
CS510 Concurrent Systems 
 
Jonathan Walpole 



A Lock-Free 
Multiprocessor OS Kernel 

 



The Synthesis Kernel 

A research project at Columbia University 

  

Synthesis V.0 

- Uniprocessor (Motorola 68020)‏ 

- No virtual memory 

 

1991 - Synthesis V.1 

- Dual 68030s 

- virtual memory, threads, etc 

- Lock-free kernel 



Locking 

Why do kernels normally use locks? 

 

Locks support a concurrent programming style based on 
mutual exclusion 

- Acquire lock on entry to critical sections 

- Release lock on exit 

- Block or spin if lock is held 

- Only one thread at a time executes the critical section 

 

Locks prevent concurrent access and enable sequential 
reasoning about critical section code 



Why Not Use Locking? 

Granularity decisions 

- Simplicity vs performance 

- Increasingly poor performance (superscalar CPUs) 

 

Complicates composition 

- Need to know the locks I’m holding before calling a function 

- Need to know if its safe to call while holding those locks? 

 

Risk of deadlock 

 

Propagates thread failures to other threads 

- What if I crash while holding a lock? 



Is There an Alternative? 

Use lock-free, “optimistic” synchronization 

- Execute the critical section unconstrained, and check at the end 
to see if you were the only one 

- If so, continue. If not roll back and retry 

 

Synthesis uses no locks at all! 

 

Goal: Show that Lock-Free synchronization is... 

- Sufficient for all OS synchronization needs 

- Practical 

- High performance 

 



Locking is Pessimistic 

Murphy's law: 

- “If it can go wrong, it will...” 

 

In concurrent programming: 

- “If we can have a race condition, we will...” 

- “If another thread could mess us up, it will...” 

 

Solution: 

- Hide the resources behind locked doors 

- Make everyone wait until we're done 

- That is...if there was anyone at all 

- We pay the same cost either way 



Optimistic Synchronization 

The common case is often little or no contention 

- Or at least it should be! 

- Do we really need to shut out the whole world? 

- Why not proceed optimistically and only incur cost if we 
encounter contention? 
 

If there's little contention, there's no starvation 

- So we don’t need to be “wait-free” which guarantees no 
starvation 

- Lock-free is easier and cheaper than wait-free 

  

Small critical sections really help performance 



How Does It Work? 

Copy 

- Write down any state we need in order to retry 

-    

Do the work 

- Perform the computation 

   

Atomically “test and commit” or retry 

- Compare saved assumptions with the actual state of the world 

- If different, undo work, and start over with new state 

- If preconditions still hold, commit the results and continue 

- This is where the work becomes visible to the world (ideally) 

 



Example – Stack Pop 

Pop() { 

  retry: 

    old_SP = SP; 

    new_SP = old_SP + 1; 

    elem = *old_SP; 

    if (CAS(old_SP, new_SP, &SP) == FAIL) 

        goto retry; 

  return elem; 

} 
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Example – Stack Pop 

Pop() { 

  retry: 

    old_SP = SP; 

    new_SP = old_SP + 1; 

    elem = *old_SP; 
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} 

 

loop 



Example – Stack Pop 

Pop() { 

  retry: 

    old_SP = SP; 

    new_SP = old_SP + 1; 

    elem = *old_SP; 

    if (CAS(old_SP, new_SP, &SP) == FAIL) 

        goto retry; 

  return elem; 

} 

 

Locals - 
won’t change! 

Global - may 
change any 

time! 

“Atomic” 
read-modify-write 

instruction 



CAS 

CAS – single word Compare and Swap 

- An atomic read-modify-write instruction 

- Semantics of the single atomic instruction are: 

 
CAS(copy, update, mem_addr) 

{ 

 if (*mem_addr == copy) { 

  *mem_addr = update; 

  return SUCCESS; 

 } else 

  return FAIL; 

} 
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What Made It Work? 

It works because we can atomically commit the new stack 
pointer value and compare the old stack pointer with the 
one at commit time 

 

This allows us to verify no other thread has accessed the stack 
concurrently with our operation 

- i.e. since we took the copy 

- Well, at least we know the address in the stack pointer is 
the same as it was when we started 

- Does this guarantee there was no concurrent activity? 

- Does it matter? 

- We have to be careful ! 



Stack Push 

Push(elem) { 

 retry: 

  old_SP = SP; 

  new_SP = old_SP – 1; 

  old_val = *new_SP; 

  if(CAS2(old_SP, old_val, new_SP, 

elem, &SP, new_SP) 

   == FAIL)‏ goto retry; 

} 
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Copy 
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Stack Push 

Push(elem) { 

 retry: 

  old_SP = SP; 

  new_SP = old_SP – 1; 

  old_val = *new_SP; 

  if(CAS2(old_SP, old_val, new_SP, 

elem, &SP, new_SP) 

   == FAIL)‏ goto retry; 
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Stack Push 

Push(elem) { 

 retry: 

  old_SP = SP; 

  new_SP = old_SP – 1; 

  old_val = *new_SP; 

  if(CAS2(old_SP, old_val, new_SP, elem, &SP, new_SP) 

   == FAIL)‏ goto retry; 

} 

 Note: this is a double compare and swap! 
Its needed to atomically update both the 
new item and the new stack pointer 

Unnecessary 

Compare 



CAS2 

CAS2 = double compare and swap 

- Sometimes referred to as DCAS 
 

CAS2(copy1, copy2, update1, update2, addr1, addr2) 

{ 

 if(addr1 == copy1 && addr2 == copy2) { 

  *addr1 = update1; 

  *addr2 = update2; 

  return SUCCEED; 

 } else 

  return FAIL; 

} 



Stack Push 

Push(elem) { 

 retry: 

  old_SP = SP; 

  new_SP = old_SP – 1; 

  old_val = *new_SP; 

  if(CAS2(old_SP, old_val, new_SP, elem, &SP, new_SP) 

   == FAIL)‏ goto retry; 

} 

 

Do Work 



Synchronization in Synthesis 

Saved state is only one or two words 

                                     

Commit is done via 

- Compare-and-Swap (CAS), or 

- Double-Compare-and-Swap (CAS2 or DCAS) 

  

Can we really do everything in only two words?                       

- Every synchronization problem in the Synthesis kernel is 
reduced to only needing to atomically touch two words at a 
time! 

- Requires some very clever kernel architecture 



Approach 

Build data structures that work concurrently 

- Stacks 

- Queues (array-based to avoid allocations) 

- Linked lists 

        

Then build the OS around these data structures  

                                  

Concurrency is a first-class concern  



Its Trickier Than It Seems 

List operations show insert and delete at the head 

- This is the easy case 

- What about insert and delete of interior nodes? 

- Next pointers of deletable nodes are not safe to traverse, even 
the first time! 

- Need reference counts and DCAS to atomically compare and 
update the count and pointer values 

- This is expensive, so we may choose to defer deletes instead 
(more on this later in the course) 

 

Specialized list and queue implementations can reduce the 
overheads 



The Fall-Back Position 

If you can’t reduce the work such that it requires atomic 
updates to two or less words: 

- Create a single server thread  and do the work sequentially on 
a single CPU 

- Why is this faster than letting multiple CPUs try to do it 
concurrently? 

 

Callers pack the requested operation into a message 

- Send it to the server (using lock-free queues!) 

- Wait for a response/callback/... 

- The queue effectively serializes the operations 

 



Lock vs Lock-Free Critical Sections 

Lock_based_Pop() { 
 
  spin_lock(&lock); 
 
 

    elem = *SP; 

    SP = SP + 1; 

 

  spin_unlock(&lock); 

  return elem; 

} 

 

Lock_free_Pop() { 
 
  retry: 

    old_SP = SP; 
 
    new_SP = old_SP + 1; 
    elem = *old_SP; 
 
    if (CAS(old_SP, new_SP, &SP) == FAIL)‏ 

        goto retry; 

  return elem; 

} 

 



Conclusions 

This is really intriguing! 

 

Its possible to build an entire OS without locks! 

 

But do you really want to? 

- Does it add or remove complexity? 

- What if hardware only gives you CAS and no DCAS? 

- What if critical sections are large or long lived? 

- What if contention is high? 

- What if we can’t undo the work? 

- … ? 


