
1

On the uncertainty characterization of
programmable logic controllers

Hehua Zhang, Yu Jiang, William N. N. Hung, Guowu Yang, and Ming Gu

Abstract—Programmable Logic Controllers (PLCs) are widely
used in industry. Reliable PLCs are vital to many critical appli-
cations like nuclear power plants control. This paper presents
a probabilistic modeling for PLC programs. Three analysis
strategies are proposed for probabilistic evaluation of uncertainty
characterization. The first method is an input-based analysis
which considers the impact of errors from primary inputs.
The second one is an action-based analysis. It extends the first
method by considering the impact of processing deviations on
primary inputs. The third method is an action-traverse analysis.
It computes the uncertainty characterization in a single topo-
logical traverse through the primary inputs during the program
execution. Experiment results demonstrate the effectiveness of
our approaches.

Index Terms—Input error, processing deviation, PLC, uncer-
tainty analysis.

I. INTRODUCTION

PRogrammable Logic Controllers (PLCs) are widely used
in industry to control machinery on factory, spaceport

devices or nuclear power plants. Many PLC applications are
safety-critical and the reliability of PLCs are vital. As a result,
modeling and verification of PLC programs has been widely
studied. Most of the existent methods modeling PLC programs
as automata [1], [2], [3], [4] , Petri nets[5] or specific logics.
Formal verification techniques [6], [7], [8] like model checking
and theorem proving are then proposed for analysis.

Though the existent deterministic analysis of PLC programs
are valuable, the uncertain errors caused by noise, environ-
ment, or hardware should not be neglected [9]. The casual
errors may happen when PLC sampling the inputs, computing
the data, or outputting its signals.

In this paper, we present an approach to characterize PLC
programs in a probabilistic way. Three analysis strategies are
proposed for probabilistic evaluation of uncertainty charac-
terization. The first method is an input-based analysis which
considers the impact of errors from primary inputs. The
second one is an action-based analysis. It extends the first
method by considering the impact of processing deviations
on primary inputs. The third method is an action-traverse
analysis. It computes the uncertainty characterization in a

Hehua Zhang and Ming Gu are with the School of Software, TNLIST,
Tsinghua University, China.

Yu Jiang is with the Dept. of Computer Science and Technology, TNLIST,
Tsinghua University, China

William N. N. Hung is with Synopsys Inc., Mountain View, California,
USA.

Guowu Yang is with the University of Electronic Science and Technology
of China, Sichuan, China.

This research is supported in part by NSFC Program (No.90718039) and
973 Program (No.2010CB328003) of China.

single topological traverse through the primary inputs during
the program execution. Experiment results demonstrate the
effectiveness of our approaches.

The paper is organized as follows. We introduce some basic
concepts in Section II, including an introduction to PLC and
its ladder diagram programming language. The probabilistic
modeling of PLC is given in Section III. We explain the
input-based analysis algorithm in Section IV. Then, we present
the action-based analysis algorithm in Section V, including
the introduction of action and the method to transfer a PLC
program into action units. The action-traverse analysis is
introduced in Section VI, explaining how the units are sorted
and processed. Section VII extends the three algorithms to deal
with the relationship and combine the uncertainty of ladder
steps to establish the uncertainty characterization of an entire
PLC program. Section VIII provides the experiment results.
Finally, Section IX concludes the paper.

II. BACKGROUND
PLC is essentially an industrial control computer, which

works in a periodic scanning mechanism. Each cycle is
composed by three stages (see Fig. 1). The first stage is
sampling. PLC reads all the input data and state into the
corresponding I/O. The second stage is PLC processing. The
CPU of PLC applies logical operations to the control circuit
which is composed of contacts with the order from left to
right and top to bottom. It then refreshes the state of the I/O
image area related to the output coil and determines whether
to run any special functional instruction (e.g.: JUMP). The
last stage is Actuating. The CPU refreshes all the outputs
according to the state of their I/O image, and actuates the
peripheral via the output circuits. Two types of PLC programs
are distinguished: (1) without memory and (2) with memory to
store state of the system. The former is called a combinatorial
PLC program whose output is based on the primary input,
while the latter is referred as a sequential PLC program whose
output is based on the primary input and the state of the
memory. We consider the former kind of PLC programs in
this paper.

The ladder diagram is widely used as a graphical pro-
gramming language for PLCs. There are two types of basic
instructions in a ladder diagram language: (1) The instructions
representing the conditions on the ladder and are composed of
primary inputs and logic connections; and (2) Special instruc-
tions located at the right side of the ladder, and determined
by the conditional instructions. Fig. 2 shows a sample ladder
program with several frequently-used symbolic instructions. It
consists of four ladder steps.

2

Fig. 1. The four phases of a PLC cycle.

Fig. 2. An example of ladder program.

The symbol −| |− is a normally open contact I, said to
be the “load” operation (LD(I)). When the value of i0 is
1, the contact stays in the closed state, and the current flows
through the contact. The symbol −|/|− is a normally close
contact, said to be the “load not” operation (LD NOT (I)).
When the value of i4 is 0, the contact stays in the closed
state, and the current flows through the contact. −| | − |/|−
represents a serial connection of two kinds of contacts, said
to be the “and” operation (AND). When the values of i4
and i5 are 0 and 1, respectively, the current can flow through
the operation. Similarly, in the first cascade, i0 and i2 are
connected in parallel, said to be the “or” operation (OR).
When at least one value of i0 and i2 is 1, the current can flow
through the operation. CNT is a counter instruction, where
N represents the pre-set value of the counter, and SV is the
current count. When the conditional input IN changes from 0
to 1, SV is incremented by 1. If SV is between 0 and N , the
output of the counter is 1. When the conditional input R is 1,
the counter will be reset (SV = 0) and the output is 0. TON is
a timer instruction, where N represents the pre-set value of the
timer, and SV is the current time. When the conditional input
IN is 1, SV is incremented in a fixed step. When SV is equal
to N , the output of the timer becomes 1. When IN is 0, the
timer will be reset. O0 is a normal output instruction. When the
value of i7 is 1, the instruction will refresh the corresponding
I/O image with 1. S/R is the set-reset instruction. When the
conditional input i6 is 1, S will refresh the corresponding I/O
image with 1 and R will refresh the corresponding I/O image

TABLE I
A SUBSET OF PLC INSTRUCTIONS

Category Instruction symbol
conditional LD,LD NOT,AND,AND NOT,OR,OR NOT
output O,S,R
timer TON
counter CNT
jump JUMP
compare EQ,LE,GE

with 0. Detailed instructions can be found in [10]. Our work
is based on a subset of the instructions, shown in TABLE I,
where JUMP is the jumping instruction and EQ,LE,GE
are compare instructions.

III. MODELING OF PLC PROGRAMS

In this section, we introduce a probabilistic modeling of
PLC programs denoted by ladder graphs. We consider the error
probability of the primary input sampling and also of each
operating unit. An algorithm is presented to model a ladder
program as a structured expression of the operation unit.

A. Probabilistic Modeling of Input Sampling

We record the contact j of the ladder as the primary input Ij .
Each Ij has the static probability and the sampling probability.
Static probability means the probability of a particular input
Ij being 1(0) at a given time, denoted by P 1

j (P 0
j), and the

scheme can be defined as follows according to [11].

P 1
j = lim

N→∞

∑N
T=1 Ij (T)

N
P 0
j = 1− P 1

j

Sampling probability is the probability of a particular input Ij
being 0 → 1 (0 → 0, 1 → 0, 1 → 1), which means that the
actual input is 0 (0, 1, 1) but the sampling input turns out to
be 1 (0, 0, 1), denoted by P 01

j (P 00
j , P 10

j , P 11
j). The scheme

can be defined as:

P 01
j = lim

N→∞

∑N
T=1 Ij (T)I

s
j (T)

N

P 10
j = lim

N→∞

∑N
T=1 Ij (T) I

s
j (T)

N

P 00
j = lim

N→∞

∑N
T=1 Ij (T)I

s
j (T)

N

P 11
j = lim

N→∞

∑N
T=1 Ij (T) I

s
j (T)

N

The symbol T represents the execution cycle of the ladder
program. Ij(T) represents the original value of the contact
j during the cycle T . Isj (T) represents the sampling value
of the contact at cycle T , which is the actual value of the
primary input participating in the processing stage. It denotes
the fact that the original input from the environment is Ij(T),
and this input will be sampled, while the sampling stage may
introduce some error as shown in Fig.1. As the result, the final
input passed to the PLC processing stage is the sampled input
Isj (T).

3

TABLE II
THE THREE OPERATION UNITS OF LOGICAL INSTRUCTIONS

Ladder Operation Failure Pro Effect Pro
−|| − ||−(AND) A(a, b) εA EA

−
f
�(OR) O(a, b) εO EO

−|/|−(LDNOT) N(a) εN EN

TABLE III
THE TWO OPERATION UNITS OF COMPARE INSTRUCTIONS

Ladder Operation Failure Pro Effect Pro
a == b(CMP?I) Q(a, b) εQ EQ

a < b(CMP?I) L(a, b) εL EL

B. Probabilistic Modeling of Ladder Programs

The uncertainty characterization analysis of PLC ladder
programs refers to the problem of evaluating the effects of
errors caused by the deviation of primary input sampling and
deviations of instruction processing. Sampling error happens
when the accurate input is 1(0), but the PLC program read 0(1)
into the corresponding I/O image. Arithmetic processing error
happens when the accurate output of the above conditional
and special instruction is 1(0), but the actual output of the
instruction turns out to be 0(1). The probability of these two
kinds of errors depend on noise, environment, hardware, etc.

TABLE II and TABLE III together show all the basic
operation units we defined. In TABLE II, three basic logical
instructions are represented as operation units with one or two
operands. In TABLE III, two compare instructions are further
defined as operation units. Other instructions can be expressed
by these basic operation units. For each unit, we consider two
kinds of probabilities: failure probability and effect probability.
The failure probability describes the probability when the
original result of an operation unit is 1 but the actual result
turns out to be 0. It is denoted by εA (taking the A operation
as an example). On the other hand, the output of the ladder
step may also turn out to be wrong when the result of
an operation unit is wrong. Effect probability describes the
probability of this circumstance, and is denoted by EA (for the
A operation). It can be calculated using boolean difference,
symbolic techniques based on binary decision diagrams or
simulation [12], [13], [14].

With these basic operation units, we can describe a step of
a ladder program as follows.

1) In order to facilitate the processing of errors caused by
sampling, the sampling of input is regarded as a special
A operation (AND) with the operands the original input
Ij(T) and 1. The result of this operation is the actual
input Isj (T). That is LD(Ij(T)) = A(Ij(T), 1), and, the
ε of the operation A(Ij(T), 1) can be expressed by the
sum of P 01

j and P 10
j . As a result, εsampling ≈ P 10

j +
P 01
j . The effect probability Esampling of this operation

is calculated according to the method to calculate EA.
2) The output instruction at the right side of the step can be

expressed as: O(IN) = A(IN, 1), S(IN) = A(IN, 1),
R(IN) = A(IN, 0), where IN is the conditional input
determined by the primary input. Then, the ε and E of
the output instruction can be calculated in the same way

as the basic A operation.
3) The comparison instructions are basic operations defined

in TABLE III, and the ε and E can be found there. If
these units are used in parallel, the result of the units
will be connected to the logical instruction of the step
by an O operation. If these units are used in series, the
result will be connected to the logical instruction by an
A operation.

4) As to the timer instruction at the right side of the step,
the result of the instruction TON N is determined by
the conditional input and the current time value. When
the current value SV equals to the pre-set value N and
the value of the conditional input is 1, the output of
the timer is 1. That is TON N = A(Q(N,SV), IN).
Therefore, when there is a timer, we decompose it into
operations A and Q, then the uncertainty analysis of
a timer can be done with the method for the units A
and Q. On the other hand, if we hope to treat the
special instruction TON as a single operation unit to
be dealt with directly, we need to package the two
kinds of probabilities for A and Q. The processing
deviation ε of a timer instruction is determined by
an Q operation and an A operation. When only one
operation fails, the result will change. Hence, we have
εTON ≈ εQ · (1− εA) + εA · (1− εQ), and ETON = 1.

5) As to the counter instruction at the right side of
the step, the result of the instruction CNT N is
determined by the conditional input and the current
count value. When the value of the current count
SV is between 0 and the pre-set value N , the con-
ditional input changes from 0 to 1, and the value
of the reset variable is 0, the output of the counter
is 1. That is CNT N = A(A(L(SV,N), L(0, SV))
, A(N(R), A(INT , N(INT−1)))). Consequently, two
probabilities of the counter instruction can be done
similarly with the timer instruction.

6) When the jump instruction appears at the right side of
the step, it can also described by the basic operation
units. JUMP (N) means that the ladder will goto step
N when the conditional input is 1. Assume that the
actual number of the ladder step the program goes to
is N

′

T , if it is equal to the pre-set number NT , the jump
instruction works correctly. So we have JUMP (N) =
A(Q(N

′

T , NT), IN).

We have shown how to transfer a given instruction into
the basic operation units. We then introduce the modeling of
ladder program steps by organizing these units in a structured
way. Since a PLC processes its input from left to right and
from top to bottom, we develop an iterative traversal algorithm
for the translation, shown in Fig. 3.

When a ladder step has more than one contact, the structure
of the ladder step must be one of the first two cases shown
in Fig. 3. We then partition the original ladder step into two
sub-steps, say, ladder1 and ladder2). Let us see the first case.
We traverse the contacts of the ladder to find the first contact
I or the first parallel connected structure SI, which are serially
connected with the latter contacts. The ladder1 is then made

4

Fig. 3. The translating algorithm of ladder steps.

up of the contact I or SI, and also all the contacts preceding I
or SI. The ladder2 is composed by all the contacts following
I or SI. The step can then be translated into an A operation
unit, with Translate(ladder1) and Translate(ladder2) the
two operands. Other cases can be processed similarly. At last,
a ladder step is translated into a single expression of the basic
operation units.

We then need to know the failure probability εi and the
effect probability Ei of each operation unit. The failure
probability is determined by the hardware and the environment
and can be set by the testers. The effect probability of the
operation unit can be calculated using boolean difference like
in [14]. Here we present a different method. Defining the
output function of the ladder program on the output action
ai and all the primary inputs that ai does not cover, the new
method to get Ei (equal to ∂f/∂ai) is defined as follows.

fai
(I) = f(I1, I2, · · · Ij , ai)

fai=1(I) = f(I1, I2, · · · Ij , 1)
fai=0(I) = f(I1, I2, · · · Ij , 0)

∂f

∂ai
= fai=1(I)⊕ fai=0(I)

We have transformed the input sampling, output, compare,
timer, counter and jump instructions into the operation units
and calculated their failure probability and effect probability.
Now we can consider the processing deviation of each opera-
tion unit. When only one operation unit (i) fails, the probability
that the final output will toggle is the product of its effect
probability (Ei) and failure probability (εi). When multiple
operations fail, we have to combine the effect probability of
the failed operations to get a joint effect probability, denoted
by JE. JE works on a set of operation units and describes
the probability when some of the failure operations toggle
and the final output toggles too. The probability that the final
output toggles (uncertainty characterization) then equals to
the product of the failure probabilities of the set of operation
units multiplied by their JE. To calculate JE, we introduce
the simultaneous effect probability SE. Compared with JE,
SE acts on a set of failed operation units, and describes the
probability that (1) each failure operation makes the final
output toggle once, and (2) after all these operations are

processed, the final output toggles compared to the original
final output. According to the description of SE, the SE of
the set with odd number of failure operation units will cause
a toggle of the final output.

Furthermore, two basic assumptions are proposed to calcu-
late the joint effect probability.

Assumption 1: The effect of each failure operation unit at
the final output is independent of each other, that is, Ei is
independent of each other.

Therefore, when n operation units fail, the JE of them
can be expressed by the sum of SE, for all the possible
combinations that odd number units have actual effect on the
final output:

JE =
∑

|SE|=2i+1

SE (i ∈ [0, n− 1/2]).

Assumption 2: The failure of each operation is independent
of each other, that is, εi is independent of each other.

As a result, if there are n operation units fail and only k
units have effect on the final output, the SE of them can be
expressed by the product of their Ei or 1− Ei:

SE(k) =
∏
i∈k

Ei ·
∏

i∈n/k

(1− Ei).

We take a small example in Fig. 5 to illustrate the processing
of JE and the uncertainty characterization calculation based
on the proposed two assumptions. Ignoring the errors caused
by sampling and output, Fig. 5 can be expressed by an
O operation unit (a1) and an A operation unit (a2). When
there is only one unit in failure, the probability that the
final output toggles (uncertainty characterization) is f1 =
ε1(1−ε2)E1+ε2(1−ε1)E2. When both operation units fail, by
using Assumption 1 and Assumption 2, we get the uncertainty
characterization

f2 = ε1ε2(JE)

= ε1ε2(
∑

|SE|=2i+1

SE)

= ε1ε2(
∑
|SE|=1

SE)

= ε1ε2(E1(1− E2) + E2(1− E1)).

Then, the final uncertainty of the example f is the sum of f1
and f2:

f = f1 + f2

= ε1E1 + ε2E2 − 2ε1E1ε2E2

=
1

2
− 1

2

∏
i∈ai

(1− 2εiEi).

IV. INPUT-BASED ANALYSIS

We consider the effect of sampling errors on the output in
this section. At each cycle, the PLC needs to sample the input
from the environment first. This method is concentrated on
sampling, which may affect the response time as well as the
correctness of the primary input sampling. On the other side,
noise or bad environment may also affect the correctness of

5

sampling. Since input sampling is the entrance of the PLC,
we need to find out how this failure will affect the program.
In Section III some probabilities about the primary input are
provided. Here we will define the uncertainty characterization
based on these probabilities. Finally, we will also propose
some basic assumptions to simplify the uncertainty charac-
terization function.

A. Computing Uncertainty Characterization

With regard to a step of the ladder program, the original
value of all the contacts at cycle T is (IT1 , I

T
2 · · · ITj), denoted

by I(T). The original result of the program for the original
input is O(I(T)). The sampling primary input of these contacts
is (It1, I

t
2 · · · Itj), denoted by I(t), and the actual output for

the actual sampling input is then O(I(t)). As mentioned in
Section III, the uncertainty characterization analysis of a PLC
ladder program refers to evaluating the effects of errors caused
by both the deviation of primary input sampling and the
deviations in instruction processing. Therefore, the uncertainty
characterization function of a step can be expressed as:

f = [(O(I(T)) = 0) ∧ (O(I(t)) = 1)] ∨
[(O(I(T)) = 1) ∧ (O(I(t)) = 0)]

= O(I(T))⊕O(I(t)).

To simplify the calculation, we propose a basic assumption
on the probability of the primary input, and then prove
two properties based on the assumption. The properties can
facilitate the calculation of f .

Assumption 3: Each primary input Ij is independent of
each other and the sampling probability satisfies P 01

j = P 10
j .

Since P 1
j(t) = P 01

j + P 11
j , and P 1

j(T) = P 10
j + P 11

j , we can
deduce that P 1

j(t) = P 1
j(T) = P 1

j .
Lemma 1: If the input Ij (j ∈ N+) is independent and o

= I1 · I2 · · · Ii · Ii+1 · · · Ij , then P (o = 1) = P 1
1 · P 1

2 · · ·P 1
i ·

P 0
i+1 · · ·P 0

j .
Proof: Since the inputs are independent, the proof of the

lemma is obvious according to the property for the indepen-
dent events that occur simultaneously. Q.E.D.

Lemma 2: If A∧B = 0 and o = A∨B, then P (o = 1) =
P (A) + P (B).

Proof: Since P (A ∨B) = P (A) + P (B)− P (A ∧B) and
A ∧B = 0, the lemma is proved. Q.E.D.

When we apply these two properties to the characterization
function f , it can be expanded into the expression of the static
probability and the sampling probability of primary inputs.

B. Case Study

We illustrate the input-based analysis algorithm by a PLC
ladder program shown in Fig. 4. This is a motor reversible
control program.

The first step of the ladder has five primary input contacts:
X0 (denoting the power input,with the input point I1), X1

(the clockwise rotation input I2), X2 (the counter-clockwise
rotation input I3), Y0 (keeping clockwise rotation I4), Y0 (

Fig. 4. A motor reversible control program.

the counter-clockwise rotation mutex input I4). The output of
the first step is then computed as:

O = (X1 ∨ Y0) ∧ Y 1 ∧X2 ∧X0

= (I2 · I5 · I3 · I1) ∨ (I4 · I5 · I3 · I1).

By applying the two properties, the uncertainty characteri-
zation function f is finally expanded to the sum of twelve
expressions which is the product of two kinds of probabilities:

f = O(I(T))⊕O(I(t))

= [(IT2 · I
T

5 · I
T

3 · I
T

1) ∨ (IT4 · I
T

5 · I
T

3 · I
T

1)]

⊕ [(It2 · I
t

5 · I
t

3 · I
t

1) ∨ (It4 · I
t

5 · I
t

3 · I
t

1)]

= P 01
1 · P 10

2 · P 0
3 · P 0

4 · P 0
5 + P 01

1 · P 00
2 · P 0

3 · P 10
4 · P 0

5 +

· · ·+ P 00
1 · P 10

2 · P 01
3 · P 0

4 · P 0
5 .

V. ACTION-BASED ANALYSIS

After loading the sampled input values, PLC will enter the
processing stage. The CPU will process the input values from
left to right and from top to bottom according to the control
logic of the ladder program. As shown in Fig.1, there may
also be some error caused by hardware. The output of the
processing operation unit may toggle because of the errors.
When the effect of error introduced in the processing stage
is non-ignorable, the method introduced in Section IV is
insufficient. On this occasion, we should process the effect
of the basic operation units introduced in Section III. After
that, the expression of the structured operation unit can be
calculated, through the translating algorithm introduced in
Section III.

A. Calculating Uncertainty Characterization

Given a step of a ladder program, it can be expressed by the
basic operation units. We notate the units of a step as follows.
The output is denoted by O; a denotes the set of all operation
units (ai); S is the set of all the nonempty subsets of a; F
is an element of the set S, with all each element ai in F
denotes a failed operation unit; 2F is the power set of F; E is
an element of 2F , with the operations in E have actual effect
on the final output.

To illustrate the definitions, we correlate them with the
example in Fig. 5. O is the output Y ; a is the operation units
set {a1,a2}; S is the set {{a1},{a2},{a1,a2}}, which means

6

all the possible combinations of operation units that would be
in error; F is an element of S, i.e., {a1,a2}, which means both
units failed. As a result, 2F equals {{a1}, {a2}, {a1, a2}, ∅},
which represents all the possible combinations of SE when
two units have failed. E is an element of 2F , i.e., {a1, a2},
which means that the failed operation units a1 and a2 have
actual effect on the final output.

Fig. 5. An example of operation units of a ladder step.

For each combination of the failing operation units F , the
uncertainty characterization function f(F) is the product of
W(F) (the probability that these units fail) and JE(F) (the joint
effect probability for these units). According to Assumption 3,
W(F) can be expressed as the product of εi (where ai ∈ F) and
1−εi (where ai /∈ F). According to Assumption 2, JE(F) can
be expressed as the sum of SE, for all possible combinations
of odd number units with actual effect on the final output.
Consequently, the uncertainty of the output is the sum of all
possible combinations. Theorem 1 describes the uncertainty
characterization of a step.

Theorem 1: The uncertainty characterization function of a
ladder step is:

f =
1

2
− 1

2

∏
ai∈a

(1− 2εiEi).

Proof : From the descriptions, We can deduce the following
three formulas:

W(F) =
∏
ai∈F

εi
∏

ai∈a/F

(1− εi) (1)

JE(F) =

E∈2F∑
|E|=2i+1

SE(E) (2)

f =
∑
F∈S

JE(F) ·W(F). (3)

We now further analyze formula (2). In terms of Assump-
tion 3, given a random E, we have:

SE(E) =
∏
ai∈E

Ei

∏
i∈F/E

(1− Ei).

To calculate formula (2), we refer to the method presented in
[15] and construct a formula for the constraint |E| = 2i+ 1:

se(E) =
∏
ai∈E

(−Ei)
∏

ai∈F/E

(1− Ei)

, satisfying that when |E| is odd, SE(E) =
1
2 (SE(E)−se(E)),

and when |E| is even, 1
2 (SE(E) − se(E)) = 0. Therefore, we

can get

JE(F) =

E∈2F∑
|E|=2i+1

SE(E) =
∑
E∈2F

1

2
(SE(E) − se(e))

=
1

2
(
∑
E∈2F

∏
ai∈E

Ei

∏
ai∈F/E

(1− Ei)−∑
E∈2F

∏
ai∈E

(−Ei)
∏

ai∈F/E

(1− Ei)).

On the other hand, since 2F is the power set of F , we can
deduce the following results from combinatorics:∑

E∈2F

∏
ai∈E

Ei

∏
ai∈F/E

(1− Ei) =
∏
ai∈F

(Ei + (1− Ei))

= 1∑
E∈2F

∏
ai∈E

(−Ei)
∏

i∈F/E

(1− Ei) =
∏
ai∈F

(−Ei + (1− Ei))

=
∏
ai∈F

(1− 2Ei).

Hence, JE(F) can be simplified as:

JE(F) =
1

2
(1−

∏
ai∈F

(1− 2Ei)). (4)

We then expand formula (3) with formula (1) and (4) and get:

f =
∑
F∈S

JE(F) ·W(F)

=
1

2

∑
F∈S

∏
ai∈F

εi
∏

ai∈a/F

(1− εi)−

1

2

∑
F∈S

∏
ai∈F

εi(1− 2Ei)
∏

ai∈a/F

(1− εi). (5)

Since S is the set of all nonempty subsets of operation units a,
we deduce the further results from combinatorial mathematics:∑

F∈S

∏
ai∈F

εi
∏

ai∈a/F

(1− εi) +
∏
ai∈a

(1− εi)

=
∏
ai∈a

(εi + 1− εi) = 1, (6)

∑
F∈S

∏
ai∈F

εi(1− 2Ei)
∏

ai∈a/F

(1− εi) +
∏
ai∈a

(1− εi)

=
∏
ai∈a

(εi(1− 2Ei) + (1− εi))

=
∏
ai∈a

(1− 2εiEi). (7)

Applying formula (6) and (7) to simplify formula (5), the
result is just the theorem which represents the uncertainty
characterization function of the final output. Q.E.D.

The uncertainty characterization of the ladder step which
has been transformed to operation units is a closed-form
expression ,where εi is determined by noise, hardware, en-
vironment etc., while Ei can be calculated by boolean differ-
ences, binary decision diagrams, or simulation. It is efficient
to calculate the uncertainty characterization with Theorem 1.

7

However, it is not accurate enough with the applying of
Assumption 1, since the effect probability of each failing unit
is not independent from each other in the real world. Hence,
the result is more accurate when there is a small number of
failing operation units.

B. Case Study

We take the PLC ladder program in Fig. 4 to illustrate
the action-based analysis algorithm. The algorithm in Fig. 3
is applied to translate the first step of the ladder and we
get the following expression composed of operation units.
O = A(A(A(O(x1, Y0), N(Y1)), N(x2)), N(x0)). Then,
we denote each operation unit as follows. O(x1, Y0) =
a1, N(Y1) = a2, A(a1, a2) = a3, N(x2) = a4, A(a3, a4) =
a5, N(x0) = a6, A(a5, a6) = a7. Assuming that the εi of
each unit is 0.1, we calculate the Ei using BDD and get
E1 = E2 = 1

8 , E3 = E4 = 1
4 , E5 = E6 = 1

2 , E7 = 1 Finally,
the uncertainty characterization of the step is:

f =
1

2
− 1

2

∏
ai∈a

(1− 2εiEi)

= 0.4401.

If we transform also the sampling of primary input and the
output procedure into A operation units, there would be six
specific A units. The value of εi and Ei can be calculated by
the method mentioned in Section III-B. When these specific
A units are combined with the seven units a1, . . . , a7, the
uncertainty characterization of the step will be more accurate
for a small amount of failing units.

VI. ACTION-TRAVERSE ANALYSIS

We have translated a step of a ladder program into operation
units in a structured way, and provided a closed-form expres-
sion for the uncertainty characterization. In this section, we
improve the accuracy of the action-based analysis for multiple
failing units. First, we express the ladder step with operations
in the same way we did for action-based analysis. Then, a
topological sort is carried out on these units according to that
the ladder program processes the input from left to right and
from top to bottom. Finally, for each unit, we combine the
failure probability of it with the toggle probability it inherits
from the preceding unit, to get the toggle probability that it
will transmit to its following unit. We process the units in
the topological sort one by one, so at last we will get the
uncertainty characterization of the final output.

A. Action Traversal

The translating algorithm presented in Section III is taken
to translate a ladder step of PLC into operation units. For
example, the first step of the motor reversible control lad-
der program in Fig. 4 is translated into the expression
A(A(A(O(I2, I4), N(I5)), N(I3)), N(I1)). We then take an
algorithm to decompose the expression and sort it. After that,
the operation units can be processed one by one, and we get
the final probability of the output at last.

The decomposing and sorting algorithm presented in
Fig. VI-A makes use of a structure node with the data structure
Struct node {char* value; node* left; node* right; }. Based
on it, the algorithm will decompose the expression of the
operation units and produce a binary tree. The depth degree
of the node in the tree denotes its sequence. The bigger the
degree, the further in front the node is. The node with bigger
degree then should be processed earlier than the none with
smaller degree. In the algorithm, unit1 and unit2 represent the
operands of the operation unit being decomposed. The operand
is a primary input or the result of a set of operation units.

Fig. 6. The sorting algorithm.

After the topological sort is decided, the units will be
processed one by one. For a single unit, there are two kinds
of error sources : (1) the toggle probability inheriting from
the previous operation unit; and (2) the failure probability(εi)
of the unit itself. Both the two error sources should be dealt
with to get the toggle probability it transmits to the next unit.
The toggle probabilities can also be divided into two cases(1)
the original result of the unit is 1 but the actual result is 0,
denoted by Pε(a1→0); and (2) the original result of the unit
is 0 but the actual result is 1, denoted by Pε(a0→1).

As to each kind of operation unit presented in TABLE II and
TABLE III, we need to process the first kind of error source
to get the toggle probability it transmits to the next unit.

Considering the operation unit O(I, J) at first. It possesses
two operands, each of the operands can be a previous unit
ai, or a primary inputs Ii. As to the primary inputs, the
inherited toggle probability need not to be considered. Without
loss of generality, we consider the case of (ai, aj). The two
operation units (ai, aj) will propagate the toggle probability
Pε(I1→0),Pε(I0→1) of ai and Pε(J1→0),Pε(J0→1) of aj to
the unit O. These probabilities should be combined for the
unit O to get the P (O1→0),P (O0→1) it propagates to the next
operation unit. If the result of (ai, aj) is (1,0), the original
result of unit O(a, b) is 1. However, if ai changes from 1 to
0, and aj remains 0, the actual result of unit O(a, b) will be 0.
Similarly, when the result of (ai, aj) is (0,0), the original result
of unit O(I, J) is 0. When ai or aj changes from 0 to 1, the

8

actual output will be 1. If we know the probability of all the
combinations for input(ai, aj), and the probability that ai(aj)
changes from 0 to 1 or 1 to 0, denoted by Pε(I0→1), Pε(I1→0),
we can get the toggle probability that caused by the previous
operation unit and transferred to the next unit. The semantics
of transmission for operation units A(I, J) and N(I) are
similar to the description of O(I, J). The transmission formula
for the unit O(I, J), A(I, J) and N(I) can then be presented
as follows.

We introduce some definitions first. The probabilities that
the original output of the operation unit equals to 1 and 0 are
denoted by P (1) and P (0), respectively. The probabilities that
(I, J) equals to (1, 1), (0, 1), (1, 0) and (0, 0) are denoted by
P11, P01, P10 and P00, respectively. The 1→ 0 transmission
probabilities from the previous operation units for the O, A and
N units are denoted by PO(1→ 0), PA(1→ 0) and PN (1→
0), respectively. The 0 → 1 transmission probabilities from
the previous operation units are then denoted by PO(0→ 1),
PA(0→ 1), and PN (0→ 1), respectively.

The following lemmas can then be deduced.
Lemma 3 (O(I, J)): P (1) = P11 + P10 + P01, PO(1 →

0) = P
(1,1)
(1→0) + P

(0,1)
(1→0) + P

(1,0)
(1→0); P (0) = P00, PO(0→ 1) =

P
(0,0)
(0→1) .
Proof : According to the semantic of the operation unit

O(I, J), the two transmission probabilities and can be defined
as follows.

P
(I,J)
(1→0) =

 P11Pε(I1→0) · Pε(J1→0) (I, J) = (1, 1)
P01(1− Pε(I0→1)) · Pε(J1→0) (I, J) = (0, 1)
P10Pε(I1→0) · (1− Pε(J0→1)) (I, J) = (1, 0)

P
(I,J)
(0→1) =

{
P00(Pε(I0→1) + Pε(J0→1)−
Pε(I0→1) · Pε(J0→1)) (I, J) = (0, 0)

By summing, the lemma is easily proved. Q.E.D.
Lemma 4 (A(I, J)): P (1) = P11, PA(1 → 0) = P

(1,1)
(1→0);

P (0) = P00 + P01 + P10, PA(0 → 1) = P
(0,0)
(0→1) + P

(0,1)
(0→1) +

P
(1,0)
(0→1).
Proof : By the semantic of the operation unit A(I, J), the

two kinds of transmission probabilities can be defined as:

P
(I,J)
(0→1) =

 P00Pε(I0→1) · Pε(J0→1) (I, J) = (0, 0)
P01Pε(I0→1)(1− Pε(J1→0)) (I, J) = (0, 1)
P10(1− Pε(I1→0)) · Pε(J0→1) (I, J) = (1, 0)

P
(I,J)
(1→0) =

{
P11(Pε(I1→0) + Pε(J1→0)−
Pε(I1→0) · Pε(J1→0)) (I, J) = (1, 1)

It is easy to know the sum of them are the two kinds of trans-
mission probabilities from the previous unit. Q.E.D.

Lemma 5 (N(I)): P (0) = P1, PN (0 → 1) = P 1
(0→1);

P (1) = P0, PN (1→ 0) = P 0
(1→0).

Proof : In terms of the semantic of the operation unit N(I),
the two kinds of transmission probabilities can be defined as
follows.

P I
(0→1) =

{
P1Pε(I1→0) I = 1

P I
(1→0) =

{
P0Pε(I0→1) I = 0

Each expression possesses only one ramus, so the result is
obviously proven. Q.E.D.

After the first kind of error source is processed so that
Pa(0 → 1) and Pa(1 → 0) ([a ∈ A,O,N]) are obtained,
the probability of the second error source (failure probability
ε) should be combined to get the final toggle probability
Pε(0 → 1). For example, if the original result of the current
unit is 0, and the Pa(0 → 1) caused by the previous unit
happens but the current unit is not in failure, the output will
be changed from 0 to 1.

The calculating of the toggle probabilities for the operation
units Q(a, b) and L(a, b) (PQ(1) = Pa=b, PL(1) = Pa<b)
are different with the former presented three operation units.
That is owing to (1) the operands are integers stored in the
memory or register; (2) the two operation units are used to
describe the instruction (CNT, TON, JUMP) at the right
side of the step. According to the two reasons, we assume
that they don’t have the toggle probability inheriting from the
pervious operation unit. For example, if a equals b, while the
operation unit Q(a, b) is in failure, the output will toggle from
the original value 1 to 0. Therefore, the final toggle probability
is defined as follows.

Theorem 2: The final toggle probability that the current
operation unit a (a ∈ {A,N,O,E,L}) transmits to the next
operation unit, is

Pε(0→ 1) =

(1− ε)(Pa(0→ 1)/P (0))+
ε(1− Pa(0→ 1)/P (0)) a ∈ {O,A,N}

ε · (1− Pa(1)) a ∈ {Q,L},

Pε(1→ 0) =

(1− ε)(Pa(1→ 0)/P (1))+
ε(1− Pa(1→ 0)/P (1)) a ∈ {O,A,N}

ε · Pa(1) a ∈ {Q,L}.

Proof : Based on Lemma 3, 4, 5 and the text descriptions,
the theorem is obvious. Q.E.D.

The left consideration is the toggle probabilities of the sam-
pling and the special instructions CNT , TON and JUMP .
According to the probabilistic modeling of ladder programs
introduced in Section III, the sampling and the special in-
structions can be expressed by the basic operation units.
For example LD(Ij(T)) = A(Ij(T), 1) and TON N =
A(E(N,SV), IN). As a result, a ladder step can be described
by the five basic operation units. Then we can use the proved
theorem to process the error source of each basic unit, and get
the toggle probability of the final output.

On the other hand, if we hope to recognize a special
instruction as an independent operation unit to be processed
directly, the special instruction should be expressed by the
basic operation units first, and then the toggle probabilities of
these basic operation units should be packaged.

We take the instruction TON N as an example to show how
to package. Since TON N = A(Q(N,SV), IN), the result
of the unit Q(N,SV) should be gotten first. The probabilities
of the value of (Q, I) can be defined as follows.

P{(Q, I) = (x, y)} =

PSV <N · P 0

I (x, y) = (0, 0)
PSV <N · P 1

I (x, y) = (0, 1)
PSV=N · P 0

I (x, y) = (1, 0)
PSV=N · P 1

I (x, y) = (1, 1)

9

Then, we need to use an A operation unit to package the result
of the operation unit Q(N,SV) and the conditional input IN .
The transmission probability of the unit TON N is as follows.

Lemma 6 (TONN): P (1) = P11, PT (1 → 0) = P
(1,1)
(1→0);

P (0) = P00 + P01 + P10, PT (0 → 1) = P
(0,0)
(0→1) + P

(0,1)
(0→1) +

P
(1,0)
(0→01).
Proof : According to the semantic of the operation units

A(I, J) and Q(a, b), the transmission probabilities can be
defined as follows.

P
(Q,I)
(0→1) =

(PSV <N · P 0
I) · (ε · PSV <N)

·(Pε(I0→1)) (Q, I) = (0, 0)
(PSV <N · P 1

I) · (ε · PSV <N)
·((1− Pε(I1→0))) (Q, I) = (0, 1)
(PSV=N · P 1

I) · (ε · PSV=N+
Pε(I1→0)− (ε · PSV=N)
·Pε(I1→0)) (Q, I) = (1, 0)

P
(Q,I)
(1→0) =

 (PSV=N · P 1
I) · (ε · PSV=N+

Pε(I1→0)− (ε · PSV=N)
·Pε(I1→0)) (Q, I) = (1, 1)

By calculating the summation, the lemma can be easily proved.
Q.E.D.

By replacing the symbol Pa(0 → 1) in Theorem 2 with
PT (0 → 1) and the symbol Pa(1 → 0) with PT (1 → 0),
the final toggle probability of the instruction TON N can be
obtained. The result for CNT and JUMP can be obtained
similarly.

B. Computing Uncertainty Characterization

Given a step of a ladder program, it is first presented by the
five basic units and given a topological sort of all the units
from left to right and from top to bottom. Then, Lemma 3,
4, and 5 are applied to process each unit. When the last unit
is reached, we get Pε(1 → 0) and Pε(0 → 1). BDD is also
used to get the probability of the value for the output (P 1

O, P
0
O).

Finally, the characterization function of the step can be defined
as follows.

Theorem 3: The uncertainty characterization function of a
ladder step is:

f = P 0
OPε(0→ 1) + P 1

OPε(1→ 0).

Proof : Based on Theorem 2 and the explanations, the result
is obvious. Q.E.D.

C. Case Study

We take the first step in the program shown in Fig. 4 to
illustrate the algorithm. It consists of an O unit, three N units,
and three A units. The topological sort of these units are
then given as: O(x1, Y0) = a1, N(Y1) = a2, A(a1, a2) =
a3, N(x2) = a4, A(a3, a4) = a5, N(x0) = a6, A(a5, a6) =
a7. Assuming that the εi of each unit is 0.1 and the probability
of each primary input is P0 = P1 = 1/2, the units can be
processed one by one. When we reach the unit a7, we get
Pε(1 → 0) = 0.4392 and Pε(0 → 1) = 0.164. At the same
time, we get P 0

O = 3/32 and P 1
O = 29/32 by the BDD

method. Finally, the uncertainty characterization of the step
is:

f = P 0
OPε(0→ 1) + P 1

OPε(1→ 0)

= 3/32 ∗ 0.164 + 29/32 ∗ 0.4392
= 0.4134.

VII. UNCERTAINTY CHARACTERIZATION OF PLC

We have presented the algorithms to analyze the uncertainty
characterization of an independent ladder step. A PLC ladder
program is composed of many steps, which may relate with
each other. For example, the output of a step works as one of
the input of the next step. As a result, we have to consider
the relationship among them as well as how to combine inde-
pendent characterization of these steps to get the uncertainty
characterization of a complete PLC ladder program.

First, We have to find out how the relationship will affect
the uncertainty characterization of a ladder step. We take the
program in Fig. 4 to illustrate the relationship among steps
and their effects. As to the motor reversible control program,
the first kind of relationship is that the output O(Y0) of the
first ladder step is one of the input I(Y0) of the second ladder
step. The second kind of the relationship is that the output
O(Y1) of the second ladder step is one of the input I(Y1) of
the first ladder step. Since the PLC processes the inputs from
up to down, the two relationships cause different effects. As
a result, we develop different methods to deal with the two
relationships.

As to the first relationship, we will calculate the uncertainty
characterization of O(Y1) with the consideration of the input
I(Y0). The probability of input I(Y0) can not be set as another
primary input such as X2, because it is determined by the first
ladder step. Therefore, the static probability of I(Y0) is the
static probability of O(Y0) of the first ladder step which can
be calculated by BDD. The sampling error probability of I(Y0)
is the error probability of O(Y0) of the first ladder step, which
can be calculated by the action-traverse analysis method.

The processing of the second relationship can be more com-
plex. That is how to calculate the uncertainty characterization
of O(Y0) in consideration of the input I(Y1). At the first
cycle of the PLC program, I(Y1) has an initial value 0. We
set the probability of the other primary inputs and use the
action-traverse analysis method to calculate the static and error
probability of output O(Y0). Then the first relationship in step
2 will be embedded to calculate the static and probability of
the output O(Y1). After that, we go back to step 1, setting
the static probability of I(Y1) as the static probability of the
output O(Y1), the sampling error probability of I(Y1) as the
error probability of O(Y1). Therefore, we get the real static
and error probability of the output O(Y0). The more iterations
we make, the more realistic the result is.

Second, we need to know how to combine the independent
characterization of these steps. After the value of f(O1) and
f(On) are obtained by applying the action-traverse analysis
method, We can get the final uncertainty characterization
function for a whole PLC program.

10

Theorem 4: The uncertainty characterization function of a
PLC ladder program is:

f = 1−
i≤n∏
i=1

(1− f(On)).

Proof : The uncertainty of a PLC program is the sum of
all the combinations that there is at least one ladder step in
failure. The sum equals to 1 minus the probability that none
of the ladder steps is in failure. Q.E.D.

VIII. EVALUATION EXPERIMENTS

We translate the PLC ladder program instructions one by
one to the basic operation units. So, the complexity of our
translation procedure and the unit processing procedure is
linear to the size of a PLC ladder program. We choose five
examples to show how these algorithms work. Variants of
these five examples are widely used in industrial and consumer
electronics. We set the static probability of each primary input
(PI) 0.5, the transition probability of primary input 0.1, and
the deviation probability of each unit 0.1. The uncertainty
characterization values of the five examples are given as
follows: Algorithm1 (A1) only considers the primary input,
Algorithm2 (A2) considers the primary input and the units,
Algorithm3 (A3) considers both of them as well as the related
input (RI).

The first application is a ladder program embedded in the
ticketed gate entrance for parking lots. When a car arrives at
a ticketed gate entrance, the driver can press a button to get a
ticket. While the ticket is being issued, it will send a primary
input signal to the PLC. The PLC will generate an output to
lift the barrier so that the car can enter the parking lot. The
lifting of the barrier will trigger a timer (TON) to count down.
When the timer reaches zero, the PLC will output a signal to
lower the barrier so that other cars cannot enter the parking
lot. When the actual operating environment is approximated
to the probability we specified, the characterized uncertainty
values for A1, A2, and A3 of this ladder program are 0.3367,
0.4326 and 0.3724, respectively.

The second application is a ladder program embedded in
the automatic door for any building. Safety is an important
concern because the automatic door should be designed to
avoid trapping anybody. Sensors are installed near the door to
detect people, and to detect the position of the door. Timers are
also included in the ladder program to filter noise signals from
the sensors. When a person approaches the door, the sensor
will be triggered, which will send a signal to the primary input
of the PLC. The PLC will generate an output to open the door.
When the sensor detects that door is fully opened, the PLC will
send a signal to stop opening the door. The door will remain
opened until the sensor signals near the door (to detect peoples
movement) disappear. It will then trigger a counter to count
down. If nobody is near the door anymore, the counter will
eventually reach zero, which will trigger the PLC to send a
signal to close the door. The “close” signal will be turned off
when the door is fully closed. If anybody approaches the door
while the door is closing, the PLC will open the door to allow
the person to pass through. The uncertainty characterization

values of this ladder program for A1, A2, and A3 are 0.5924,
0.7991, and 0.7061 respectively.

The third application is a ladder program embedded in a
washing machine, whose variants are widely used in our daily
lives. A primary input to the ladder program will initiate the
washing sequence. The washing sequence is a series of output
signals, each will control the motor of the washing machine to
rotate at a different speed. The ladder program uses timers to
pace the washing and move from one speed to the next speed.
The motor will stop at the end of the washing sequence. The
uncertainty characterization of this ladder program for A1, A2,
and A3 are 0.5924, 0.6448, and 0.6197, respectively.

The fourth application is a ladder program embedded in a
pulse driven electric motor, which is used in assembly lines
or other industrial processes. Depending on primary inputs,
the PLC can control the motor to rotate forwards, backwards,
or to stop. The uncertainty characterization of this ladder
program for A1, A2, and A3 are 0.4731, 0.6559, and 0.5198,
respectively.

The fifth application is a ladder program embedded in the
responder of an entertainment contest. All contest participants
will have a response button. The PLC will ensure that the
winner is the first to respond and no other participant presses
the button before the winner. The uncertainty characterization
of this ladder program for A1, A2, and A3 are 0.4657, 0.6928,
and 0.5642, respectively.

IX. CONCLUSION

In this paper, we proposed a new method to model a
PLC ladder program and three algorithms to characterize
uncertainty for the PLC ladder program. The first algorithm
considers errors at the input sampling stage. We characterize
the uncertainty of the ladder program by sampling probability
and static probability of the primary input. The second method
considers also the impact of the processing deviation on the
primary input. We characterize the uncertainty by the failure
probability ε of the unit and the probability that the output
of the step would be wrong when the unit turns out to be
wrong. The third method is based on topological sort. We
transfer a ladder step into many operation units and sort them
topologically. We then process the units one by one, and
obtain the final uncertainty characterization of the last unit.
The first algorithm is the simplest, while the last algorithm
considers more possibilities. They can be chosen according
to the possibilities and the values of uncertainties in a real
application. The experiments demonstrate the application of
the three algorithms.

REFERENCES

[1] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen, “To-
wards the automatic verification of PLC programs written in instruction
list,” in Proc of Systems, Man and Cybernetics, IEEE Conference on,
Nashvill, TN, USA, October 2000, pp. 2449–2454.

[2] H.X.Willems, “Compact timed automata for PLC programs,” University
of Nijmegen, Computing Science Institute,” Technical Report CSI-
R9925, 1999.

[3] A. Mader and H. Wupper, “Timed automaton models for simple pro-
grammable logic controllers,” in Proc of Euromicro Conference on Real-
Time Systems, York, UK, June 1999.

11

[4] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe,
and O. Stursberg, Verification of PLC Programs Given as Sequential
Function Charts, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2004, vol. 3147/2004, ch. Verification, pp. 517–
540.

[5] H.-M. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling of
PLC behaviour by means of timed net condition/event systems,” in IEEE
Int. Symposium on Emerging Technologies and Factory Automation
(EFTA ’97), 1997, pp. 361–369.

[6] M. B. Younis and G. Frey, “Formalization of existing PLC programs:
A survey,” in Proc. Computational Engineering in Systems Applications
(CESA), 2003.

[7] G. Frey and L. Litz, “Formal methods in PLC programming,” in Proc.
IEEE International Conference on Systems, Man, and Cybernetics,
vol. 4, October 2000, pp. 2431–2436.

[8] M. Rausch and B. H. Krogh, “Formal verification of PLC programs,”
in Proc. American Control Conference, 1998.

[9] T. L. Johnson, “Improving automation software dependability: A role
for formal methods?” Control Engineering Practice, vol. 15, no. 11, pp.
1403 – 1415, 2007.

[10] Programmable Controllers - Programming Languages, IEC 61131-3.
Ed. 2.0., IEC(International Electrotechnical Commission) Std., Rev. 2.0,
2003.

[11] A. K. J.Monteiro, S.Devadas and J.K.White, “Estimation of average
switching activity in combinational logic circuits using symbolic sim-
ulation,” IEEE Transactions on CAD, vol. 16, no. 1, pp. 668 – 670,
1997.

[12] K. Parker and E. Mccluskey, “Analysis of logic circuits with faults using
input signal probabilities,” IEEE Transactions on computer, p. 321, jun.
1995.

[13] K. Parker and E. McCluskey, “Probabilistic treatment of general com-
binational networks,” IEEE Transactions on CAD, vol. C-24, no. 6, pp.
121–127, 1975.

[14] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco., “Estimate
of signal probability in combinational logic networks,” in First European
Test Conference, 1989, pp. 132–138.

[15] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic
circuits,” IEEE transactions on CAD, vol. 28, no. 1, 2009.

