
CS510 Concurrent Systems

Jonathan Walpole

Introduction to Concurrency

Why Study Concurrency?
We are well into the era of concurrent hardware

-  Moore’s law still holds (more or less)
-  processor cycles per sec is not increasing
-  cores per processor is increasing
-  hardware trending from multicore to manycore

What does this mean for software?

Software Implications
Software must be concurrent!

Concurrency has been taught for at least 40 years
-  Isn’t it a solved problem?
-  Which problems have been solved?
-  Do these solutions solve our current problem?

What is the Current Problem?
Challenge 1: how to write software whose

performance improves as core counts increase

Challenge 2: how to reason about the correctness of
such software

Challenge 3: how to ensure that such software is

portable across different hardware platforms
- in terms of its correctness and its performance scalability

characteristics!

Program Correctness
How do we reason about program correctness?

- for sequential programs

Why are concurrent programs any different?

Sequential Program
 Process 1

 print “1”
 print “2”

What output do you expect?
Why?

Concurrent Program
 Thread 1 Thread 2

 print “1” print “2”

What output do you expect?
Why?

Non-Determinism

The output depends on external factors
-  relative execution speed
-  cache hit rates
-  interrupts
-  preemptions, scheduling order, etc

All are outside the control of the programmer

Concurrent Writes
 Thread 1 Thread 2

 x = 1 x = 2
 print x

What output do you expect?
What will be the final value of x?
Why?

Non-Determinism

But this time it affects memory values
... which influence the behavior of programs

that read and use them

Concurrent Updating
 Thread 1 Thread 2

 x = x + 1 x = x + 1
 print x

What output do you expect (x initialized to 0)?
What will be the final value of x?
Why?

Concurrent Updating
 Thread 1 Thread 2

 t1_temp = x t2_temp = x
 x = t1_temp + 1 x = t2_temp + 1
 print x

What output do you expect (x initialized to 0)?
What will be the final value of x?
Why?

An Alternative Implementation
Maybe x = x + 1 is implemented as:

 load x to register
 increment register
 store register value to x

x is a global variable, ie. a shared memory location

Registers are part of each thread’s private CPU
context

An Alternative Implementation
 Thread 1

load x to t1register
increment t1register
store t1register to x

 Thread 2

load x to t2register
increment t2register
store t2register to x

Memory Accesses
 Thread 1

read x
write x

 Thread 2

read x
write x

In terms of memory accesses to the shared
variable, both implementations are the same!

Memory Invariance Property

A process executing sequential code can
assume that memory values only change
as a result of its writes!

A thread executing concurrent code can not

assume this unless it is enforced
somehow!

Increment Instruction?
Would it help if x = x + 1 is implemented as an
increment instruction that operates directly on x?

 - an increment instruction on x must
 involve a memory read of x followed by
 memory write to x
 - the reads in thread 1 and thread 2 may
 occur before either thread writes

How can we prevent this?
How can we make the increment atomic?

Race Conditions
The basic problem is called a race condition or a

data race

Race conditions occur with

-  concurrent accesses to the same memory location
-  at least one of the accesses is a write

How can we prevent race conditions?

Synchronization

Two types of synchronization:
Serialization

- A must happen before B
Mutual Exclusion

- A and B must not happen at the same time

We could use mutual exclusion to prevent data
races, if A and B are the critical sections of code
that must not execute concurrently

Mutual Exclusion
How can we implement it?

Locks – the basic idea
Each shared data has a unique lock associated with it
Threads acquire the lock before accessing the data
Threads release the lock after they are finished with

the data
The lock can only be held by one thread at a time

Locks - Implementation
How can we implement a lock?
How do we test to see if its held?
How do we lock it?
How do we unlock it?
What do we do if it is already held when we test?

Does this work?
bool lock = false

while lock = true; /* repeatedly poll */
lock = true; /* lock */

 critical section
lock = false; /* unlock */

Reads, Writes, Memory Invariance
bool lock = false

while lock = true; /* repeatedly poll */
lock = true; /* lock */

 critical section
lock = false; /* unlock */

Atomicity
Lock and unlock operations must be atomic
Modern hardware provides a few simple atomic

instructions that can be used to build atomic
lock and unlock primitives.

Atomic Instructions
Atomic "test and set" (TSL)
Compare and swap (CAS)
Load-linked, store conditional (ll/sc)

Atomic Test and Set
TSL performs the following in a single atomic step:

- set lock and return its previous value

Using TSL in a lock operation
-  if the return value is false then you got the lock
-  if the return value is true then you did not
-  either way, the lock value is set!

TSL is a read and a write!

Spin Locks
while (TSL (lock)= true); /* poll while waiting */

 critical section /* lock value is now true */
lock = false /* release the lock */

Spin Locks
What price do we pay for mutual exclusion?

How well will this work on uniprocessor?

Blocking Locks
How can we avoid wasting CPU cycles?
Can we sleep instead of polling?
How can we implement sleep and wakeup?

-  join waiting list and context switch when lock is
held

-  wakeup next thread on lock release
-  need explicit calls to acquire and release lock,

can’t just set lock value in memory

But how can we make these system calls atomic?

Blocking Locks
Is this better than a spinlock on a uniprocessor?
Is this better than a spinlock on a multiprocessor?
When would you use a spinlock vs a blocking lock

on a multiprocessor?

Tricky Issues With Locks
0 thread consumer {
1   while(1) {
2   if(count==0) {
3   sleep(empty)
4   }
5   c = buf[OutP]
6   OutP = OutP + 1 mod n
7   count--;
8   if (count == n-1)
9   wakeup(full)
10   // Consume char
11   }
12 }

0 thread producer {
1   while(1) {
2   // Produce char c
3   if (count==n) {
4   sleep(full)
5   }
6   buf[InP] = c;
7   InP = InP + 1 mod n
8   count++
9   if (count == 1)
10   wakeup(empty)
11   }
12 }

0

1

2

n-1

…

Global variables:
 char buf[n]
 int InP = 0 // place to add
 int OutP = 0 // place to get
 int count

Conditional Waiting

Sleeping while holding the lock leads to deadlock
Releasing the lock then sleeping opens up a window

for a race
Need to atomically release the lock and sleep

Semaphores
Semaphore S has a value, S.val, and a thread list, S.list.

Down (S)

S.val = S.val - 1
If S.val < 0

 add calling thread to S.list;
 sleep;

Up (S)

S.val = S.val + 1
If S.val <= 0

 remove a thread T from S.list;
 wakeup (T);

Semaphores

Down and up are assumed to be atomic
How can we implement them?

- on a uniprocessor?
- on a multiprocessor?

Semaphores in Producer-Consumer

0 thread producer {
1   while(1){
2   // Produce char c...
3   down(empty_buffs)
4   buf[InP] = c
5   InP = InP + 1 mod n
6   up(full_buffs)
7 }
8 }

0 thread consumer {
1   while(1){
2   down(full_buffs)
3   c = buf[OutP]
4   OutP = OutP + 1 mod n
5   up(empty_buffs)
6   // Consume char...
7   }
8 }

Global variables
 semaphore full_buffs = 0;
 semaphore empty_buffs = n;
 char buff[n];
 int InP, OutP;

Monitors and Condition Variables
Correct synchronization is tricky
What synchronization rules can we automatically

enforce?
-  encapsulation and mutual exclusion
-  conditional waiting

Condition Variables
Condition variables (cv) for use within monitors

cv.wait(mon-mutex)

-  thread blocked (queued) until condition holds
-  Must not block while holding mutex!
-  Monitor’s mutex must be released!
-  Monitor mutex need not be specified by programmer if

compiler is enforcing mutual exclusion

cv.signal()
- signals the condition and unblocks (dequeues) a thread

Condition Variables –Semantics
What can I assume about the state of the shared

data?
- when I wake up from a wait?
- when I issue a signal?

Hoare Semantics
Signaling thread hands monitor mutex directly to

signaled thread
Signaled thread can assume condition tested by

signaling thread holds

Mesa Semantics
Signaled thread eventually wakes up, but signaling

thread and other threads may have run in the
meantime

Signaled thread can not assume condition tested by
signaling thread holds
-  signals are a hint

Broadcast signal makes sense with MESA
semantics, but not Hoare semantics

Memory Invariance
A thread executing a sequential program can

assume that memory only changes as a result of
the program statements
- can reason about correctness based on pre and

post conditions and program logic

A thread executing a concurrent program must take
into account the points at which memory
invariance may be lost
- what points are those?

Reasoning About Locks

Memory invariance holds for a variable if
the thread holds the lock that protects it

It is lost when the lock is released!
Subsequent use of the variable requires

both acquiring the lock and re-reading
the variable!

Reasoning About Monitors

Points at which memory invariance is lost:
-  unlock monitor lock
- wait on condition variable
-  signal condition variable (if it has Hoare

semantics)

Subsequent use of monitor data after these
points requires data be re-read!!!!

Homework!

Read class website and follow instructions

Start programming assignment 1

