
1

TIME-SPACE MULTICAST FOR INEGRATED SENSOR/BATTLESITE NETWORKS

Hu Zhou and Suresh Singh
Department of ECE

Oregon State University

Abstract— An important objective of tactical ad hoc networks is to deliver
threat information from sensors to shooters efficiently and quickly. The informa-
tion sent to a particular shooter should contain warnings about threats that are
within some distance and/or within some time of the shooter’s current location. In
this paper we develop a novel multicast model that distributes this form of threat
information in a message efficient manner. We present results from detailed sim-
ulations that demonstrate the efficiency of our protocol and discus the scalability
of this model to larger networks.

I. INTRODUCTION

In battle, shooters need to be constantly informed of impending
enemy threats and information such as time-to-threat, distance-
to-threat and type-of-threat must be presented to them in a timely
manner. This type of information is typically gathered by sen-
sors and uploaded into the ad hoc battlesite network(s). It is then
the task of the network protocols to then send this information to
shooters (in addition to warfighters, etc.) in a timely manner. The
multicast model we discuss in this paper is concerned with dis-
tributing threat information to shooters based on their individual
time and distance to threats. In other words, a shooter is typically
most interested in immediate threats (within, say, a ten minute
time horizon) rather than in more distant threats (that may be an
hour away). Therefore, the multicast protocol must forward data
to the individual shooters based on their individual time/distance
to different threats in the battlespace. This requirement is unique
and distinguishes our time-space multicast model from all other
multicast models (section II).

In order to describe the problem of T-S multicast, it is helpful
to consider a simple example. Figure 1 illustrates two hypotheti-
cal views of the battlespace that could be presented to the shooter.
The first view indicates the distance to different types of threats
and the second view indicates the time to different threats. Thus,
there is a gas cloud three miles away but, due to the wind direction
and speed, it is less than one minute from the shooter. Likewise,
the helicopter is over five miles away but, because of its speed, it
will pose a threat in between one and five minutes. The informa-
tion most relevant to the shooter can thus be classified as:

� the location of all threats that are within t seconds of the
shooter’s current position, and

� the location of all threats that are no more than d meters away.
It is noteworthy that shooters will dynamically change the t and
d specifications depending on battle conditions and, furthermore,
different shooters will typically have different t and d specifica-
tions. Thus we see that delivering information from sensors to
shooters in a way that satisfies each shooters t and d specifica-
tions is a non-trivial problem.

A. Challenges

In order to explain the challenge in building a multicast proto-
col that satisfies the t and d specifications of different shooters, let
us look at some examples. For the sake of clarity, let us initially
assume that the t and d specifications for all shooters is the same.

5 miles

3 miles

1 mile

1 minute

5 minutes

10 minutes

(a) Distance to threat

(b) Time to threat

Gas

Gas

Fig. 1. Two views of the battlespace presented to the shooter.

Consider Figure 2. Assume that a sensor detects a gas cloud in
the area and determines that the wind is blowing from the east.
In this case, the sensor needs to multicast this information in the
westerly direction only. If the wind changes direction and begins
blowing from the south west, however, the sensor will need to
multicast its information to receivers located in a north easterly
direction. Thus, the direction of the threat influences the conduct
of the multicast. A second consideration here is how far should
this information be propagated in the network? In Figure 2, every-
one in region A needs to be warned (if we assume t = 10minutes)
but region B is not in immediate (i.e., ten minutes) danger so there
is no need to extend the multicast to nodes here.

Let us consider another situation , illustrated in Figure 2, where
a car is travelling towards the gas cloud at speed. Here it is neces-
sary to ensure that the multicast reaches the car because it will be
in danger within 10 minutes. Unfortunately, however, the sensor
does not know about the existence of the car and cannot include it
in its multicast. Thus, there is a need to extend the multicast from
the sensors so that mobile nodes, such as the car, also receive the
information even though they are initially far away. One method



2

of ensuring that the multicast reaches the car is to extend the mul-
ticast to region B. Unfortunately, this represents a high message
cost.

Wind Direction

Within 10 minutes
(warn everyone)

AB

(Gas cloud)

Sensor

No immediate
danger

Multicast from sensor
only needs to reach region
A and the car

Fig. 2. Multicast coverage of information generated by a sensor.

Before we discuss an approach to solving this problem, how-
ever, we need to consider one final aspect of the model, viz., the
effects of the enemy weapons on the conduct of the multicast.
An enemy shooter (on foot) may not pose a threat to a tank but
will pose a threat to other similarly equipped shooters who come
within, say, two hundred meters. On the other hand, an enemy
aircraft that is far away and that may not even be on an intercept
course will pose a threat to the tank because of the aircraft’s abil-
ity to fire smart air-to-surface missiles. Thus, when identifying
threats that are t seconds or d distance away, it is important to
consider the “strike range” as well as the effectiveness of such
weapons.

Wind Direction

Within 10 minutes
(warn everyone)

A

(Target - Gas cloud)

Sensor

No immediate
danger

C

Receiver

Fig. 3. Multicast data collected by a receiver via receiver-pull.

In summary, a shooter needs to have information about threats
that are within time t seconds or within distance d. This informa-
tion is affected by two factors:

� The relative velocity of each enemy w.r.t. the shooter, and,
� The strike range and effectiveness of the enemy weapon.

The information regarding threats is collected by sensors and then
needs to be multicast to all those who need it (based on t and d

specifications). This problem of multicast is made difficult be-
cause:

� The sensors do not know the composition of their multicast
groups since group membership is based on the t and d spec-
ifications of individual receivers.

� Changes in the troop/threat deployment changes the t and s

specifications.
Our approach for developing a solution to the T-S multicast

problem discussed above is to use a sensor-push receiver-pull ap-
proach. Here, sensors push the information out into the network to
some distance and receivers then pull relevant information from
the network satisfying their time-space mandates. In Figure 3,
for instance, the sensor pushes out the information about the gas
cloud into region A. The tank sends a request for information
ahead of it to nodes within distance vt meters (the tank’s speed
is v meters/sec). In Figure 3 this is represented by region C. All
multicast information available to nodes in region C is forwarded
to the tank. Thus, if there is any node in the intersection of regions
A and C, information about the gas cloud will get forwarded to the
tank. We will expand this idea in section III.

B. Overview of the paper

� In section II we describe other multicast protocols for ad
hoc networks and describe how our time-space model dif-
fers from them.

� Section III describes our multicast protocol in detail.
� We present results of simulations in section IV.
� The work reported in this paper is ongoing and we describe

our current research focus in section V.

II. RELATED WORK

Recently several authors have begun developing multicast pro-
tocols for ad hoc networks. The primary challenge they have
attempted to solve has been to construct and maintain multicast
trees despite topology changes. Some examples of these proto-
cols include, AMRoute (Adhoc Multicast Routing) [1], ODMRP
(On-Demand Multicast Routing Protocol) [3], AMRIS (Ad hoc
Multicast Routing protocol utilizing Increasing id-numberS) [4],
and, CAMP (Core-Assisted Mesh Protocol) [2]. AMRoute and
AMRIS build multicast trees to forward data while ODMRP and
CAMP use mesh structures to forward multicast data.

Unlike these protocols, the T-S model proposed in this paper
is very different because, in our case, the multicast receivers of
a data stream are determined based on the data contents of in-
dividual data packets (recall that a receiver only wants to receive
data that informs it of impending threats defined in time or space).
As the data content from a sender changes, so does the multicast
group! This feature of our model makes it unique as well as ex-
tremely powerful in the military context where the goal is to maxi-
mize message efficiency while ensuring that the sensor-to-shooter
distance is minimized.

III. DESCRIPTION OF THE T-S MULTICAST PROTOCOL

Our multicast protocol is based on the idea of sensor-push and
receiver-pull. Sensors detecting threats send a limited broadcast
message into a small region that lies in the path of the threat and
individual receivers then pull threat warnings from nodes that lie
in the direction of their travel. This push-pull strategy works effi-
ciently because we reduce the number of unnecessary threat warn-
ing messages by ensuring that the only nodes that need to receive
the warning receive them.

For an efficient implementation of the push-pull approach, we
view the battlefield as being divided into geographic regions as



3

shown in Figure 4. These regions are virtual and are only used for
improving the message efficiency of our protocol. It is important
to note that the regions do not need to be of the same shape or even
size. The specific form of regions will be based on the density of
nodes within the region, terrain characteristics, and node mobility
constraints.

River

Regions
or Blocks

Battlefield

One node in each
region is the designated
‘‘leader’’ who maintains
push’ed threat information

Terrain and node density
dictate the shape of these
regions. In this example
the river forms a natural
boundary for adjacent
regions.

Fig. 4. The battlefield is viewed as being made up of regions.

Within each block one node is chosen to be the “leader”. This
node maintains a list of all threat warnings received via push mes-
sages and is responsible for responding to pull requests as well.
We will discuss these two parts of the protocol in sections III-A
and III-B. Section III-C describes the leader maintenance proto-
col.

A. Push Protocol

Warning messages regarding threats are generated by sensors
as and when a new threat is detected or the disposition of a known
threat changes (e.g., it changes direcion). Thus, when a sensor or
a collection of sensors detects the presence of a threat, the sensor
generates a limited broadcast message for nodes that will lie in
the projected path of the threat. Consider Figure 5 where, for the
sake of clarity, we assume that the blocks are all identical rectan-
gles. When a tank threat is detected, the sensor(s) that detected
the threat need to inform nodes that lie in the path of the tank of
a possibly imminent attack by the tank. In the figure we indicate
that the extent of this warning push message extends out to blocks
that lie within distance s(�k+��). Here s is the speed of the tank,
�k is a constant and denotes the time specification that is used by
tank sensors to determine the extent of the push. In our simula-
tions we use a value of �k = 300 seconds and the interpretation
is that the push informs nodes that are no more than 5 minutes
away from encountering the tank threat. The �� factor is an error
factor (and is also a constant) that ensures that more rather than
fewer nodes get informed of the threat.

Direction
of travel
of Threat

Strike
zone of
threat

Speed of threat * (τ + ∆τ)kPush Region

a

b

Fig. 5. A push is generated ahead of the tank.

We can now state the push algorithm as follows:
Algorithm : Push

� When a sensor detects a threat it determines the projected
velocity vector for the threat k. Let s denote the speed of the
threat.

� Let �k represent the time specification used by the sensor
to push information for the threat. The value �k might be
different for different types of threats.

� The sensor (or sensors) send one THREAT WARNING mes-
sage to each of the leaders of the blocks that lie within the
rectangular area with length s(�k +��) and width equal to
the strike range of the threat. The rectangle is oriented in the
direction of motion of the threat.

� Each leader receiving the THREAT WARNING message
broadcasts it within their groups. The THREAT WARNING
message includes the nature of the threat, velocity, and any
other information (e.g., confidence level of the sensor in pro-
jecting the threat’s motion).

� Whenever the threat changes direction or moves a distance
such that the furthest block warned is less than s�k distance
away from the threat, a new push message is sent to blocks
that are within s(�k +��) distance of the threat. In Figure
5, after the tank moves through one (or two) blocks in the
indicated direction, a new push is generated to cover blocks
a and b.

B. Pull Protocol

The push algorithm as described above succeeds in sending
threat warnings to nodes that are within �k of the threat. How-
ever, nodes that are moving towards the threat (and are further
away than s(�k + ��) of the threat’s position) or nodes that are
far away but have a large time/space specification need to pull
the threat information in order to be appropriately warned. For
the sake of clarity we will use the example illustrated in Figure
6. Here, the node on the bottom left is moving at some speed sn

and in time tn it will be in block A. Assume that threats located
anywhere within the dotted box can attack nodes located in block
A. The algorithm we use for generating pulls is as follows:

Algorithm: Pull
� Let a node’s time specification be tn (the same algorithm

works if we use a node’s distance specification). In other
words, the node needs to be warned of all threats it considers
threatening that it could encounter within time tn.

� Let the node’s speed be sn. Therefore in time tn it will be
located in a block that is sntn distance away (in Figure 6 this
corresponds to block A).

� The node sends a PULL REQUEST to the leader of the block
it expects to be in after time tn. In Figure 6 this corresponds
to block A. The PULL REQUEST contains the node’s ve-
locity vector as well a specification of threats the node needs
to be warned about (for example the pull request may only
indicate tanks as potential threats).

� The leader from block A sends back all the information it has
about threats that will lie within the dotted region of Figure
6 at time tn hence. It is, however, likely that the leader may
only have incomplete knowledge about threats that are tn

time away. In this case it needs to initiate additional pulls as
follows:

– Let smax
k

represent the maximum speed of threats of type
k.



4

– The leader sends a pull request to leaders of blocks that are
located distance s

max

k
tn away (as shown in Figure 6).

– Leaders of these blocks determine if threats they are aware
of will lie in the dotted area (Figure 6) tn time hence. If so
they respond with that information to the leader of block
A. The leader of block A then forwards this information
to the requesting node.

� Finally, all pull requests are sticky with a TTL field (Time
To Live). This means that once a leader gets a pull request,
it holds on to it until the TTL field expires. Meanwhile, if
there is any new threat information, it forwards that to the
node that generated the sticky pull request. This mechanism
ensures that pull requests only need to be sent infrequently.

sn tn

A threat anywhere within
the dotted square will pose a
threat to nodes within the
shaded block A

A

Node will be in block
A in time tn tn s

k
max

The leader of block A sends
a pull request to blocks s

k
maxtn

distance away

Fig. 6. A pull is generated ahead of the node.

C. Leader Maintenance

In order for our protocol to work, we need a leader maintenance
protocol as well. This protocol does the following:

� A departing leader selects a new leader in the old block and
passes on all the collected threat information to that leader.
The identity of the new leader is also broadcast within that
block.

� When any node leaves a block, it informs the leader of the
old block as well as the leader of the new block.

� If the leader is the last node remaining in a block, when
it leaves the block it transmits a message to leaders of all
neighboring blocks informing them of all its gathered threat
information as well as informing them that the block is now
empty. Thus, any pull requests for the empty block will be
replied to by one of the neighboring block’s leaders (note
that pull messages have to traverse a neighboring block to
get to the empty block, thus the leader of the neighboring
block can respond).

� When a node enters an empty block, it collects threat infor-
mation from the neighboring blocks and declares itself the
leader.

IV. PERFORMANCE EVALUATION

We evaluated the performance of our T-S multicast protocol via
extensive simulations. In order to quantify the performance of our
protocol, we concentrated on two metrics:

1. Message overhead: The metric here is the number of mes-
sages/second/node that are exchanged in the course of the
simulation run. This includes all push/pull messages as
well as control messages exchanged in order to maintain the
blocks.

2. Coverage: It is possible that some nodes do not receive
threat warnings in time. Thus, we measured the percentage
of nodes that ought to have been warned of a threat but were
not. Ideally we would like this number to be zero. However,
periodic network partition and fluctuations of routes make it
difficult to achieve this value.

The remainder of this section is organized as follows. We first
describe the experimental set up and then describe our experimen-
tal results.

A. Simulation Parameters

For the simulation we assume that the battlefield is a 50km
square region. The threats consist of tank, shooter and gas threats.
The allied forces have tanks and shooters. Tanks move at an av-
erage speed of 72kmph, shooters move at an average speed of
9.6kmph and wind speed is constant at 18kmph. The battlefield
has sensors capable of detecting tank and gas threats. In the
simulations we use 64 gas sensors and 64 tank sensors evenly
distributed throughout the batlefield. A gas sensor can detect a
gas threat within 1km and a tank sensor can detect tank threats
within 1km as well. Shooter threats can only be detected by other
(friendly) shooters. Thus, it is possible that a shooter threat may
go undetected because of human error. We use a probability of
0.2 that a shooter threat will not be detected. Finally, we assum
that tanks, shooters and sensors have radio capability. The trans-
mission radius of the sensors is assumed to be 2km, tanks have
a transmission radius of 5km and a shooter can transmit to a dis-
tance of 1km. The data rate available is 1Mbps.

The time-space parameters we use were the following. Tanks
needed to know about tank threats within 6km and shooters
needed to know about tank and shooter threats within 900m. Each
simulation is run for 300 seconds of real-time (a couple hours of
simulation time) and the simulation time step is 5 msec of real-
time. We run each case ten times and compute 95% confidence
values. In each case the, the confidence intervals were very tight
(less than 5% of the point values).

B. Discussion of Results

In all the following plots we use a constant number of en-
emy threats. Specifically, we use 10 tank, 10 gas and 30 shooter
threats. In Figure 7 we plot the total message overhead as a func-
tion of the number of friendly tanks (no shooters) and in Figure
8 we plot the message overhead as a function of the number of
shooters (no tanks). First, it is noteworthy that smaller block sizes
result in greater message overhead. This is because the number of
responses to a pull are greater (one per block) and the overhead of
maintaining blocks is also greater (since the time a node spends in
a smaller block is smaller). The second interesting observation is
that the message overhead increases sub-linearly with increasing
numbers of friendly nodes. This indicates that our T-S protocol is
scalable to large networks. Intutively this makes sense since the
extent of a sensor’s multicast is geographically limited to nodes



5

in immediate danger. Thus, even if the network size grows, the
message overhead ought ot remain the same.

40 60 80 100 120 140
0

5

10

15
Message overhead, Threats (10, 10, 30), Tanks only

Number of Tanks

M
es

sa
ge

s/
U

ni
t/S

ec

TS (500m block) 
TS (2500m block)

Fig. 7. Message overhead – Tanks only.

100 150 200 250 300 350 400
0

5

10

15

20

25

30
Message overhead, Threats (10, 10, 30), Shooters only

Number of Shooters

M
es

sa
ge

s/
U

ni
t/S

ec

TS (500m) 
TS (2500m)

Fig. 8. Message overhead – Shooters only.

Figure 9 plots the success rate as a function of the number of
tanks. It is noteworthy that with small block sizes the percentage
of nodes warned in time is only about 65% for the case when there
are 25 tanks. This number changes to 96% with a block size of
2.5km. Thus, using larger block sizes is good because the mes-
sage cost is lower and the percentage of nodes warned is higher.
Interestingly, the success rate does not appear to vary much with
block size in the event that we only have shooters (Figure 10).
The explanation for this is that pull messages do not always reach
the desired blocks because the network does not have a geograph-
ically direct path (we use geographical routing to send messages
so if there is no next hop in the direction of the destination, the
packet is dropped). However, as the number of shooters increases,
the probability of finding a path increases and hence the percent-
age of nodes warned in time also increases. In the case of tanks,
their high speed and greater transmission radius ensures that there
is a greater probability of finding routes.

40 60 80 100 120 140
50

55

60

65

70

75

80

85

90

95

100
Percentage of nodes warned, Threats (10, 10, 30), Tanks only

Number of Shooters

%
 w

ar
ne

d

TS (500m) 
TS (2500m)

Fig. 9. Success Rate – Tanks only.

100 150 200 250 300 350 400
50

55

60

65

70

75

80

85

90

95

100
Percentage of nodes warned, Threats (10, 10, 30), Shooters only

Number of Shooters

%
 w

ar
ne

d

TS (500m) 
TS (2500m)

Fig. 10. Success Rate – Shooters only.

V. FUTURE WORK

We are extending our simulation to take into consideration the
path loss models of the terrain (as this affects radio connectivity),
unpredictability of threat mobility, mobility models of nodes that
better reflect the way troops are deployed in battle, reliability is-
sues where the information gathered by sensors may not always
be trustworthy. In addition, we are developing analytical models
that will allow us to better understand the energy/message effi-
ciency tradeoffs in this domain.

ACKNOWLEDGEMENTS

This work was supported by ONR grant 9910499.

REFERENCES

[1] E. Bommaiah, M. Liu, A. McAuley and R. Talpade, “AMRoute: Ad
Hoc Multicast Routing Protocol”, Internet-Draft, draft-talpade-manet-
amroute.txt, Aug. 1998, Work in progres.

[2] J.J. Garcia-Luna-Aceves and E.L. Madruga, “A multicast routing protocol
for ad hoc networks”, Proc. IEEE Infocom’99, New York, NY, Mar. 1999,
pp. 784-792.

[3] S.-J. Lee, M. Gerla and C.-C. Chiang, “On-Demand Multicast Routing Pro-
tocol”, Proc. IEEE WCNC’99, New Orleans, LA, Sept. 1999, pp. 1298-1304.

[4] C.W. Wu, Y.C. Tay and C.-K. Toh, “Ad hoc Multicast Routing protocol uti-
lizing Increasing id-numberS (AMRIS) Functional Specification”, Internet-
Draft, draft-ietf-manet-amris-spec-00.txt, Nov. 1998, Work in progress.


