
CS510 Concurrent Systems
Jonathan Walpole

Spin Lock Performance

Introduction
Shared memory multiprocessors

-  Various different architectures
-  All have hardware support for mutual exclusion

- Various flavors of atomic read-modify-write instruction
- Can be used directly or to build higher level abstractions

This paper focuses on spin locks
-  Used to protect short critical sections
-  Arguably the simplest of the higher level abstractions

The challenge
- How to implement scalable, low-latency spin locks on

multiprocessors

Multiprocessor Architecture
Two dimensions:

-  Interconnect type (bus or multistage network)
-  Cache coherence strategy

Six architectures considered:
-  Bus: no cache coherence
-  Bus: snoopy write through invalidation cache coherence
-  Bus: snoopy write-back invalidation cache coherence
-  Bus: snoopy distributed write cache coherence
-  Multistage network: no cache coherence
-  Multistage network: invalidation based cache coherence

MESI Cache Coherence

Cache line states:
- Modified
- Exclusive
- Shared
- Invalid

MESI State Transitions

MESI Messages

Read (cache line address)
Read Response (data)
Invalidate (cache line address)
Invalidate Acknowledge
Read Invalidate (cache line address)
Writeback (address, data)

Messages Take Time!

Atomic Instructions
The paper based on Test-and-set instruction

-  A lock is a single word variable with two values
-  HELD or FREE

Test-and-set does the following atomically
- Store HELD in lock and return its previous value

If the return value is FREE then you got the lock!
- So continue

If the return value is HELD then someone else
already had the lock
- So try again

Spin on Test-and-Set
while(TestAndSet(lock) = BUSY);

<criticial section>

Lock := CLEAR;

Tradeoff: frequent polling gets you the lock faster,
but slows everyone else down!

If you fix this problem using a more complex
algorithm latency may become an issue

Spin on Read
Test-and-Test-and-Set

while(lock=BUSY or TestAndSet(lock)=BUSY);
<criticial section>
lock := CLEAR;

Intended for architectures with per-CPU caches

-  Why should it perform much better?
-  Why might it not perform much better?

Time to Quiescence
- When the lock is released its value is modified, hence all cached

copies of it are invalidated
- Subsequent reads on all processors miss in cache, hence

generating bus contention
- Many see the lock free at the same time because there is a delay

in satisfying the cache miss of the one that will eventually succeed
in getting the lock next

- Many attempt to set it using TSL
- Each attempt generates contention and invalidates all copies
- All but one attempt fails, causing the CPU to revert to reading
- The first read misses in the cache!
- By the time all this is over, the critical section has completed and

the lock has been freed again!

Spin on TSL vs Spin on Read

Quiescence Time

Improving Performance
Paper presents 5 alternative approaches

-  4 are based on CSMA-CD network strategies
-  Approaches differ by:

-  Where to wait
-  Whether wait time is determined statically or dynamically

Where to wait
-  Delay only on attempted set

- spin on read, notice release then delay before setting
-  Delay after every memory access

- Better for architectures where spin on read generates
contention!

Delay Only on Attempted Set
while(lock=BUSY or TestAndSet(lock)=BUSY)

begin

 while (lock=BUSY); /* spin on read without delay */
 delay(); /* delay before TestAndSet */

end;

<criticial section>

Cuts contention and invalidations by adding
latency between retries

Performance is good if:
-  Delay is short and there are few other spinners
-  Delay is long but there are many spinners

Delay on Every Access

while(lock=BUSY or TestAndSet(lock)=BUSY)

 delay();

<criticial section>

Basically, just check the lock less frequently
Good for architectures in which spin on read

generates contention (those without caches)

How Long to Delay?
Statically determined

-  There is no single “right” answer
- Sometimes there are many contending threads and

sometimes there are few/none
-  If all processors are given the same delay and they

conflict once they will conflict repeatedly!
- Except that one succeeds in the event of a conflict (unlike

CSMA-CD networks!)

Dynamically determined
-  Based on what?
-  How can we estimate number of contending threads?

Static Delay
Each processor is assigned a different static delay (slot)
Few empty slots means good latency
Few crowded slots means little contention
Good performance with:

- Fewer slots, fewer spinning processors
- Many slots, more spinning processors

Overhead vs. Number of Slots

Variable Delay
while(lock=BUSY or TestAndSet(lock)=BUSY)

 delay();

 delay += randomBackoff();

<criticial section>

Like Ethernet backoff
- If processor collides with another processor, it backs off

for a greater random interval each time
- Indirectly, processors base back-off interval on the

number of spinning processors

Problems with Backoff
Both dynamic and static backoff are bad when the

critical section is long: they just keep backing off
while the lock is being held
-  Failing in test-and-set is not necessarily a sign of many

spinning threads!

Maximum time to delay should be bounded

Initial delay on arrival should be a fraction of the last
delay

Queueing
Delay-based approaches try to separate contending

accesses in time.
Queueing separates contending accesses in space
Naïve approach

-  Insert each waiting process into a queue
-  Each process spins on the flag of the process ahead of it

- All are spinning on different locations!
- No cache or bus contention

- But queue insertion and deletion operations require locks
- Not good for small critical sections – such as queue ops!

Queueing
A more efficient approach

- Each arriving process uses an atomic read and increment
instruction to get a unique sequence number

- On completion of the critical section a process releases the
process with the next highest sequence number
-  How?
-  Use a sequenced array of flags
-  Each process is spinning reading its own flag (in a separate

cache line) – based on its sequence number
-  On release a process sets the flag of the process behind it in

the logical queue (next sequence number)
... But you need an atomic read and increment instruction!

Queueing
Init flags[0] := HAS_LOCK;
 flags[1..P-1] := MUST_WAIT;
 queueLast := 0;

Lock myPlace := ReadAndIncrement(queueLast);
 while(flags[myPlace mod P]=MUST_WAIT);
 flags[myPlace mod P] := MUST_WAIT;
 <critical section>

Unlock flags[(myPlace+1) mod P] := HAS_LOCK;

Spin-Lock Alternatives

Queueing Performance
Works especially well for multistage networks – each

flag can be on a separate module, so a single
memory location isn’t saturated with requests

Works less well if there’s a bus without caches,
because we still have the problem that each
process has to poll for a single value in one place
(memory)

Lock latency is increased due to overhead, so it has
poor performance relative to other approaches
when there’s no contention

Hardware-Specific Implementation
Distributed write coherence

-  All processors can share the same global “next” counter

Invalidation-based coherence
-  All processors should spin in a different cache line

Non-coherent multistage network
-  Processes should poll locations in different memory

modules

Non-coherent bus
- Polling can swamp bus
- Delay based on how close to the front a process is

Ticket Lock – a similar idea

Based on two integer values, the queue and
dequeue tickets

Lock:
-  Atomic read and increment the queue ticket
-  Compare your value to the dequeue ticket
-  While not equal, try again (spin on read)

Unlock:
- Atomic increment dequeue ticket

Conclusions
Spin-locking performance doesn’t scale easily
A variant of Ethernet back-off has good results when

there is little lock contention
Queuing (parallelizing lock handoff) has good results

when there is a lot of contention
A little supportive hardware goes a long way!

Spare Slides

Network Hardware Solutions
Combining Networks

-  Combine requests to same lock (forward one only)
-  Combining benefit increases with increased contention

Hardware Queuing
-  Blocking enter and exit instructions queue processes at

memory module
-  Eliminate polling across the network

Goodman’s Queue Links
-  Stores the name of the next processor in the queue

directly in each processor’s cache
-  Inform next processor asynchronously (via inter-

processor interrupt?)

Bus Hardware Solutions
Use additional bus with write broadcast coherence

for TSL (push the new value)
Invalidate cache copies only when Test-and-Set

succeeds
Read broadcast

-  Whenever some other processor reads a value which I
know is invalid, I get a copy of that value too
(piggyback)

-  Eliminates the cascade of read-misses
Special handling of Test-and-Set

-  Cache and bus controllers don’t mess with the bus if the
lock is busy

Overhead For Bursty Workload

