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r1 = x; 
r2 = x;  
Assert (r1 == r2) 
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Memory Invariance Examples 

lock (m) 
r1 = x; 
signal(c,m) 
r2 = x; 
unlock (m) 
Assert (r1 == r2) 
 



Linux Kernel Locking 
Techniques 

 



Locking In The Linux Kernel 
Why do we need locking in the kernel? 

Which problems are we trying to solve? 
What implementation choices do we have? 

Is there a one-size-fits-all solution? 



Concurrency in Linux 
Linux is a symmetric multiprocessing (SMP) 

preemptible kernel 
 
Its has true concurrency 

-  Multiple processors execute instructions simultaneously 

And various forms of pseudo concurrency 
-  Instructions of multiple execution sequences are 

interleaved 



Sources of Pseudo Concurrency 
Software-based preemption 

-  Voluntary preemption (sleep/yield) 
-  Involuntary preemption (preemptable kernel) 

-  Scheduler switches threads regardless of whether they are 
running in user or kernel mode 

-  Solutions: don’t do the former, disable preemption to 
prevent the latter 

Hardware preemption 
-  Interrupt/trap/fault/exception handlers can start 

executing at any time 
-  Solution: disable interrupts 

-  what about faults and traps? 
 



Uniprocessor Example 

preempt disable; 
r1 = x; 
r2 = x; 
preempt enable; 
assert (r1 == r2) 
 



Uniprocessor Example 

preempt disable; 
r1 = x; 
yield(); 
r2 = x; 
preempt enable; 
assert (r1 == r2) 
 



Uniprocessor Example 

interrupt disable; 
r1 = x; 
r2 = x; 
interrupt enable; 
assert (r1 == r2) 
 



True Concurrency 
Solutions to pseudo-concurrency do not work in the presence of 

true concurrency 
Alternatives include atomic operators, various forms of locking, 

RCU, and non-blocking synchronization 
 

Locking can be used to provide mutually exclusive access to 
critical sections 
-  Locking can not be used everywhere, i.e., interrupt handlers 

can’t block 
-  Locking primitives must support coexistence with various 

solutions for pseudo concurrency, i.e., we need hybrid 
primitives 



Multiprocessor Example 

interrupt disable; 
r1 = x; 
r2 = x; 
interrupt enable; 
assert (r1 == r2) 
 



Atomic Operators 
Simplest synchronization primitives 

-  Primitive operations that are indivisible 

Two types 
-  methods that operate on integers 
-  methods that operate on bits  

Implementation 
-  Assembly language sequences that use the atomic read-

modify-write instructions of the underlying CPU 
architecture 



Memory Invariance Example 

r1 = atomic read x; 
r2 = atomic read x; 
assert (r1 == r2) 
 



Atomic Integer Operators 
atomic_t v; 
atomic_set(&v, 5);        /* v = 5 (atomically) */ 
atomic_add(3, &v);        /* v = v + 3 (atomically) */ 
atomic_dec(&v);        /* v = v - 1 (atomically) */ 

printf("This will print 7: %d\n", atomic_read(&v));  
 
Beware: 

Can only pass atomic_t to an atomic operator 
atomic_add(3,&v); and 

{ 
atomic_add(1,&v); 
atomic_add1(2,&v); 
} 
are not the same! … Why? 



Spin Locks 
Mutual exclusion for larger (than one operator) 

critical sections requires additional support 
 

Spin locks are one possibility 
-  Single holder locks 
-  When lock is unavailable, the acquiring process 

keeps trying 
 



Basic Use of Spin Locks 
spinlock_t mr_lock = SPIN_LOCK_UNLOCKED; 
spin_lock(&mr_lock);   /* critical section ... */ 

spin_unlock(&mr_lock); 
 
spin_lock() 

-  Acquires the spinlock using atomic instructions required 
for SMP   

spin_unlock()  
-  Releases the spinlock 



Spin Locks and Interrupts 
Interrupting a spin lock holder may cause problems 

-  Spin lock holder is delayed, so is every thread 
spin waiting for the spin lock 
-  Not a big problem if interrupt handlers are short 

-  Interrupt handler may access the data 
protected by the spin-lock 
-  Should the interrupt handler use the lock? 
-  Can it be delayed trying to acquire a spin lock? 
-  What if the lock is already held by the thread it interrupted? 

 



Solutions 
If data is only accessed in interrupt context and is local to one 

specific CPU we can use interrupt disabling to synchronize 
-  A pseudo-concurrency solution like in the uniprocessor case 

 

If data is accessed from other CPUs we need additional 
synchronization 
-  Spin locks 
 

Normal code (kernel context) must disable interrupts and 
acquire spin lock 
-  interrupt context code can then safely acquire the spin lock! 



Spin Locks & Interrupt Disabling 
Non-interrupt code acquires spin lock to 

synchronize with other non-interrupt code 
It also disables interrupts to synchronize with local 

invocations of the interrupt handler 



Spin Locks & Interrupt Disabling 
spinlock_t mr_lock = SPIN_LOCK_UNLOCKED; 
unsigned long flags; 
spin_lock_irqsave(&mr_lock, flags);  /* critical section ... */ 

spin_unlock_irqrestore(&mr_lock, flags);  
 

spin_lock_irqsave() 
-  Disables interrupts locally 

-  Acquires the spinlock using instructions required for SMP   
spin_unlock_irqrestore()  

-  Restores interrupts to the state they were in when the 
lock was acquired 



Memory Invariance Example 

spin_lock_irqsave(m) 
r1 = x; 
r2 = x; 
spin_unlock_irqrestore(m) 
assert (r1 == r2) 
 



Memory Invariance Example 

spin_lock(m) 
r1 = x; 
r2 = x; 
spin_unlock(m) 
assert (r1 == r2) 
 



Uniprocessor Optimization 
Previous code compiles to: 

 

unsigned long flags; 
save_flags(flags);     /* save previous CPU state */ 
cli();      /* disable interrupts */ 
…        /* critical section ... */ 
restore_flags(flags);  /* restore previous CPU state */ 

 

Why not just use: 
 
cli();      /* disable interrupts */ 
… 
sti();      /* enable interrupts */ 



Bottom Halves and Softirqs 
Softirqs, tasklets and BHs are deferrable functions 

-  delayed interrupt handling work that is scheduled 
-  they can wait for a spin lock without holding up devices 
-  they can access non-CPU local data 

     

Softirqs – the basic building block 
-  statically allocated and non-preemptively scheduled 
-  can not be interrupted by another softirq on the same CPU 
-  can run concurrently on different CPUs, and synchronize with 

each other using spin-locks 
      
      

Bottom Halves 
-  built on softirqs 
-  can not run concurrently on different CPUs 



Spin Locks & Deferred Functions 
spin_lock_bh() 

-  Implements the standard spinlock 
-  Disables softirqs  
-  Ineeded for code outside a softirq that manipulates data 

also used inside a softirq 
-  Allows the softirq to use non-preemption only 

 
spin_unlock_bh() 

-  Releases the spinlock 
-  Enables softirqs 



Spin Lock Rules 
Do not try to re-acquire a spinlock you already hold! 

 - It leads to self deadlock! 

Spinlocks should not be held for a long time 
-  Excessive spinning wastes CPU cycles! 
-  What is “a long time”? 

Do not sleep while holding a spinlock! 
-  Someone spinning waiting for you will waste a lot of CPU 
-  Never call any function that touches user memory, 

allocates memory, calls a semaphore function or any of 
the schedule functions while holding a spinlock! All these 
can block. 



Semaphores 
Semaphores are locks that are safe to hold for 

longer periods of time 
-  Contention for semaphores causes blocking not spinning 
-  Should not be used for short duration critical sections! 

Semaphores are safe to sleep with! 
-  Can be used to synchronize with user contexts that 

might block or be preempted  
Semaphores can allow concurrency for more than 

one process at a time, if necessary 
-  i.e., initialize to a value greater than 1 



Semaphore Implementation 
Implemented as a wait queue and a usage count 

-  wait queue: list of processes blocking on the semaphore 
-  usage count: number of concurrently allowed holders 

-  if negative, the semaphore is unavailable, and absolute 
value of usage count is the number of processes currently on 
the wait queue 

-  initialize to 1 to use the semaphore as a mutex lock 



Semaphore Operations 
Down() 

-  Attempts to acquire the semaphore by decrementing the 
usage count and testing if it is negative 

-  Blocks if usage count is negative 

Up() 
-  releases the semaphore by incrementing the usage count 

and waking up one or more tasks blocked on it 



Unblocking Unsuccessfully 
down_interruptible()  

-  Returns –EINTR if signal received while blocked 
-  Returns 0 on success 

 
down_trylock() 

-  Attempts to acquire the semaphore 
-  On failure it returns nonzero instead of blocking 

 



Reader-Writer Locks 
No need to synchronize concurrent readers unless a 

writer is present 
-  reader/writer locks allow multiple concurrent readers but 

only a single writer (with no concurrent readers) 
Both spin locks and semaphores have reader/writer 

variants 



Reader-Writer Spin Locks 
rwlock_t mr_rwlock = RW_LOCK_UNLOCKED; 
 
read_lock(&mr_rwlock);  /* critical section (read 

only) ... */ 
read_unlock(&mr_rwlock); 

 
write_lock(&mr_rwlock);  /* critical section (read 

and write) ... */ 

write_unlock(&mr_rwlock);  



Reader-Writer Semaphores 
struct rw_semaphore mr_rwsem; 
init_rwsem(&mr_rwsem); 
 
down_read(&mr_rwsem);  /* critical region (read only) ... */ 
up_read(&mr_rwsem); 
 
down_write(&mr_rwsem); /* critical region (read and write) ... */ 

up_write(&mr_rwsem);  



Memory Invariance Example 

read_lock(m) 
r1 = x; 
r2 = x; 
read_unlock(m) 
assert (r1 == r2) 
 



Upgrading Read Locks? 

read_lock(m) 
write_lock(m) 
write_unlock(m) 
read_unlock(m) 
 



Reader-Writer Lock Warnings 
Reader locks cannot be automatically upgraded to 

the writer variant 
-  Attempting to acquire exclusive access while holding 

reader access will deadlock! 
If you know you will need to write eventually 

-  obtain the writer variant of the lock from the beginning 
-  or, release the reader lock and re-acquire it as a writer  

-  But bear in mind that memory may have changed when 
you get in! 



Big Reader Locks 
Specialized form of reader/writer lock 

-  very fast to acquire for reading 
-  very slow to acquire for writing 
-  good for read-mostly scenarios 

  
Implemented using per-CPU locks 

-  readers acquire their own CPU’s lock 
-  writers must acquire all CPUs’ locks 

Why does this work? How does it help? 



Big Kernel Lock 
A global kernel lock - kernel_flag 

-  Used to be the only SMP lock 
-  Mostly replaced with fine-grain localized lock 

Implemented as a recursive spin lock 
-  Reacquiring it when held will not deadlock 

   
Usage … but don’t!  ;) 

lock_kernel(); 
/* critical region ... */ 
unlock_kernel();  



Preemptibility Controls 
Have to be careful of legacy code that assumes per-

CPU data is implicitly protected from preemption 
-  Legacy code assumes “non-preemption in kernel mode” 
-  May need to use new preempt_disable() and 

preempt_enable() calls 
-  Calls are nestable 

-  for each n preempt_disable() calls, preemption will not be re-
enabled until the nth preempt_enable() call  



Conclusions 
Wow! Why does one system need so many different 

ways of doing synchronization? 
-  Actually, there are more ways to do synchronization in 

Linux, this is just “locking”! 



Conclusions 
One size does not fit all: 

-  Need to be aware of different contexts in which code 
executes (user, kernel, interrupt etc) and the implications 
this has for whether hardware or software preemption or 
blocking can occur 

-  The cost of synchronization is important, particularly its 
impact on scalability 
-  Generally, you only use more than one CPU because you 

hope to execute faster! 
-  Each synchronization technique makes a different  

performance vs. complexity trade-off 

 


