The Impact of the Nanoscale on Computing Systems

Seth Copen Goldstein
seth@cs.cmu.edu
Carnegie Mellon University

What Comes Next?
Combination of Hans Moravac + Larry Roberts + Gordon Bell

Word Size * ops/s/sysprice

From Gray Turing Award Lecture

Technology Shifts

- Size of Devices
 ⇒ Inches to Microns to Nanometers
- Type of Interconnect
 ⇒ Rods to Lithowires to Nanowires
- Method of Fabrication
 ⇒ Hammers to Light to Self-Assembly
- Largest Sustainable System
 ⇒ 10^1 to 10^8 to 10^{12}
- Reliability
 ⇒ Bad to Excellent to Unknown

Independent of Technology

As we scale down:
- Devices become
 - more variable
 - more faulty (defects & faults)
 - numerous
- Fabrication becomes
 - More expensive
 - More constrained
- Design becomes
 - More complicated
 - More expensive
- Market pressures remain

Drain Gate Source

1 dopant atom

25 nm

IBM NanoCMOS

MIT HP
Independent of Technology

As we scale down:
- Devices become more variable
- More faulty (defects & fault)
- Numerous
- Fabrication becomes more expensive
- More constrained
- Design becomes more complicated
- More expensive
- Market pressures remain

Requires:
- Defect tolerance
- Higher level specification
- Universal substrate
- Asynchronous circuits
- Spatial computing

Size Matters

Challenges arise from:
- Small size: changes in physical process
- Many devices: increased complexity

Opportunities too!
Manufacturing Paradigm Shift Required

Today
- Reliable Systems from reliable components
 - Reliable systems from unreliable components
- Functionality invested at time of manufacture
 - Functionality modified after manufacture
 - New manufacturing: Bottom-up assembly
- Behavior remains same as features scales down
 - Expect increased variability
 - Changes in functionality
 - Restrictions on connectivity

Future
- Reliable Systems from reliable components
- Functionality invested at time of manufacture
- New manufacturing: Bottom-up assembly
- Behavior remains same as features scales down

Limited Patterns

- **Top-Down**
 - Sub wavelength lithography
 - OPC, RET, CPM, ...
 - Nanoimprint lithography
 - DPN
- **Bottom-Up**
 - Self-assembly

Balance

- Nanoscale makes things harder
- Nanoscale makes things easier
- Challenge: Use devices to
 - Ease restrictions
 - Reduce complexity
 - Reduce power
- How: change abstractions and tools
The Clock

- Design for worst case arrival
 - Parametric variation
 - Timing closure
 - Power
- Asynchronous circuits
 - No global controllers
 - No global clock
 - No timing closure
 - Tolerant of parametric variation
- Use more devices to
 - Reduce power
 - Support device scaling
 - Support defect tolerance

Reconfigurable Computing

- General-Purpose
- Custom Hardware
 - Compiler
 - Logic Blocks
 - Routing Resources

Reconfigurable Rationale

- Reconfigurable Architectures address roadblocks
 - Yield with defect tolerance
 - Cost single substrate eliminates NRE
 - Manufacturability Crystaline architecture reduces fab complexity
 - Power Power ∝ Area(3-σ)/σ where σ is algorithm dependent; typically 2 < σ < 3.
- However, must change computing approach

Reconfigurability & DFT

- FPGA computing fabric
 - Regular
 - Periodic
 - Fine-grained
 - Homogenous
- programs ⇒ circuits
- Aides defect tolerance

Aside:
Molecular Scale Electronics increases fabric density
Reconfigurable Computing

General-Purpose Custom Hardware

Compiler

Logic Blocks
Routing Resources

General-Purpose Custom Hardware

Reconfigurable Computing

Design Pressure
Mean time to chip: 46 weeks

User Requirements
Spec
HW Design
Verification
Masks

Design Crisis: By 2010, 1000 Man-years/chip

Mask costs soar

Spec written in C: used to verify HW and check user reqts

Other issues:
- Yield
- Parametric variation
- Power

Change in Spec, or bug in chip → must respin chip

Spanning 10-orders of Magnitude

1 Program

Compilers
Phoenix
Theory
Architecture

10 Billion Gates

Performance: Ops/Clk * Clks/Sec

Specint2000

Horowitz
ISA has to go?

- Current ISA hides too much
 - Good for
 - forward compatibility
 - human oriented assembly
 - ad hoc additions
 - Bad for
 - removing constraints
 - exploiting compiler
 - verification
- What can replace ISA?

Breaking Abstractions

Spatial Computing

- Use available devices to:
 - Map circuits in space, not time
 - Reduce virtualization
 - Decrease clock frequency
- Eliminate
 - Global control
 - Global structures
- Use different devices/architecture
 - Hybrid approach: CMOS+MSE
 - Hybrid approach: match task to devices
 - Stochastic approaches
Spatial Computing: $C \rightarrow$ hardware

- Compile ALL of ANSI-C
 - No pragmas or hardware directives needed
- Uses new intermediate representation
 - Pegasus has precise semantics
 - Correspondence between pegasus and linear logic
- Produces asynch circuits

Program
\[x = a \& 7; \]
\[y = x >> 2; \]

IR
\[\begin{align*}
 a & 7 \\
 \& & >> 2 \\
\end{align*} \]

Circuits
\[\begin{align*}
 & \text{Dedicated hardware: CASH circuits} \\
 & \text{Asynchronous \(\mu \)P: FPGAs} \\
 & \text{General-purpose DSP: Microprocessors} \\
\end{align*} \]

Automatic Verification

- Support Three levels of verification
 - Model Checking
 - Check for attributes of C program
 - Verify specification
 - Translation Verification
 - Prove translation is equivalent to original C code
 - Self-Certification
 - Allow safe and secure downloading of hardware
- Linear-logic \Leftrightarrow IR correspondence
 - Gives rise to typed-hardware
 - Eliminates MANY design bugs early
 - Prove useful runtime properties

Energy Efficiency [Operations/nJ]

General-purpose DSP
Dedicated hardware
CASH circuits
FPGA
Microprocessors

Using Area to Reduce Power

- Power in CMOS has four components
 - Dynamic switching
 - Short-circuit
 - Subthreshold leakage
 - Gate leakage
- Early VLSI result: $AT^\sigma = \text{constant}$
- Thus, $T^\sigma \propto A^{-1}$, or $T \propto A^{-1/\sigma}$
- Since $T \propto F^{-1}$, we get: $F \propto A^{-1/\sigma}$
- Thesis: Use more devices (A) to reduce F and in turn reduce P.

Dynamic Switching Power

- $P_{\text{dyn}} = \alpha CV^2F$
- $F \propto V$ [Chen97,Flynn99]
 - If C per node remains the same
 - If threshold voltage remains fixed
- $C \propto A$
- Using $F \propto A^{-1/\sigma}$ \Rightarrow $P_{\text{dyn}} \propto A^{A^{-3/\sigma}}$
- If $\sigma \leq 3$, power can be reduced by using more area!

Joint work with Paul Beckett
What is σ

- σ is a measure of a circuit's inherent sequentialness
- Lower values of σ mean a circuit is more parallelizable
- Many important circuits have $\sigma \leq 2$
 - FFT/DFT
 - Adders
 - Multipliers
 - Sorting
 - …

Subthreshold Power

- $I_{\text{sub}} = I_{\text{SO}} \left(1 - e^{-\frac{-V_{DS}}{V_{T_S}}} \right)$
- Worst case:
 - $V_{GS}=0$, $V_{DS}=V_{DD}$
- $I_{\text{OFF}} \propto e^{-40V_{TH}}$
- Change how we set V_{TH}:
 - $V_{TH} = a - bV_{DD}$
- $I_{\text{OFF}} \propto e^{40bV_{DD}}$
- $P_{\text{sub}} \propto A(\sigma - 3)/\sigma$

Power/Area Tradeoff

- All components of power can be reduced by using more transistors such that:
 $$P \propto A(\sigma-k)/\sigma, \ k \geq 3$$
- Constraints/Comments:
 - V_{DD} must scale with F
 - Must set V_{TH} properly
 - This improves energy-delay!
 - Algorithm must be parallel enough, i.e.,
 $$\sigma_{\text{alg}} < 3$$

Summary

- Nanoscale imposes new constraints
 - power, cost, defects, regularity, …
 - regular, homogenous architectures
- It's not about technology, but size
- Reconfigurable Computing is inevitable
- Harness scaling
 - Use the massive numbers of devices available at the nanoscale
- Tools are key
 - Make abstractions tool friendly
 - Get human out of the loop
Summary

- Nanoscale imposes new constraints
 - power, cost, defects, regularity, ...
 - regular, homogenous architectures
- It's not about technology, but size
- Reconfigurable computing is inevitable
- Harness scaling
 - Use the massive numbers of devices available at the nanoscale
- Tools are key
 - Make abstractions tool friendly
 - Get human out of the loop

Reconfigurable fabrics
- Reduce manufacturing costs
- Improve time-to-market
- Improve defect tolerance

Asynchronous circuits
- Reduce timing issues
- Aid defect tolerance
- Reduce power

Very high-level synthesis
- Reduce design time
- Reduce verification time

Spatial Computing
- Reduce power
- Reduce wire delay problem

Continuing the Trend

Tradeoff complexity (and precision) at manufacturing time for complexity at compilation time.

Complex fixed chip + Program
Regular, tileable structures + Configuration

What is Nanotechnology?

- Fundamental Misunderstanding?
 Nanotechnology ≈ 10^{-9} meters
- Maybe true for nanomaterials?
- My personal view:
 Nanotechnology ≈ 10^9 components
CS & Nano

- Computer science: The science of controlling complexity through abstraction.
- Nanotechnology: Technology for constructing and manipulating billions of nanoscale items.
- For example, Manage:
 - Randomness/regularity of bottom-up assembly
 - Build in defect-tolerance
 - Complexity of manufacturing

Challenges

Nanoscale regime ⇒ Billions of components

- Use CS to control processes; eliminating need for precise molecular manufacturing yet yielding interesting and valuable products
- CS contributions to nanotechnology:
 - Concurrency
 - Interfaces
 - Hierarchical assembly
 - Distributed control
 - ...

Aka: How do we deal with complexity?