernel

A research project at Columbia University

Synthesis V.0

- Uniprocessor (Motorola 68020)‏

- No virtual memory

1991 - Synthesis V.1

- Dual 68030s

- virtual memory, threads, etc

- Lock-free kernel

Locking

Why do kernels normally use locks?

Locks support a concurrent programming style based on
mutual exclusion

- Acquire lock on entry to critical sections

- Release lock on exit

- Block or spin if lock is held

- Only one thread at a time executes the critical section

Locks prevent concurrent access and enable sequential
reasoning about critical section code

Why Not Use Locking?

Granularity decisions

- Simplicity vs performance

- Increasingly poor performance (superscalar CPUs)

Complicates composition

- Need to know the locks I’m holding before calling a function

- Need to know if its safe to call while holding those locks?

Risk of deadlock

Propagates thread failures to other threads

- What if I crash while holding a lock?

Is There an Alternative?

Use lock-free, “optimistic” synchronization

- Execute the critical section unconstrained, and check at the end
to see if you were the only one

- If so, continue. If not roll back and retry

Synthesis uses no locks at all!

Goal: Show that Lock-Free synchronization is...

- Sufficient for all OS synchronization needs

- Practical

- High performance

Locking is Pessimistic

Murphy's law:

- “If it can go wrong, it will...”

In concurrent programming:

- “If we can have a race condition, we will...”

- “If another thread could mess us up, it will...”

Solution:

- Hide the resources behind locked doors

- Make everyone wait until we're done

- That is...if there was anyone at all

- We pay the same cost either way

Optimistic Synchronization

The common case is often little or no contention

- Or at least it should be!

- Do we really need to shut out the whole world?

- Why not proceed optimistically and only incur cost if we
encounter contention?

If there's little contention, there's no starvation

- So we don’t need to be “wait-free” which guarantees no
starvation

- Lock-free is easier and cheaper than wait-free

Small critical sections really help performance

How Does It Work?

Copy

- Write down any state we need in order to retry

-

Do the work

- Perform the computation

Atomically “test and commit” or retry

- Compare saved assumptions with the actual state of the world

- If different, undo work, and start over with new state

- If preconditions still hold, commit the results and continue

- This is where the work becomes visible to the world (ideally)

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

CS510 - Concurrent Systems 10

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

loop

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

Locals -
won’t change!

Global - may
change any

time!

“Atomic”
read-modify-write

instruction

CAS

CAS – single word Compare and Swap

- An atomic read-modify-write instruction

- Semantics of the single atomic instruction are:

CAS(copy, update, mem_addr)

{

 if (*mem_addr == copy) {

 *mem_addr = update;

 return SUCCESS;

 } else

 return FAIL;

}

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

Do Work

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

Example – Stack Pop

Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;

 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)

 goto retry;

 return elem;

}

Do Work

What Made It Work?

It works because we can atomically commit the new stack
pointer value and compare the old stack pointer with the
one at commit time

This allows us to verify no other thread has accessed the stack
concurrently with our operation

- i.e. since we took the copy

- Well, at least we know the address in the stack pointer is
the same as it was when we started

- Does this guarantee there was no concurrent activity?

- Does it matter?

- We have to be careful !

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP,

elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP,

elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

Copy

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP,

elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

Do Work

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP,

elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP, elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

 Note: this is a double compare and swap!
Its needed to atomically update both the
new item and the new stack pointer

Unnecessary

Compare

CAS2

CAS2 = double compare and swap

- Sometimes referred to as DCAS

CAS2(copy1, copy2, update1, update2, addr1, addr2)

{

 if(addr1 == copy1 && addr2 == copy2) {

 *addr1 = update1;

 *addr2 = update2;

 return SUCCEED;

 } else

 return FAIL;

}

Stack Push

Push(elem) {

 retry:

 old_SP = SP;

 new_SP = old_SP – 1;

 old_val = *new_SP;

 if(CAS2(old_SP, old_val, new_SP, elem, &SP, new_SP)

 == FAIL)‏ goto retry;

}

Do Work

Synchronization in Synthesis

Saved state is only one or two words

Commit is done via

- Compare-and-Swap (CAS), or

- Double-Compare-and-Swap (CAS2 or DCAS)

Can we really do everything in only two words?

- Every synchronization problem in the Synthesis kernel is
reduced to only needing to atomically touch two words at a
time!

- Requires some very clever kernel architecture

Approach

Build data structures that work concurrently

- Stacks

- Queues (array-based to avoid allocations)

- Linked lists

Then build the OS around these data structures

Concurrency is a first-class concern

Its Trickier Than It Seems

List operations show insert and delete at the head

- This is the easy case

- What about insert and delete of interior nodes?

- Next pointers of deletable nodes are not safe to traverse, even
the first time!

- Need reference counts and DCAS to atomically compare and
update the count and pointer values

- This is expensive, so we may choose to defer deletes instead
(more on this later in the course)

Specialized list and queue implementations can reduce the
overheads

The Fall-Back Position

If you can’t reduce the work such that it requires atomic
updates to two or less words:

- Create a single server thread and do the work sequentially on
a single CPU

- Why is this faster than letting multiple CPUs try to do it
concurrently?

Callers pack the requested operation into a message

- Send it to the server (using lock-free queues!)

- Wait for a response/callback/...

- The queue effectively serializes the operations

Lock vs Lock-Free Critical Sections

Lock_based_Pop() {

 spin_lock(&lock);

 elem = *SP;

 SP = SP + 1;

 spin_unlock(&lock);

 return elem;

}

Lock_free_Pop() {

 retry:

 old_SP = SP;

 new_SP = old_SP + 1;
 elem = *old_SP;

 if (CAS(old_SP, new_SP, &SP) == FAIL)‏

 goto retry;

 return elem;

}

Conclusions

This is really intriguing!

Its possible to build an entire OS without locks!

But do you really want to?

- Does it add or remove complexity?

- What if hardware only gives you CAS and no DCAS?

- What if critical sections are large or long lived?

- What if contention is high?

- What if we can’t undo the work?

- … ?

