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Introduction 
Shared memory multiprocessors 

-  Various different architectures 
-  All have hardware support for mutual exclusion 

-  Various flavors of atomic read-modify-write instruction 
-  Can be used directly or to build higher level abstractions 

This paper focuses on spin locks 
-  Used to protect short critical sections 
-  Arguably the simplest of the higher level abstractions 

The challenge 
-  How to implement  scalable, low-latency spin locks on 

multiprocessors 



Multiprocessor Architecture 
Two dimensions: 

-  Interconnect type (bus or multistage network) 
-  Cache coherence strategy 

Six architectures considered: 
-  Bus: no cache coherence 
-  Bus: snoopy write through invalidation cache coherence 
-  Bus: snoopy write-back invalidation cache coherence 
-  Bus: snoopy distributed write cache coherence 
-  Multistage network: no cache coherence 
-  Multistage network: invalidation based cache coherence 



MESI Cache Coherence 

Cache line states: 
- Modified 
- Exclusive 
- Shared 
- Invalid 



MESI State Transitions 



MESI Messages 

Read (cache line address) 
Read Response (data) 
Invalidate (cache line address) 
Invalidate Acknowledge 
Read Invalidate (cache line address) 
Writeback (address, data) 



Messages Take Time! 



Atomic Instructions 
The paper based on Test-and-set instruction 

-  A lock is a single word variable with two values 
-  HELD or FREE 

Test-and-set does the following atomically 
-  Store HELD in lock and return its previous value 

If the return value is FREE then you got the lock! 
-  So continue 

If the return value is HELD then someone else 
already had the lock 
-  So try again 



Spin on Test-and-Set 
while(TestAndSet(lock) = BUSY); 

<criticial section> 

Lock := CLEAR; 

Tradeoff: frequent polling gets you the lock faster, 
but slows everyone else down! 

If you fix this problem using a more complex 
algorithm latency may become an issue 



Spin on Read 
Test-and-Test-and-Set 

while(lock=BUSY or TestAndSet(lock)=BUSY); 
<criticial section> 
lock := CLEAR; 

     
Intended for architectures with per-CPU caches 

-  Why should it perform much better? 
-  Why might it not perform much better? 



Time to Quiescence 
-  When the lock is released its value is modified, hence all cached 

copies of it are invalidated 
-  Subsequent reads on all processors miss in cache, hence 

generating bus contention 
-  Many see the lock free at the same time because there is a delay 

in satisfying the cache miss of the one that will eventually succeed 
in getting the lock next 

-  Many attempt to set it using TSL 
-  Each attempt generates contention and invalidates all copies 
-  All but one attempt fails, causing the CPU to revert to reading 
-  The first read misses in the cache! 
-  By the time all this is over, the critical section has completed and 

the lock has been freed again! 



Spin on TSL vs Spin on Read 



Quiescence Time 



Improving Performance 
Paper presents 5 alternative approaches 

-  4 are based on CSMA-CD network strategies 
-  Approaches differ by: 

-  Where to wait 
-  Whether wait time is determined statically or dynamically 

Where to wait 
-  Delay only on attempted set 

-  spin on read, notice release then delay before setting 
-  Delay after every memory access 

-  Better for architectures where spin on read generates 
contention! 



Delay Only on Attempted Set 
while(lock=BUSY or TestAndSet(lock)=BUSY) 

begin 

 while (lock=BUSY);  /* spin on read without delay */ 
 delay();       /* delay before TestAndSet */ 

end; 

<criticial section> 

Cuts contention and invalidations by adding 
latency between retries 

Performance is good if: 
-  Delay is short and there are few other spinners 
-  Delay is long but there are many spinners 



Delay on Every Access 

while(lock=BUSY or TestAndSet(lock)=BUSY) 

 delay(); 

<criticial section> 

Basically, just check the lock less frequently 
Good for architectures in which spin on read 

generates contention (those without caches) 



How Long to Delay?  
Statically determined 

-  There is no single “right” answer 
-  Sometimes there are many contending threads and 

sometimes there are few/none 
-  If all processors are given the same delay and they 

conflict once they will conflict repeatedly! 
- Except that one succeeds in the event of a conflict (unlike 

CSMA-CD networks!) 

Dynamically determined 
-  Based on what? 
-  How can we estimate number of contending threads? 



Static Delay 
Each processor is assigned a different static delay (slot) 
Few empty slots means good latency 
Few crowded slots means little contention 
Good performance with: 

-  Fewer slots, fewer spinning processors 
-  Many slots, more spinning processors 



Overhead vs. Number of Slots 



Variable Delay 
while(lock=BUSY or TestAndSet(lock)=BUSY) 

 delay(); 

 delay += randomBackoff(); 

<criticial section> 

Like Ethernet backoff 
-  If processor collides with another processor, it backs off 

for a greater random interval each time 
-  Indirectly, processors base back-off interval on the 

number of spinning processors 



Problems with Backoff 
Both dynamic and static backoff are bad when the 

critical section is long: they just keep backing off 
while the lock is being held 
-  Failing in test-and-set is not necessarily a sign of many 

spinning threads! 

Maximum time to delay should be bounded 

Initial delay on arrival should be a fraction of the last 
delay 



Queueing 
Delay-based approaches try to separate contending 

accesses in time.  
Queueing separates contending accesses in space 
Naïve approach 

-  Insert each waiting process into a queue 
-  Each process spins on the flag of the process ahead of it 

-  All are spinning on different locations!  
-  No cache or bus contention 

-  But queue insertion and deletion operations require locks 
-  Not good for small critical sections – such as queue ops! 



Queueing 
A more efficient approach 

-  Each arriving process uses an atomic read and increment 
instruction to get a unique sequence number 

-  On completion of the critical section a process releases the 
process with the next highest sequence number 
-  How? 
-  Use a sequenced array of flags 
-  Each process is spinning reading its own flag (in a separate 

cache line) – based on its sequence number 
-  On release a process sets the flag of the process behind it in 

the logical queue (next sequence number) 
... But you need an atomic read and increment instruction! 



Queueing 
Init   flags[0] := HAS_LOCK; 
   flags[1..P-1] := MUST_WAIT; 
   queueLast := 0; 

Lock   myPlace := ReadAndIncrement(queueLast); 
   while(flags[myPlace mod P]=MUST_WAIT); 
   flags[myPlace mod P] := MUST_WAIT; 
   <critical section> 

Unlock  flags[(myPlace+1) mod P] := HAS_LOCK; 



Spin-Lock Alternatives 



Queueing Performance 
Works especially well for multistage networks – each 

flag can be on a separate module, so a single 
memory location isn’t saturated with requests 

Works less well if there’s a bus without caches, 
because we still have the problem that each 
process has to poll for a single value in one place 
(memory) 

Lock latency is increased due to overhead, so it has 
poor performance relative to other approaches 
when there’s no contention 



Hardware-Specific Implementation 
Distributed write coherence 

-  All processors can share the same global “next” counter 

Invalidation-based coherence 
-  All processors should spin in a different cache line 

Non-coherent multistage network 
-  Processes should poll locations in different memory 

modules 

Non-coherent bus 
-  Polling can swamp bus 
-  Delay based on how close to the front a process is 



Ticket Lock – a similar idea 

Based on two integer values, the queue and 
dequeue tickets 

Lock: 
-  Atomic read and increment the queue ticket 
-  Compare your value to the dequeue ticket 
-  While not equal, try again (spin on read) 

Unlock: 
- Atomic increment dequeue ticket 



Conclusions 
Spin-locking performance doesn’t scale easily 
A variant of Ethernet back-off has good results when 

there is little lock contention 
Queuing (parallelizing lock handoff) has good results 

when there is a lot of contention 
A little supportive hardware goes a long way! 



Spare Slides 



Network Hardware Solutions 
Combining Networks 

-  Combine requests to same lock (forward one only) 
-  Combining benefit increases with increased contention 

Hardware Queuing 
-  Blocking enter and exit instructions queue processes at 

memory module 
-  Eliminate polling across the network 

Goodman’s Queue Links 
-  Stores the name of the next processor in the queue 

directly in each processor’s cache 
-  Inform next processor asynchronously (via inter-

processor interrupt?) 



Bus Hardware Solutions 
Use additional bus with write broadcast coherence 

for TSL (push the new value) 
Invalidate cache copies only when Test-and-Set 

succeeds 
Read broadcast 

-  Whenever some other processor reads a value which I 
know is invalid, I get a copy of that value too 
(piggyback) 

-  Eliminates the cascade of read-misses 
Special handling of Test-and-Set 

-  Cache and bus controllers don’t mess with the bus if the 
lock is busy 



Overhead For Bursty Workload 


