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ABSTRACT
In typical enterprise networks, a large fraction of ports see
utilization of less than 5% at peak times and close to zero
utilization otherwise. Therefore, the normal architecture of
one switch port per end-host is very wasteful because of the
need for high port density switches to support numerous end
users. In this paper we propose merging traffic from multiple
end-hosts and feeding that to small port density switches
that can replace the high port density switches. The energy
savings from such a redesign are significant. The innovative
part of this paper is the design of a low-power Merge network
that is used to merge traffic from N incoming links to be fed
to K switch ports and for sending traffic from the K-port
switch to N links. Further, we present algorithms to enable
network designers to re-architect their networks using the
merge network, and a feasibility study using our College of
Engineering network as a working example to illustrate how
this approach would work and the resultant energy savings
of almost 47%.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers; B.4.1 [Data Commu-
nication Devices]: Interconnections

General Terms
Design, Experimentation

1. INTRODUCTION
Concerns about energy consumption in the Internet has prompted
significant research activity recently. The focus of much of
the work has been on reducing energy costs of data centers
[15, 11, 12], incorporating energy as an optimization metric
in network-level route optimization [19, 8, 17], and reducing
energy consumption at the link level by rate adaptation and
sleeping [10, 6, 9, 16, 7].

In this paper we examine the problem of energy efficiency as
it relates to enterprise networks. These networks are highly

under-utilized with most switch ports often seeing less than
5% load on average [10, 14]. The approach we investigate ag-
gregates traffic from multiple links prior to feeding them to
a switch. This merge stage or merge network is a separate
entity that performs real-time traffic aggregation allowing
us to replace present-day high port density switches with
switches having far fewer ports. This automatically reduces
energy use in both the chassis as well as the line cards while
ensuring that end users see no degradation of service. Spe-
cific contributions in this paper include:

• Design of the Merge network and a prototype hardware
realization of a small merge network that merges 4
links into 2.

• Introducing a Merge network at a switch has the un-
fortunate drawback of eliminating the 1-1 mapping be-
tween end systems and switch interfaces. This causes
many link layer protocols to fail. We present the de-
sign of a port virtualization software module in Click
which allows us to restore this 1-1 mapping.

• We study the question of selecting appropriate merge
network/switch combinations in order to maximize en-
ergy savings while meeting a loss constraint.

• We show that using our approach in our College of
Engineering network can save up to 47% energy.

The remainder of this paper is organized as follows. The
next section provides a brief review of related work with
particular focus on energy measurements of entire switches
which is relevant to the work described here. In section 3
we provide details of our own college-wide network and the
traffic loading summary seen on individual links. Following
that, section 4 describes the design of the Merge network
as well as design of the port virtualization in section 4.3.
Section 5 presents the algorithm for traffic aggregation using
the merge network. Later in section 6 we demonstrate the
potential savings possible if traffic is aggregated using our
approach.

2. RELATED WORK
Priya et al [14] provide a comprehensive measurement of
traffic per port and energy consumption for switches in an
enterprise network. While the specific topology of the net-
work and the switch types are not provided, the results
are nevertheless very enlightening. Their network has 90



switches (of four types) with chassis power varying between
55 – 150 W. The total number of ports across all switches is
6710 of which 716 were disabled. Their observations show
that the average utilization among a majority of active ports
was under 5% with a standard deviation of less than 20.
Roughly 13% of the ports showed zero throughput. The av-
erage network power consumption for the 6-day observation
period was 18,229 W with only a 5% variation with traffic.
Our own measurements of loading patterns in our network
support these results, as we show later in section 3. The
singular conclusion we can draw is that enterprise networks
are highly over-provisioned and consume very large amounts
of power while doing little work. However, given the current
switch design and Layer 2 protocols, there are few options
(i.e., each end device needs its own dedicated port thus re-
sulting in expensive high port-density switches) in how to
reduce energy draw.

Sleeping and rate adaptation at switch interfaces have been
studied as two ways to reduce energy consumption. How-
ever, savings using these techniques is limited due to the
energy consumption breakdown within switches. For exam-
ple, Chabarek et al [8] provide energy measurements of two
Cisco routers – a GSR 12008 and a 7507. In the case of the
GSR, their measurements show that the chassis alone con-
sumes 200W of power. When we add a network processor
and the switch fabric, the power draw increases to 500W. If
we add two four-port Gigabit Ethernet cards, the cost goes
to 650W. Broadly, the energy cost splits as: chassis 30%,
fabric 46%, and interfaces 24%. Thus, even with perfectly
optimal sleeping, we can at most power off the interfaces on
the linecards yielding less than 24% savings. Note that we
cannot power off linecards arbitrarily since it takes a few
seconds for them to come online again resulting in either
high latency or high packet loss. In order to allow linecards
to be put to sleep, we developed a sleeping algorithm [18] in
which traffic is moved from interfaces on sleeping linecards
to interfaces on linecards that are powered on. That does
allow us to get close to optimal sleeping performance (for
example, 24% savings in the above example).

The approach studied in this paper replaces high port den-
sity switches with small port density switches that use sig-
nificantly less power. Simultaneously, in order to support
a 1-1 mapping between end systems and switch interfaces
(necessary for layer 2 protocol compatibility), we introduce
a Merge network and a port virtualization software within
the switch to maintain the 1-1 mapping. As we will show,
this yields dramatic savings in the enterprise and far higher
savings than are possible with sleeping algorithms alone.

3. TRAFFIC CHARACTERISTICS OF OUR
NETWORK

In order to motivate our approach as well as provide an
environment for testing, we conducted a study of the Col-
lege of Engineering network. The topology of the network
is shown in Figure 1. All the edge switches are connected
to workstations and most of the edge switches are actually
stacked switches. In some cases, pairs of switches/routers
are connected by more than one link. The overall summary
of the number and type of switches is given in Table 1 (all
the switches are Cisco switches). The table also summarizes
the energy draw of each switch type at maximum through-

put and at 5% throughput. As is evident, there is only a
11% difference between these two numbers in the grand to-
tal. The implication is that even though the 3750 series
of switches are designed to be energy efficient, their energy
consumption does not scale with load.
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Figure 1: Topology of Studied Network.

Switch Number of Power at Power at
Model Switches Max Tput (W) 5% Tput (W)

3750 G-24TS 3 169 134
3750 48TS 33 66 60

3750 G-48TS 20 152 134
3750 24PS 1 57 55
3750 24TS 1 45 41
3750 G-12S 2 100 75
3750 G-24T 1 98 86
3550 12G 1 190 190

Grand Total (Max/5%) = 6,315/5,584W

Table 1: Overview of switch type.

As part of a larger study on enterprise networks, we collected
traffic traces over the course of a work day mid-week for all
the interfaces at all the ports. The results of that study in-
cluding a detailed analysis will be forthcoming but for our
purposes in this paper, we are mainly interested in peak and
average utilization statistics as a motivation for the merge
concept. In Figure 2 we provide a CDF of the per-port uti-
lization seen (ratio of total up and downlink traffic divided
by bandwidth of connection) for the top 20% of the ports.
As is evident, the ports tend to be very under utilized with
more than 95% showing a utilization of well below 2%. The
ports showing a greater than 8% utilization are connected
to servers and to other switches. In Figure 1 each switch is
made up of one or more stacked switches – we compute the
peak utilization through all the switches per set of stacked
switches and plot a CDF of that in Figure 2 as well. The
peak utilization is computed by dividing traffic through each
switch into 1s buckets and taking a maximum of the ratio
of the total throughput during a bucket and the maximum
possible throughput through the active ports on that switch.
Not surprisingly, the peak utilization is 25% for one switch
and well below 10% for all the rest.
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Figure 2: Utilization of the top 20% ports in the
network as well as switches.

A conclusion of this study, which is also supported by [14], is
that enterprise networks tend to be heavily over-provisioned.
The design of the networks is guided by the need to provide
connectivity to end users and given the manner in which
switches are designed (i.e., one port per end host) there is
little choice in how the topology evolves.

4. TRAFFIC AGGREGATION
Given the very low utilization of most ports on a switch,
our approach calls for merging traffic from multiple links
and feeding the merged stream to a switch with fewer ports.
Figure 3 illustrates the idea behind traffic aggregation. As
shown, traffic to/from N links are merged to K thus reduc-
ing the required port density of the switch from N × N to
K ×K. As an example, if we merge 48 100Mbps links to 24
using a 48 × 24 merge network, we can replace the 48-port
switch with a 24-port switch resulting in energy savings. Of
course, there are several issues that need to be dealt with
in order for this concept to work. A N × K merge needs to
have the property that if at most K packets arrive on the
N uplinks (i.e., from the N links into the switch) then there
are no packet losses and they are all forwarded to the K
port switch1. On the other hand, if more than K overlap-
ping packets arrive then the earliest K get forwarded while
the remaining are dropped. On the downlink (i.e., from the
switch to the N links), the merge network needs to be able
to forward packets from any of the K switch ports to any of
the N downlinks and be able to forward up to K downlinks
simultaneously.

An important requirement of the merge network is that
it operate entirely in the analog domain. In other words,
the merge network in no sense ‘receives’ packets. Rather,
it operates much like a railroad switch where a train is
switched from one line to another – the train is not received
or buffered before being forwarded. It simply takes an al-

1Note that if we use hubs, packets arriving at overlapping
times will all be destroyed which is one reason that we need
to design a special merge stage network. Also, most hubs
simply repeat a packet to all other links which is undesirable.
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Figure 3: Reducing switch port density.

ternative path. We do the same thing in our merge network
where packets are dynamically switched to follow some path
through the merge network. The reasons we chose to build
the merge network in this manner are threefold: this de-
sign ensures very small latency, the energy cost of the merge
network is minimal and this design allows us to make the
merge network relatively transparent to the PHY and MAC
layer protocols. In the remainder of this section we describe
the uplink merge network, the downlink merge network and
finally the port virtualization implementation needed to per-
form the N : K mapping correctly to allow layer 2 protocols
to function.

4.1 Uplink Merge Network
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Figure 4: A 4 × 2 uplink merge network.
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O1 is the preferred output. The earliest packet is always sent to O1 
and if there is a second overlapping packet, that is sent to O2.

Figure 5: Operation of a selector.

The goal of the uplink merge network is to forward up to K
packets from N incoming links to the K switch ports. An
example of operation of a 4×2 merge network is provided in
Figure 4. Here we have four incoming links labeled a – d and
two switch ports 1 and 2. If a packet arrives at interface d
followed by a packet along interface a (overlapping) then the
expected outcome is that d’s packet is sent to switch port 1
and a’s packet is sent to port 2. Any other packet arriving



at a time when switch ports 1 and 2 are busy should be
discarded without colliding with the transmissions already
in progress.

In order to build such a N × K merge, we need a special
hardware element we call a selector whose functionality is
illustrated in Figure 5. There are 2 incoming links and two
outgoing links. If a packet arrives on only one of the two
incoming links I1 or I2, it is always forwarded to the same
outgoing link O1. However, if packets arrive along both
incoming links then the earlier arriving packet is sent out
along O1 while the later packet is sent out along O2. Given a
selector circuit, it is now a simple matter to construct a N ×
K merge that behaves as discussed above. Consider again
Figure 4 that shows the implementation of a 4 × 2 merge
using 5 selectors. The solid lines in the example indicate
output O1 of the selector while the dotted line is output O2

of the selector. In this example, if more than two packets
overlap then all but the first two are dropped. The earliest
arriving packet is sent to output link interface 1 and the
second earliest packet is sent to interface 2. The general
design of a N × K merge is a simple generalization of this
example. A log N depth binary tree made up of selectors
gives us a N×1 merge. Next, we take all the N−1 deflected
outputs O2 (dotted lines from s1, s2, s3 in Figure 4) of all
the selectors and form a binary tree with those to get a
(N − 1) × 1 merge. This process iterates K times to create
a N × K merge network.

An important question that arises is that of the optimality
of the merge network as well as measuring its complexity.
The complexity of the merge network can be specified by two
numbers – the depth of the network and the total number
of selectors used. For the network shown in Figure 4, the
depth is 3 while the number of selectors used is 5. We assert
that this is the optimal solution in that no other design will
have fewer levels or fewer selectors.

Theorem 1: The minimum depth of a N×K merge network
is log2 N + K − 1 and the number of selectors needed is
PK

i=1(N − i).

Proof. Consider a N × 1 merge first. This can be seen
as selecting the earliest arriving packet out of N possibilities
and therefore we need exactly N − 1 pairwise comparisons
which corresponds to N−1 selectors. If we do a N×2 merge,
then we need to select the two earliest arriving packets. This
can be done by selecting the first packet and then selecting
the second out of the remaining N − 1. Therefore we need a
total of N−1+N−2 pairwise comparisons. This generalizes
in the obvious way and we get a total number of selectors of
PK

i=1(N − i).

Selecting 1 out of N is done most efficiently when the N − 1
comparisons are performed in a balanced binary tree giving
us a depth of log2 N . To select the second out of the re-
maining N − 1 we also do this in a binary tree but the result
of the last comparison of a N × 1 merge is required here.
Therefore, if we get the output of the N × 1 merge at depth
log2 N then the second output of a N × 2 merge can only

be got after performing one additional comparison giving us
depth log2 N + 1. Therefore, for a N × K merge, we get a
depth of log2 N + K − 1.
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Figure 6: Design of a selector.

4.1.1 Hardware Prototype
We built a 4x2 uplink merge network using easily available
hardware. The key part of the merge network is the se-
lector and we illustrate its design in Figure 6 using a very
low power analog multiplexers, the ADG904 [1]. In general,
M : 1 multiplexers switch one of the M inputs to a common
output based on a control signal that is log2 M bits wide.
Figure 6 provides a schematic of the selector circuit – the
selector itself consists of the shaded areas the other parts
of the circuit are common to the entire merge network. As
shown, we use four 2:1 multiplexers with associated control
circuitry. The operation of the selector depends on appro-
priately configuring the four Muxes for individual packets.
Consider the two cases illustrated in Figure 5 and how those
get implemented in Figure 6. For the first case when there
is a single packet arriving along I1, the packet enters Mux
A along input x.A. This Mux is configured to forward the
signal out along output A.y by the control logic whose in-
put is the binary value produced by the current sensors [3].
Simultaneously, Mux B is configured to forward x.B to out-
put B.z (even though there are no packets arriving into B
in this example). Muxs C and D are reversed in opera-
tion (this is done simply by toggling a control bit). In this
example, y.C is configured to connect to the output C.x
and z.D is configured to output to D.x. Consider the sec-
ond example illustrated in Figure 5(b) where we have two
packets coming into the selector at overlapping times. Since
the packet begins arriving at I2 first, the configuration of
the four Muxes is set as follows: x.B → B.y, x.A → A.z,
z.C → C.x, and y.D → D.x. We need current sensors [3]
because packet transmissions are asynchronous and there is
no way for the merge network to know that a transmission
is imminent. Therefore, our solution is to detect the signal
on the wire using a current sensor whose output is fed to the
control logic for appropriately configuring the four Muxes.
A challenge in building the merge network is the signal at-
tenuation as well as the switching time of the Muxes. The
ADG904 [1] model Muxes we used have very low insertion
loss (1.1dB) but a 10ns switching time. This delay means



that 10 bits of the preamble of a gigabit rate 802.3 frame2

will be lost or corrupted since the Mux is in transition. In
this initial prototype, we delay the signal for 10ns by adding
a loop of wire after the current sensors. This gives enough
time for the Muxes to be set.

For the 4x2 merge network we use 5 selectors. Since each se-
lector is made up of four Muxes, we have a total of 20 Muxes
in our design. The energy draw of each Mux is 1.65μW for a
total of 35μW for the Muxes. The additional logic requires
almost 32μW of energy for a grand total of 67μW for the
4x2 merge network. We believe that this energy requirement
can be reduced by an order of magnitude by building the en-
tire circuit in CMOS rather than relying on use of discrete
components as we did. However, even our relatively sim-
ple design shows that the merge network is very low energy
thus supporting our main point that merging traffic will save
energy.

Control Logic

I1 I2 I3
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O1 O2 OK

Σ (N-i)
i=1

K
4 2:1 multiplexers

current sensor

K-port switch
Read state

Figure 7: Design of a merge network for the uplink.

4.2 Downlink Merge Network
Consider now the problem of sending packets from a switch
with K ports to N links. Unlike the uplink merge network,
the implementation here is simpler since we do not have to
select K out of N but rather send packets from one of K in-
terfaces to one of the N links. A simple way of accomplishing
this is illustrated in Figure 8 assuming we have 1 : N multi-
plexers and 1 : K OR gates (the shaded area is the part of
the merge network while the control logic will be inside the
switch). It is easy to see that using this circuit we can send
K packets to K distinct links simultaneously and without
conflict (from K different switch ports). However, in order
for this part of the merge network to work correctly, we need
to embed the control logic within the switch. This is required
because packet headers need to be examined in order to de-
termine which of the N links they must be sent out on and
this function is performed within the switch. Also, since any
switch interface can be configured to transmit packets to any
of the N links, it is easy to cause out-of-order and even con-
flicting transmissions to a particular link (by transmitting
packets for a destination from multiple switch interfaces).
Therefore, we need to ensure that the internal logic of the

2A 802.3 frame is preceded by a 7 byte preamble used for
clock recovery as well as to indicate the start of a frame at
the receiver.

switch and merge network combination is correct. The con-
trol logic for the downlink merge network needs log2 N bits
to control each of the 1 : N Muxes shown in Figure 8. Since
there are K interfaces, this translates to K log2 N bits for
controlling the merge. These address bits are calculated by
the software running in the switch. Building the downlink
merge using off the shelf components is constrained by the
availability of Muxes in limited configurations of 1 : 8, 1 : 4,
and 1 : 2. For instance, each 1 : N Mux can be made using
N − 1, 1 : 2 Muxes for a total of K(N − 1) Muxes. In our
4x2 prototype, we use two 4:1 Muxes for a cost of 3.3μW.

1:N 1:N

K-port switch

K   1:N Muxes

N     K:1 OR gates

Control
Logic

Link 1 Link N

1 K

K:1 K:1

Figure 8: Design of a merge network for the
downlink.

4.3 Port Virtualization
Modern day switches perform complex data forwarding tasks
beyond simple unicast. For instance, switches today sup-
port QoS (Quality of Service) and VLANs (IEEE 802.1P
and 802.1Q), Spanning Tree construction and maintenance
(IEEE 802.1D, 802.1H), link aggregation (IEEE 802.1AX),
port-based access control (IEEE 802.1X), MAC security (IEEE
802.1AE), congestion notification (IEEE 802.1Qau), resource
discovery (IEEE 802.1AB), plus other standard and non-
standard services3. Given this plethora of protocols sup-
ported by switches, we need to understand if these proto-
cols can continue to be supported when we add in a merge
network. To start with, it is clear that by breaking the 1-1
mapping between links and switch interfaces we are poten-
tially causing any number of failure modes for these differ-
ent MAC layer services. For instance, port-based security

3A very brief summary of these standards is as follows.
QoS and VLANs are supported via 4 bytes in the Ether-
net MAC frame that includes 3 bits for priority and 12 bits
for a VLAN tag or identifier. Spanning tree construction
and bridging require the exchange of BPDUs (Bridge Pro-
tocol Data Units) and running a spanning tree construction
algorithm. Spanning trees support group communication for
Dynamic VLANs (MAC based membership) as well as Static
VLANs (port based membership). Link aggregation refers
to combining multiple links between two devices to increase
aggregate bandwidth. Port based access control is a security
mechanism where a new device is allowed full network ac-
cess only after being authenticated by a third party (also in
the network). MAC security is a mechanism that provides
security for connectionless data that allows the detection of
unauthorized frames and dropping them at switches. It also
has built in mechanisms to prevent replay attacks etc. Con-
gestion notification is a mechanism that allows congestion
information to be propagated to a source MAC as well as to
higher protocol layers. Finally, resource discovery is a link
layer mechanism for nodes to learn about the capabilities of
others in the neighborhood via exchange of control packets.



(802.1X) relies on an explicit port-based connection of an
end system to a switch. Similarly, spanning tree construc-
tion and VLAN construction also require an explicit use of
the network topology. Congestion notification is meaning-
less if we no longer have the concept of a 1-1 link between
two communicating end points. The interesting question we
address is how to enable the switch to perform all of its
functions even in the presence of a merge network.

The key solution we develop is that of building a software
layer within the K-port switch called the port virtualization
layer shown in Figure 9. The port virtualization layer is re-
sponsible for mapping packets coming on the uplink to one
of the N virtual ports and on the downlink for scheduling
packets for transmission over one of the K physical ports
to appropriate downstream links. Let us consider the com-
plexity of both of these operations in turn. On the uplink, it
is essential that a packet which arrives along link n (where
1 ≤ n ≤ N) be sent to virtual interface n regardless of
which physical switch port k (1 ≤ k ≤ K) it actually ar-
rived on. This mapping is needed to ensure that security
protocols like 802.1X and other protocols for spanning tree
and VLANs work unchanged. In our solution, the uplink
control logic reads the Mux control bits of all the Muxes in
the uplink merge network and infers the link that a partic-
ular packet arrives on. To explain this further, consider the
4× 2 merge network from Figure 4 again. The five selectors
in the figure are named s1 – s5. As shown in Figure 5, each
selector has one preferred output (O1). Therefore, we can
represent the state of a selector using one bit as follows: if
I1 is sent to O1 (by default, then, I2 is sent to O2) we denote
this by 0 and if I1 is sent to O2 (and I2 is sent to O1) we
denote this by 1. This state representation is unique and
maps uniquely to the control bits of the four Muxes that
make up the selector. Table 2 lists the state of the five se-
lectors for a given link (a, b, c, d) to switch interface (1 or 2)
mapping. Say a packet is arriving at interface 1 of the switch
and interface 2 is idle. If the selectors s1 and s3 are in state
0 with the others IDLE (denoted by X in the figure), then
we can infer that the transmission is coming in from link a
because selector s1 needs to be in state 0 so that a’s packet
is sent out along O1 and s3 also needs to be in state 0 for
the same reason. The mapping of a → 2 however can occur
in two ways – s1 → s4 → s5 or s1 → s3 → s5. If two or
more of the four uplinks are actively transmitting, we can
determine which two make it to the switch’s two interfaces
by examining the setting of the five selectors in Table 2. For
example, c → 1 and d → 2 will be inferred by the state,
s1 = X, s2 = 0, s3 = 1, s4 = 1, s5 = 1 (we are taking an OR
of the two rows from the figure).

In Figure 9, the function of the various modules is as fol-
lows: The uplink port mapper reads the selector state of all
selectors in the uplink merge network and determines which
virtual port each packet in each of the K interfaces belongs
to. This packet is then sent on to the appropriate virtual in-
terface. The downlink control logic and downlink scheduler
work hand in hand. When a packet is picked for transmis-
sion from some virtual port (say n) it is sent to a physical
interface k. Just before interface k transmits the packet, the
downlnk control logic sets the control bits of the associated
downlink Muxes so that the packet is sent out along link n
correctly.

Port Virtualization

N virtual ports

K actual ports

to downlink merge network
mux control inputs

control downlink
packet transmission

Normal protocol
implementation

802.1P, 802.1Q
802.1AX, 802.1X,

802.1Qau, 802.1D etc.

Downlink
Scheduler

Downlink Control Logic

Uplink Port
Mapper

map packets
to virtual ports

read selector state
of uplink merge

Figure 9: Software architecture of a switch with a
merge network.

s1 s2 s3 s4 s5

a → 1 0 X 0 X X
a → 2 0 X 1 X 0

1 X X 0 1

b → 1 1 X 0 X X
b → 2 1 X 1 X 0

0 X X 0 1

c → 1 X 0 1 X X
c → 2 X 1 X 1 1

X 0 0 X 0

d → 1 X 1 1 X X
d → 2 X 1 0 X 0

X 0 X 1 1

Table 2: Determining the link (a − d) that a packet
arrives from into switch ports 1 or 2.

Given a port virtualization as described, most of the existing
MAC layer services can be implemented without any con-
straint since the merge network is completely transparent
and the N virtual ports are mapped 1-1 to N actual links.
However, any data traffic that requires QoS guarantees may
be affected at high loads (we have not studied this issue in
detail yet). The implementation of virtual ports also helps
with PHY layer mechanisms including auto-negotiation and
fault tolerance. Typically, if no packet or electrical pulses
are received on an Ethernet link for 50-150ms then the link
is considered down. As a result, pulses are sent at some
rate (normal or fast) to serve as a keep-alive signal in all
networks. In addition, however, the pulses can be sent at
a fast rate and used to encode binary information (called a
link code word) that enables the two end-points to perform
some handshaking. In our modified architecture, the proto-
col works as-is for the uplink direction due to port virtualiza-
tion. On the downlink, however, the K physical interfaces
need to broadcast these pulses to all of the downlinks. A sec-
ond aspect of this signalling is rate negotiation on the link
whereby the two end points agree on a transmission rate
(10/100/1000). The IEEE is close to voting on the IEEE
802.3az [4] standard that allows pairs of nodes on a link to
switch rates based on loading. This protocol can be run even
with the merge network but, since a packet may be routed



to any of the K switch interfaces, we need to switch the rate
of all N links simultaneously.

4.3.1 Implementation
We use a 2-port Click-based router [2] as the experimental
platform for studying the Merge network implementation.
The 4x2 merge network hardware is connected to the two
gigabit interface cards on the PC running Click. We also
use two 32-bit PCI Digital I/O cards for uplink and down-
link control of the merge [5]. Within Click, we have built a
4-port port virtualization layer that essentially implements
four pairs of queues in the kernel (one per interface). Packets
from the uplink arriving at either of the two interfaces are
appropriately queued at one of the four queues before the
802.3 protocol is called. For the downlink, packets are sent
from one of the four queues to either of the two interfaces
after a short delay to allow the Mux state to be set. In our
current implementation we have only tested the basic 802.3
protocol (default implementation that is publicly available)
for low load conditions. For low loads up to 20% per link,
we do not see any packet loss in the merge network in the
switch.

5. SELECTING THE RIGHT MERGE NET-
WORK

As our discussion above has shown, building a very low-
power merge network is possible. Therefore, the natural
question that comes up next is, how do we use merge net-
works in enterprise LANs? The question can be phrased
specifically, for example, given a 144 port switch (or stacked
switch), should we replace it with a 144× 48 merge network
and a 48-port switch or can we go to a 144 × 24 merge net-
work and a 24 port switch? In answering this question we
need to be mindful of the following constraints:

1. For current and projected traffic characteristics, packet
loss in the merge network needs to be kept below some
threshold. Thus, the maximum degree of merging that
still meets the loss constraint would be a good choice.

2. Switches tend to be replaced with newer models after
some number of years (commonly 5 years). Thus, se-
lection of a merge network/switch combination needs
to satisfy the loss constraint for this length of time
after which a new configuration will be deployed.

3. We are constrained in our selection of the merge net-
work by the limited availability of switches. Thus,
most common switch configurations have 12, 24, or
48 ports. If the traffic can be merged to K = 18 ports,
we will need to select a 24-port switch. Thus resulting
in lower energy efficiency.

4. Some switches offer additional services such as power
over Ethernet that are required at certain locations
in the enterprise. Thus, we are further constrained
in which merge network/switch combination will be
feasible in those locations.

Packet losses in the merge network occur (on the uplink)
when more than K overlapping packets arrive from the N
links. To estimate the loss probability for a given K, we

can use Erlang’s B formula [13] if the merged traffic follows
a Poisson distribution and if packet lengths are exponen-
tially distributed. The reason this is possible is because the
K switch ports can be viewed as servers in a queueing sys-
tem. We thus get a K-server loss system where packets get
dropped if all servers are busy. The loss probability then is,

ploss(N × K) =
ρK/K!
PK

l=0 ρl/l!
(1)

where ρ = λ/μ with λ being the aggregate arrival rate from
N links and μ is the mean service rate (packet length). Then
the merge is feasible if ploss(N × K) ≤ α, ∀i, 1 ≤ i ≤ m.
where α is the maximum acceptable loss. In Figure 10 we
plot the minimum K required for a given aggregate load ρ
to meet a loss constraint of α = 0.001. For example, for
a mean load λ of 10 we need K = 15 ports. If we assume
that the maximum loading of a link is 5% (section 3) this
means that we can merge 200 links to K = 15 ports while
still meeting the loss constraint (assuming, of course, that
the aggregate traffic model is Poisson).

0 10 20 30 40
5

10

15

20

25

30

35

40

45

 p (aggregate load)

K

Minimum K versus aggregate load  p for max loss of 0.001

Figure 10: Minimum K as a function of total load
for maximum loss probability of 0.001.

5.1 Unknown and Non-Identical Distributions
In reality, the traffic model from each of the incoming links is
different, unknown, varies over the course of a day, and tends
to be very bursty. Therefore, the discussion above cannot
be directly used to design an appropriate merge network.
However, a solution we implemented uses traffic shaping
techniques at the upstream interfaces such that the traffic
flowing along each link is approximately Poisson. We then
design the merge network assuming some maximum loading
of each of the links and apply the Erlang formula to find K.

Traffic shaping has been well-studied in the context of Diff-
serv networks, ATM networks and access networks where
QoS guarantees are mandated by ISPs. Among the vari-
ous hardware challenges in implementation of traffic shap-
ing are increased buffering requirements and the overhead
of maintaining state to create the appropriate output traffic
model. However, in our case, since we are primarily consid-
ering links connecting end-hosts to switches in an enterprise
network, the problem of buffering large amounts of data at



the network interface does not arise and traffic shaping is
easy to implement. We implemented a simple algorithm in
the Linux kernel where we modified the driver to initiate
copy to the gigabit interface card only when a flag is set.
The flag is set or reset based on a model of the output traf-
fic pattern that is maintained in the kernel. We examined
the resultant traffic arriving at the switch port for loads of
up to 30% and see a very good fit to the Poisson distribution.
A consequence of performing this form of traffic shaping is
the increased latency. However, this value remained well
below 10μs for all packets across all loads. One important
note, however. Since load is very bursty, the output Poisson
process has a time varying mean λ(t) that is piecewise con-
stant. Figure 11 provides one example of the traffic shaping
applied to real-time traffic from one end-host. The plot at
the top is the original trace that is obtained by capturing the
times when write() is called. However, we inserted a shim
layer where these writes are trapped so as to enforce traffic
shaping. The second trace is based on the actual time when
the NIC card transmits packets after the traffic shaping op-
eration. The third traces plots the time varying λ(t) for the
output process. It is clear that the very bursty original trace
is far better behaved after shaping.
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Figure 11: Traffic shaping for one link.

For downlink traffic, from the switch to a end-host, note that
packet loss is low because the switch automatically buffers
packets going out the interfaces if all the interfaces are busy.
The only occasion we see packet losses is if there is a long
sustained burst of traffic for more than K end hosts (for a
N × K merge) such that internal memory overflows at the
switch.

6. CASE STUDY: COLLEGE OF ENGINEER-
ING NETWORK

In order to demonstrate the effectiveness of traffic aggre-
gation and the application of our algorithms, we use the
network from Figure 1 as our model. We consider how
much energy will be consumed if we were to replace exist-
ing switches with smaller port-density switches using merge
networks such that packet losses are kept below 0.001 per
link. The approach we follow considers each of the 20 edge
switches in Figure 1 individually. The energy consumption
of the merge networks is derived by simply extrapolating the
energy cost of selectors that we have currently fabricated
and multiplying that with the number of selectors needed

(Theorem 1) plus a 10% increment to account for the cost
of control logic. We note that even for the largest merge
network of size 144 × 48 the energy cost was below 0.1W.

As we see in Figure 2, the average utilization of the ports
is below 2% for 95% of the cases. Therefore, for our study,
we use a figure of 10% utilization per port as the target and
design the merge network(s) on that basis. We assume that
the traffic is Poisson (using traffic shaping) and then apply
the Erlang formula to find the optimum K to save energy.
Table 3 summarizes the results of this optimization.

The first column in the table lists the 20 different switches
from Figure 1 while the second column indicates the original
switch configuration (in some instances there are as many
as five stacked switches). The energy numbers shown next
are derived from the Cisco data sheets. For each of the 20
switches, we compute a merge such that the target loss rate
of 0.001 is maintained. If we compare the final figures, we
see a reduction of energy needs from 4264W to 2274W or a
47% reduction. We could have achieved even greater energy
savings but are constrained by the limited availability of
switches (i.e., limited port combinations).

7. CONCLUSIONS
The paper discusses the idea of merging traffic from end-
hosts prior to feeding them to a small port density switch.
Doing this allows us to obtain at least 47% energy savings in
our College network. An important implication of this work
is that enterprise networks can be made very lean by using
the merge networks. Given the fact that enterprise networks
form a large component of the Internet, this degree of energy
savings has enormous global impact. As part of our ongoing
work, on the hardware side we are continuing to build a
more energy efficient merge networks in CMOS while on the
software side we are modifying the kernel of Click to allow
us to implement other Layer 2 protocols as discussed in the
paper.
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