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FIG. 1. Example of a four-node network.

mated values of these delays are as shown in the table
below. gj(j), the number in the ith row of the jth column,
is the estimated delay from node i to node j:

Finally, for the election scheme e, assume that every
node has one vote which it may assign to anyone of the
other candidates (we assume that nodes may not vote for
themselves in order to avoid situations in which all nodes
receive one vote each) and the winner(s) are the ones that
obtain the maximum number of votes. Then it is easy to
see that node a votes for c giving Va = c, and similarly,
Vb = a, Vc = a, and Vd = c and therefore, Le = {a, c}. In
this example we see that the nodes that are elected are
the same as the nodes that are optimal, however, this
may not always be the case.

It should be pointed out that there are, in general,
many different types of elections and correspondingly
many different forms of voting. We will present several
election schemes in the last part of this section and dis-
cuss the types of voting used.

A natural question that arises is are the two sets, Lopt
and Le identical? If they are not always identical, how
often will they be identical? Furthermore, are there prop-
erties of the system that will guarantee that these sets be
equal? Unfortunately there is no simple answer to these
questions because there are several factors that influence
the final outcome of an election. Specifically, the rela-
tionship between the functions gi andf, the form of voting
used and the election scheme used to determine the lead-
er(s), all play an important role. We will discuss some of
these questions in later sections.

2.1. Election Schemes

In [12, 14], we have begun to study the behavior of
several election schemes that are presented below. When
we first began looking at the problem of preference-based
leader election, the election schemes we used were the

ones that already existed in the social choice literature.
However, with a better understanding of the problem, we
developed our own election schemes that are better
suited to a distributed computer system environment.

Election schemes from social choice theory (see [9,
17]):

Plurality : This is probably the most familiar election
scheme. Each node gives one vote to its most preferred
candidate. The votes are then summed and the node with
the highest tally is declared elected. This is the election
scheme used in the example discussed above.

Approval: A node assigns one vote to each candidate it
considers above average. The leader is the node that gets
the maximum number of votes. In the example above,
node a estimates an average -(3.0 + 2.2 + 4.1)/3 =
-3.1, and therefore assigns one vote each to c and b.

Veto: Each node vetoes one other node that it con-
siders to be the worst possible choice. The candidate not
vetoed is declared the leader. Node a vetoes node d in
the example above. It is possible for all candidates to be
vetoed, in which case a different election scheme is used
to elect a leader .

Borda: For some node i, let g;(aJ > g;(a2) > ...> g;(an)
for some labeling of the nodes, at, a2, ..., an. Then node i
assigns node (or candidate) at, n -I votes, node a2, n -
2 votes, and so on. The leader is a node with the maxi-
mum number of votes.

Copeland: We form all possible pairs of nodes and run
a plurality election for each pair. The node that beats the
most other nodes in such elections is declared the elected
leader .

We present our own election schemes below. In each,
the elected leader is the node with the highest vote tally.

PluApp: This scheme is a combination of plurality and
approval voting. Each node assigns two votes to its most
preferred candidate and one vote to all other candidates it
considers above average. The leader is the node with the
most votes. During extensive simulation runs of both the
Plurality and Approval election schemes, we noticed that
very often the optimal leader was elected either by plural-
ity or by approval (but not by both). By combining these
two election schemes we hoped to increase the probabil-
ity that the optimal leader is elected. As the next section
will show, this hope was justified.

Fractional: We assume that each node has one vote
that can be shared among all the candidate nodes. There-
fore, a candidate node may receive 0.01 votes. Node i
assigns nodej a vote g;(j)/Lj=, g;U). The intuition behind
this election scheme is that the fractional vote more accu-
rately reflects the amount by which node i prefers node j
in comparison to the others.

Log scale: This scheme was motivated by the observa-
tion that occasionally g;(j) might be unusually high for
somej and this fact is reflected in the system-wide perfor-
mance of node j (i.e. , fU». Thus, rather than a simple
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were based more on intuition, developed as a result of
extensive simulations, than any formal theory .This is an
area of our current and future research.

In this section, we have defined our framework for
leader election and discussed the preference-based ap-
proach. In Sections 5 and 6, we will discuss the applica-
tion of our approach to leader election in two specific
system models. Section 3 discusses the methodology
used to study this problem.

3. APPROACH AND METHODOLOGY

Given a specific system we would like to answer ques-
tions relating to the quality of the elected leader. We
would like to answer questions such as, how often is the
optimal leader elected? Is one election scheme better
than another for a specific system model? What is the
nature of information on which nodes base their votes? Is
it possibl"e to chose the functions gi (for some}) such that
an election scheme always choses the optimal leader?

In our work thus far we have concentrated upon pro-
viding probabilistic answers to some of the questions
posed above. Specifically, we use the following two met-
rics to determine the quality of the leader that is elected
by various election schemes.

I. What is the probability that the optimal leader is
elected? i.e.,

Pr[optimalleader = elected leader] = ? .

2. What is the expected difference in performance be-
tween the elected and optimal leaders (where the perfor-
mance of a node is given by the functionf)? Formally, we
define the expected relative error as

fractional vote as in the case of fractional voting, there is
a need emphasize the difference in the values of the
gi(j)'S. Therefore, node i assigns to nodej a vote equal to
[v2giU)/~j=1 2giU)] ([a] = the largest integer closest to a).
Where v is a fixed number of votes at a node.

Proportional: This scheme is similar to fractional with
the difference that instead of fractional votes only integer
votes may be assigned. Thus, node i assigns nodej a vote
of [Vgi(j)/~j=l gi(j)], where v is a fixed number of votes at
a node.

Finally, we devised a simple election scheme to serve
as a benchmark and also to represent the traditional
models of leader election, where a leader is elected based
upon an ID number with no regard to where a leader is
elected based upon an ID number with no regard to its
performance. We call this the random election scheme.

Random: A node is elected at random from among the
set of n nodes.

Having presented several election schemes above, we
can now make the distinction between a correct vote and
an incorrect vote.

DEFINITION 3 (Correct Vote). The vote computed by
a node, for a given election scheme, is correct if this vote
is identical to the vote that would be computed by this
node (based upon its function gi) were it to have complete
knowledge of the system configuration.

Consider the previous example. The delays computed
by node a (first row of the matrix) are estimates of the
actual delays to nodes b, c, and d, respectively. Even
though these delay estimates are not accurate, for plural-
ity elections, node a correctly votes for node c. There-
fore node a's vote is said to be correct. If the delay esti-
mates had been, say, -1.0, -2.0, -3.0 instead, then
node a would cast its vote for node b. This is an incorrect
vote.

In Section 5, we assume that the votes of all nodes are
correct. In other words, each node has estimates that are
good enough to generate correct votes. It is noteworthy
that in order to have correct votes, different election
schemes require varying quality of estimates. Thus, the
estimates used to generate a correct vote for Plurality
elections may not be good enough to generate correct
votes for Fractional elections. In Section 6 we study the
situation where some nodes have incorrect votes.

f(optimalleader) -f(elected leader)r =e f(optimalleader) -f(worst leader)

An alternative metric for the expected difference in per-
formance is

2.2. Summary

It is important to remark that there are potentially an
infinite number of election schemes possible. It should
therefore be theoretically possible to construct an elec-
tion scheme, given a particular system model, such that
the probability of electing the optimal leader is maxi-
mized. However, this appears to be a difficult problem
and the four election schemes we have developed thus far

We chose to use re in this work, however, because it is
more "pessimistic" in the sense that re > rabs.

The next section presents two specific system models
in which we have studied the behaviour of various elec-
tion schemes as measures by the two metrics defined
above.

-The first model we study in the reliability model and
we use it to validate the preference-based approach to
leader election. We show that the elected leader is fre-
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quently optimal and the relative error between the perfor-
mance of the elected leader and the optimal leader is
often very small.

-The second model is called the abstract weight ma-
trix model and is used to address the issues relating to
robustness. If some subset of nodes misreport their
votes, clearly the leader that is elected may not represent
the best choice. We show, however, that several election
schemes are quite robust to these forms of failure.

4. TWO SYSTEM MODELS

In this section we present two of the three system
models in which we have studied the problem of leader
election. Results from the third model, called the delay
model, have appeared elsewhere [14] and will not be dis-
cussed in this paper. The two models studied here are
called the reliability model and the abstract weight ma-
trix model. The reliability model is intended to be less
abstract than the weight matrix model, and to be more
representative of the concerns that arise in distributed
systems. The weight matrix model is an abstract frame-
work that we employ to discuss issues relating to robust-
ness.

We assume the distributed system is represented by a
weighted connected graph with bidirectional edges. The
weight on a link is a number between O and 1 and repre-
sents the probability that the link is operational. We as-
sume that the weight on a directed link (i, j) is different
from the weight on the directed link (j, i). This assump-
tion is valid because a message may be lost either from
the queue or from the physical link itself during transmis-
sion. While the probability of the message being lost dur-
ing transmission may be the same, the probability of the
loss of a message from the queue at node i is independent
of the same probability at nodej.

Let us now define the system-wide performance of a
node. Let T be a directed spanning tree rooted in some
nodej (all the nodes have directed paths to nodej. There
are no outgoing edges from node j in this tree). At any
particular instant a link (i, k) will be operational with a
probability of Pik. Let x denote the number of nodes that
are connected to node j in three T (note that because of
link failures some nodes may not be connected toj in T).
Then define

n-l
UTU) = L xq(X),

x=l

where
4.1. The Reliability Model

Consider a simple distributed system shown in Figure
2; a, b, and c are three nodes of the system connected by
communication links. The numbers on each link denote
the probability that the link is functioning; this may alter-
natively be viewed as the probability that a message sent
over this link is successfully received at the receiving
node. The path reliability from node a to node c is 0.5
along the link (a, c) and 0.81 along the path a -b -c.
Therefore, a message sent from a to c via b has a higher
chance of arriving at its destination than if it were sent
out along the link (a, c). Intuitively, in Fig. 2, node b
would be a better leader than either of nodes a or c be-
cause node b has paths of reliability 0.9 to both a and c,
while node a (or c) has paths of reliability 0.9 and 0.81 to
each of the other two nodes. This idea of maximum path
reliability is used to define the performance metrics, g;
andf, in our model.

q(x) = Pr(j is connected to exactly x nodes in T).

UT(j) is the expected number of nodes that j is con-
nected to in T. We then definej(j), the system-wide per-
formance of node j as,

DEFINITION 4. The system-wide performance of a
node j is

fU} = max UTU:
T

The node with the highest value for fU) is defined to be
the optimal leader. The number fU) is also called the
expected connectivity of nodej [12]. The optimal leader
is a node that has the maximum expected connectivity.
The intuition behind this definition is the following.
Given a leader in a graph, every node sends information
to the leader along the maximum reliability path. When a
link failure occurs, even if the graph is not disconnected,
some maximum reliability paths may have to be recom-
puted. By defining the optimal leader to be the node with
the highest expected connectivity, the number of such
recomputations in the case of link failure is minimized.

Every individual node in the system can realistically
estimate its path reliability to the other nodes in the sys-
tem (perhaps by keeping track of the number of retrans-
missions required). This defines the functions gi.

a

0.9 O

b O ;:;; 1 0.5

~O

c

FIG. 2. Path reliabilities.
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good enough to add together to determine the optimal
leader .

DEFINITION 5. The performance of node j as esti-
mated by node i, gi(j), is the maximum path reliability
from node i to nodej.

The relationship between the giU) and fU) is ex-
pressed by the theorem below. The proof of this theorem
appears elsewhere [13].

THEOREM 1. If fU) is the expected connectivity of
node j, then

n
fU) = 2: giU)

i=1

if g;(j)'s are the correct maximum path re liabilities from
node i to node j.

Consider the six-node system shown in Fig. 3. Con-
struct a matrix W such that the entries W;j represent the
reliability of the maximum reliability path from node i to
nodej. For example, the path e -d- c -b has reliabil-
ity 0.2 (which is the product of the link reliabilities, ed,
dc, cb) and represents the maximum reliability path from
node e to node b:

b d fW;j

a

b

c

d

e

f

fU)

a c e

1.0 0.2 0.35 0.7 0.25 0.5
0.3 1.0 0.9 0.54 0.108 0.15
0.24 0.5 1.0 0.6 0.12 0.12
0.4 0.25 0.5 1.0 0.2 0.2
0.48 0.2 0.4 0.8 1.0 0.6
0.8 0.16 0.28 0.56 0.5 1.0

w

3.22 2.31 3.43 4.2 2.178 2.57

In the example above, node d is the optimal leader with
an expected connectivity of 4.2.

In summary , in the reliability model, each node com-
putes its maximum reliability paths to each of the other
nodes in the system and uses these estimates to vote to
chose a leader (this would correspond to each node, i,
estimating the ith row of the matrix W). In a real system,
these entries are estimated by the nodes. As we stated
earlier, we assume that these estimates are good enough
for a node to vote on; however, these estimates are not

4.2. The Random Weight Matrix Model

The random weight matrix model provides us with an
abstract probabilistic framework in which to examine the
properties of various election schemes. Let us assume
that the system contains n nodes and p candidates (p $
n). Let Wij denote the performance level that would be
seen by node i if candidate j were elected the leader. The
collection of all these weights may be represented by a
matrix W(n x p). We assume that the entries Wij are i.i.d.
random variables from some common probability distri-
bution (pdf). It is noteworthy that the entries Wij corre-
sponded to maximum reliability paths in the reliability
model.

A natural measure of performance of a given candidate
j can be derived from the four axioms given below. Let
fU) denote the system-wide performance of candidate j
and assume that fU) > f(k) iff j has a higher level of
system-wide performance.

Axioms.
AI. f(a) = U(Wla, ..., Wna), where U: mn-+ m.
A2. Anonymity: If Xi = Wia then, U(..., Xi, ..., Xj, ...) =

U(..., Xj, ..., Xi, ...).
A3. Monotone Increasing: U(XI, ..., Xn) < U(XI + dx,

..., Xn), dx > 0.
A4. Linear Importance: U(XI, ..., Xi + dx, ..., Xn) =

U(XI, ..., Xj + Cijdx, ..., Xn), Cij ~ 0.

Axiom At says that the system-wide performance of
any candidate is a function of its performance as seen by
each individual node. The condition of anonymity means
that the node ID is not important in the computation off
for different candidates. The axiom for monotonicity is
that the system-wide performance of a candidate a in-
creases if its performance Wia as seen by any node i in-
creases. Finally, according to the axiom of linear impor-
tance, the system-wide performance of a candidate when
Xj increases by a small amount dx is the same as when Xi
increases by some proportional amount Cijdx. This axiom
captures the linear relationship between the nodes in
their effect upon the system-wide performance of a can-
didate.

From A2 and A4 we derive

U(,"' Xi + ~, "" Xj, ",) = U(.," Xi, "" Xj + Cij~, "',

and

U(..., Xi + 4x, ..., Xj, ...) = U(..., Xj, ..

= U(..., Xj + Cij4x, ..., Xi, ...)

= U(..., Xi, ..., Xj + cji4x, ...).

.,Xi+~ ,

FIG.3. Therefore, Cy = cji for all pairs i,j.Example of a six-node system.

=
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this randomly generated set. In the next subsection we
outline our method of constructing random system topol-
ogies that were used in our simulations.

The isoperformance curve in Xi -Xj space (plot Xi vs Xj,
leaving all other ,Xk unchanged, such thatf(a) = c, a con-
stant), has a slope of -1 at every point (Xi, xfl. Since this
is true for every pair Xi and Xj, we get that

n
f(a) = A L Wia,

i=1

5.1. Weighted Random Graphs

Let the number of nodes in the graph be denoted by n.
Then a random graph is constructed by the following
process. For each of the n(n -1)/2 possible edges be-
tween n nodes, a coin is tossed. The probability of the
coin coming up "heads" is p. If the coin comes up heads,
we include that edge in the graph, otherwise it is left out.
At the end of this process, we have a random graph. If
the graph is not connected, we throw it away and gener-
ate another.

For our system model, we have assumed that the
graphs are both weighted and bidirectional. Therefore,
we need to add a second step to the process discussed
above. Each edge in the random graph is first replaced by
bidirectional links. Each directed link is then assigned a
delay chosen from some common pdf. The graph thus
obtained is taken to represent a distributed system.

The set of graphs generated by the process described
above is represented as G(n, p) and it is over this space
that we study the performance of different election
schemes as defined by the two measures presented ear-
lier. Note that, in general, if p ~ 1 then the graphs will
tend to be sparse while if p is large, the graphs will tend to

be dense.

where I is an arbitrary constant. Axiom A3 dictates that
A > 0.

Thus, we see that summing the weights is a "natural"
measure of system-wide performance for a candidate
since it satisfies the four reasonable axioms stated above.
By the derivation above observe that it is the' only func-
tion that satisfies the four axioms. A social welfare func-
tion that has the same form has also been derived by Ng

[11].
We are now in a position to formally state the random

weight matrix model. In the abstract framework that we
have developed, we assume that each of the utility values
Wia, are choseni.i.d. from some probability distribution.
The system-wide performance level of a candidate a is
then given by the sum, ~~l Wia. And an optimal candi-
date is one that maximizes system-wide performance.
Formally,

DEFINITION 6 (Performance of a Candidate). Ifj is a
candidate and ifwij (equivalently giU» denotes its perfor-
mance level for node i, then the system-wide perfor-
mance ofj is given by fU) = ~7=1 Wij.

DEFINITION 7 (Optimal Leader). Candidate k is de-
fined to be the optimal leader iff, f(k) 2: fU), j + k, I :5

j:5p.
We consider three different probability distributions

for the Wij'S: the exponential distribution, the uniform
distribution and the normal distribution. In each case we
study the performance of the elected leader versus the
optimal leader .

5. RELIABILITY MODEL: RESULTS

In this section we discuss the behaviour of the different
election schemes in the reliability system model. Observe
that results obtained for specific system topologies may
not be applicable generally. Thus, if the system was a star
network then the node at the center of the star would
always be the optimal leader and it would also be the
node to be elected by most election schemes, irrespective
of the link reliabilities.

Therefore, in order to make general statements about
the election schemes it becomes necessary to consider a
wide range of system topologies. For this reason we stud-
ied randomly generated system topologies and provide
answers to some of the questions posed in Section 3 over

5.2. Simulation Results

For our simulations, we generated random weighted
graphs with link weights drawn from a uniform distribu-
tion on [0, 1]. The number of nodes n varied from 3 to 20.
Three sets of experiments were run for each value of n.
In each the probability p (the probability that an edge
exists) took on a different value, p ~ 0.25,0.5, and 0.75.
Different values of p were used to determine the effects
of the graph density on the behavior of the election

schemes.
For each experiment we generated 20,000 connected

weighted random graphs. We computed the probability
that the optimal leader was elected by each of the elec-
tion schemes and the expected relative error in the per-
formance between the optimal leader and the elected
leader. In each case the number of leaders to be elected is
one and if multiple leaders are elected, the tie is broken
randomly. 95% confidence intervals were generated and
the confidence half-widths kept to less than 5% of the
point values, see [15]. For Log scale and Proportional
election schemes, v ~ n.

For p ~ 0.25, Fig. 4 shows a plot of the probability of
electing the optimal leader versus n for the different elec-
tion schemes. Note that Fractional, Borda, and Copeland
are most likely to elect the optimal leader (with a proba-
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n

FIG. 4. Probability of electing the optimal leader , p = 0.25. a, Approval; b, Borda; c, Copeland; f, Fractional; g, Log scale; n, Proportional;

p, Plurality; r, Random; v, Veto; y, Pluapp.

values ofp. Note that Fractional, Borda, and Copeland
have errors that are less than 3%, while PluApp has an
error that is less than 5%. For p = 0.25, Proportional has
a low error but this error quickly increases with the graph
density. Veto, Random, and Log scale have errors ap-
proaching 40% .

To summarize our simulation results, we note that
Fractional, Borda, and Copeland provide the best perfor-
mance. The three probability appears to have little effect
on most election schemes. However, Proportional is the
most affected, while PluApp is least affected.

bility of around 0.8) while Veto, Random, and Log scale
are the least likely to do so. Plurality and Approval ap-
pear to have the same asymptote and have a probability
of electing the optimal leader that lies in between.
PluApp elects the optimal leader with a higher probability
than either Plurality or Approval.

Figures 5 and 6 show the same plots for when the edge
probability is 0.5 and 0.75, respectively. First, we note
that the relative performance of the election schemes is
unchanged. However, it appears that in denser graphs,
Fractional elects the optimal leader with a greater proba-
bility (around 0.95). A similar trend is observed in the
behavior of Borda and Copeland. Plurality, Approval,
and PluApp are relatively unaffected.

Figures 7, 8, and 9 plot the expected relative error
versus n for the different election schemes for the three

5.3. Summary

The results presented in this section demonstrate the
power and feasibility of the preference-based approach to

3 5 7 9 11 13 15 17 19 3 5 7 9 11 13 15 17 19

n n

FIG. 5. Probability of electing the optimal leader , p = 0.50. Letters as in Fig. 4
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FIG. 6. Probability of electing the optimal leader , p = 0.75. Letters as in Fig. 4.
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FIG. 8. Expected relative error, p = 0.50. Letters as in Fig. 4.
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FIG. 9. Expected relative error, p = 0.75. Letters as in Fig. 4.

leader election. As we have seen several election
schemes elect the optimal leader with a high probability
and in cases when the optimal leader is not elected, the
elected leader has a performance level close to optimal.

6. ROBUSTNESS AND THE WEIGHT MATRIX MODEL

As we will see, one way to minimize the damage done
by failed nodes is to give the vote of each node equal
importance. For example, we would not allow one node
to have two votes while all the rest have one, because if
the node with two votes were to fail, it would count as
two failures. We believe that this property of assigning
each node a single vote makes many of our election
schemes robust.

The remainder of this section is organized as follows.
We first define two models of failure in Section 6.1. In
Section 6.2 we discuss the behavior of the election
schemes in the abstract weight matrix model in the ab-
sence of failure. Sections 6.3 and 6.4 then discuss the
effect failure has on the performance of the various elec-
tion schemes in the weight matrix model.

In the previous section we studied the behavior of vari-
ous election schemes for the reliability system model. As
we saw, several election schemes elect the optimal leader
with a high probability and in the cases where the optimal
leader is not elected, the elected leader has a perfor-
mance level very close to optimal. An assumption that
was implicit in those studies was that every node re-
ported its correct vote (see Section 2.1, Definition 3). In
this section, we are interested in studying the behavior of
election schemes when some nodes misreport their
votes. Nodes that misreport their votes are said to have
suffered a failure .

It is important at this point to distinguish our usage of
the term failure from the manner in which it is most fre-
quently used in the computer science literature. Failure
usually means a failure of the communication channel,
leading to lost or garbled messages, and to crash failures
of nodes. In our usage, however, afailed node functions
correctly; it only misreports its vote.

In computer systems, this scenario of misreported
votes is not unrealistic. Nodes base their votes on their
estimates of the performance of the various candidates.
The quality of these estimates determines the correctness
of the vote. Consider a situation in which an election is
called before some particular node has been able to pro-
duce "good" estimates (possibly because it has only just
recovered from a crash); in this case, the node's vote
might well be incorrect.

6.1. Models of Failure

Before defining the two models of failure, we would
like to reiterate the difference between a correct and an
estimated weight matrix. Let Wij of the correct weight
matrix W represent the actual performance node i would
realize if node j were elected the leader. However, as
previously discussed, a node can only estimate these
quantities. Thus node i would estimate row i of the matrix
w. Let us denote this estimated matrix by W.

When nodes vote, the votes are based upon the esti-
mated weight matrix W. It is not the purpose of this paper
to address the problem of developing good estimation
techniques; rather, we are interested here in determining
the behavior of election schemes in the presence of dif-
fering Wand W matrices.

EXAMPLE. Assume that five nodes vote to elect a
leader out of three possible candidates. The correct
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weight matrix is shown below: An example of such a failure is the following. If one
cluster of a network fails and then comes back up again
just as an election starts, then all of the nodes in that
cluster will tend to have incorrect votes that may well be
correlated because the estimates may be based on similar
(but incorrect) views of the system.

Consider two estimated weight matrices, W1 and W2. As-
sume that rows 1-3 have been estimated correctly:

Consider now the effect of the incorrect votes on the
quality of the leader elected. Let Borda be the election
scheme being used to determine the leader. Given the
correct weight matrix W, candidate b is elected (a re-
ceives 11 votes, b receives 12, and c receives 7) the
leader. The exact same votes are also reported with the
estimated weight matrix Wl (and therefore Wl yields cor-
rect votes by Definition 3). However, if the estimates in
W2 are used, candidate c is elected since nodes 4 and 5
report incorrect votes.

6.2. Performance in the Absence of Failure

In this section, we describe the results of several simu-
lations that were run to determine the probability of elect-
ing the optimal leader using different election schemes
when the votes reported are correct. We have derived
closed form expressions for the probability of electing the
optimal leader for Plurality, Approval, and Veto using
the Partition Theorem from number theory, see [6, 12].

We present two sets of simulations. In one set, the
number of voting nodes n is equal to the number of candi-
dates p. In the second case, the set of candidates is a
subset of the set of nodes, i.e., p < n.

Case I: n = p. The first case we study is one in which
the number of voting nodes is equal to the number of
candidates running for election. The value of n is allowed
to range from 2 to 15. The entries of the weight matrix are
i.i.d. random variables chosen from three differentproba-
bility distributions. The Exponential distribution with
mean A = 1, the Normal distribution N(O,I), and the Uni-
form distribution between [0,1]. Our goal in using three
different probability distributions was to determine the
sensitivity of the election. schemes to the underlying dis-
tribution of the weight matrices.

Under the assumptions stated above, the simulations
were conducted as follows. For each value of n and for
each choice of probability distribution, 20,000 weight ma-
trices were generated. In each matrix, the optimal leader
was determined as that having the maximum column sum
(see Section 4.3, Definition 7). For each election scheme,
the leader elected was found and compared with the opti-
mal leader. In cases where more than one leader was
elected, the ties were broken randomly.

We calculated 95% confidence intervals for the values
of the probability, Pr[elected leader = optimal] and rela-
tive error for each election scheme, at each value of n for
the different distributions. The resulting confidence half-
widths were less than 5% of point values.

In this paper we present results for the case when the
weights are chosen from a uniform distribution only. The
behaviour of most of the election schemes is unaffected
by a choice of distribution. Figure 10 plots the probability
of electing the optimal leader as a function of n for vari-
ous election schemes. The first observation to be made is
that Random performs very poorly. It elects the optimal
leader with a probability l/p, as expected. Veto also per-
forms very poorly because a large number of nodes are
tied for leader and these ties are broken randomly. Both

6.1.1. Two Types of Failure

It is clear from the example above that misreported
votes may significantly distort the final outcome of the
election process. There are a large number of possible
failure models. We however chose to study the two de-
scribed below because the effectively represent a large
set of possible failures in real systems .

DEFINITION 8 (Random Failure). The entries of one
(or more) rows of the estimated weight matrix are unre-
lated to the corresponding entries of the correct weight
matrix.

Thus the votes of the failed nodes will be random. The
second model of failure works in much the same way as
random failure discussed above; however it is more mala-
cious in practice. We assume that the nodes which fail
distort their vote together .

DEFINITION 9 (Correlated Failure). If.M is the set of
failed nodes, then every node i E .M assigns an extremely
large weight Wij to the same candidate j in the estimated
weight matrix. The other candidates are assigned random
weights.
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FIG. 10. Probability of electing and optimal leader (uniform). Letters as in Fig. 4.

Fractional and Borda perform very well. An intuitive ex-
planation for this is that on the average, the highest
weight in any row of the weight matrix lies in the interval
[(n -1)/n, 1], the second highest weight lies in the inter-
val [(n -2)/(n -1), (n -1)/n], and so on. The assign-
ment of votes in Borda closely duplicates this pattern
(i.e., the highest weight is given a vote of n, the second
highest n -1, and so on) and therefore the optimal leader
is elected with a high probability. Both Fractional and
Proportional (with v = n) perform well because the voting
information exchanged reflects not only the preferences
of the nodes but the relative strength of those prefer-
ences. The "saw-tooth" behavior of Copeland is a result
of there being an odd or even number of nodes in the
system.

If the pdf was the exponential distribution, Log scale
elects the optimal leader with a high probability, ap-
proaching 60%. The performance of Borda and Copeland
drops to around 40% though. In the case of a normal
distribution, Proportional elects the optimal leader with a
probability approaching l/n. Copeland and Borda elect
the optimal leader with a probability between 65- 75%.

In Figure 11 we plot the expected relative error as a
function of n for the case when the weight matrix entries
are chosen from a uniform distribution. Observe that the
relative error between the elected and optimal leaders for
Borda, Copeland, Approval, Fractional, PluApp, and
Proportional is less than 10%. In the case that the weights
are chosen from an exponential distribution. Plurality
and Log scale also have errors that are less than 10%. In
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FIG. 11. Expected relative error (uniform). Letters as in Fig. 4.
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FIG. 12. Probability of electing the optimal leader (uniform). Letters as in Fig. 4.

the case of a normal distribution, Fractional and Plurality
have errors in excess of 20%. Thus we see that with
respect to the relative error metric, most of the election
schemes elect a good leader .

Case 2: p < n. In this set of experiments we kept n
fixed at 15 and varied p, the number of candidates, be-
tween 2 and 14. For each value of p, we generated 20,000
weight matrices and computed 95% confidence intervals.
In each case the interval half widths were within 5% of the
point values.

Figure 12 plots the probability of electing the optimal
leader as a function of p for the case when the weight
matrix entries are chosen from a uniform distribution.
Random elects the optimal leader with a probability of 1/
p, while for p :5 7 Veto elects the optimal leader with a
probability smaller than l/p; this happens because in

many instances all the candidates are vetoed! Both Borda
and Fractional elect the optimal leader with a high proba-
bility for reasons already stated. As the number of candi-
dates increases, the probability with which Plllrality
elects the optimal leader decreases rapidly because the
number of tied winners increases rapidly. The same is
true for Log scale.

In Fig. 13 we plot the expected relative error as a func-
tion of p. For small values of p since Veto may not elect
any leader, its performance is very poor. Note that
Borda, Fractional, Copeland, Approval, PluApp, and
Proportional have a relative error that is less than 10%. In
fact, Fractional has an error smaller than 5% in most
instances.

In summary we note the following properties. If the pdf
is symmetric (as in the case of the uniform or the normal
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FIG. 13. Expected relative error (uniform). Letters as in Fig. 4.



ELECTING "GOOD" LEADERS 197

a-p

h-p

c-p

d-p

F
a
i
1 30
u
r
e
s ~

~

r20

~

10

distribution), PluApp, Borda, and Copeland consistently
elect the optimal leader with a high probability. Frac-
tional and Proportional show a good performance if the
distribution is uniform. If the pdf is exponential, PluApp,
Fractional, and Proportional elect the optimal leader with
a high probability. In terms of sensitivity to choice of
distribution, PluApp is by far the least sensitive. Finally,
in general we observe that for a given number of voting
nodes, the number of candidates will not drastically af-
fect the probability with which the optimal leader is
elected. A surprising result!

Comparing these results with those obtained for the
reliability model we observe that Borda and Copeland
consistently elect the optimal leader in both models with
a high probability. This is also true for the del~y model
[14]. We conjecture that these two election schemes will
do well in other system models as well.

0
10 20 30 40 50 60 70 80 90

FIG. 14. 9l~.~.1 vs n for different p.

6.3. Effects of Random Failure

Let us now turn our attention to the situation when
some set of nodes report incorrect votes. Let m denote
the number of such failed nodes. It is clear that some
election schemes will be able to "tolerate" more failures
than others for a comparable "degradation" in perfor-
mance. Unfortunately, there is no single definition for the
degree of robustness since we use two measures, the
probability of electing the optimal leader and the relative
error, to evaluate the performance of election schemes.
However, corresponding to each of these two measures,
-we define two different measures of robustness.

DEFINITION 10 (Robustness w.r.t. the Probability of
Electing the Optimal Leader). A number m~~6, that de-
notes the maximum number of failures m such that,

IPr[optimal = electedlm failures]
-Pr[optimal = electedlno failures]1

Pr[optimal = elected I no failures] :$ 8.

Similarly, let e denote the maximum tolerable increase
in the relative error. Then,

DEFINITION 11 (Robustness in Error). A number
ffi~~, that denotes the maximum number of failures m
such that,

I E [relative errorlm failures]

-E[relative errorl no failures] I Se.

In both these definitions, the subscript r in the measure
of robustness denotes the type of failure. In this case it is
random failure; robustness in the presence of correlated
failure will use a subscript I.

The two definitions above provide a way of represent-
ing the robustness of different election schemes in terms

of the maximum number of permissible failures. A higher
value for !R¥,rB or !R;,~ would mean a more robust election
scheme.

Case 1: p ~ n. In the first set of experiments we
assume that the number of candidates p is much smaller
than the number of voting nodes n. For the purposes of
our experiment, the number of candidates ranged be-
tween 2 and 5 and n took values 10, 30, 50, 70, and 90.
The larger values of n were chosen to determine asymp-
totes, if any. We computed the number of random fail-
ures required for fj = e = 0.05,0.1, and 0.2.

In the simulations reported here, the weight matrix en-
tries were chosen from an exponential distribution with
mean A = 1; 95% confidence intervals were generated
and the confidence interval halfwidths kept to less than
5% of the point values.

In this set of experiments we found a surprising result.
For a given fj (or e), all election schemes can tolerate the
same number of failures! This was true for both the mea-
sures !R¥,~ and !R;,~. Figure 14 shows a plot of the number
of failures !R¥~0.1 vs n for different values of p. Figure 15
plots !R;~.1 vs n.

A possible explanation for this result that all election
schemes exhibit the same degree of robustness to random
failure is suggested by the following observation. The
votes of the m failed nodes when taken together will ef-
fectively counterbalance each other out yielding a system
in which n -m nodes vote to elect one out of p candi-
dates.

We conclude that all election schemes are equally ro-
bust under random failures when p ~ n and infact there
appears to be a linear relationship between the number of
failures that can be tolerated and fj (or e).

Case 2: n = p. In this set of experiments the number
of nodes varied between 2 and 14. As in the above experi-

=2

=3

=4

=5
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F
ac

robustness and are therefore lumped together under the
title others. Observe that Fractional, Proportional, and
Log scale are less robust w .r .t. this metric. These election
schemes require a greater accuracy in the estimation of
the weight matrix because votes are determined as frac-
tions of the weight matrix entries. The other election
schemes require votes that are total orders of the candi-
dates and these schemes can therefore tolerate more cor-
related failures.

Figure 18 shows a plot of !Rrz.l as a function of n. We
observe that the election schemes exhibit a similar pat-
tern of behavior .

Case 2: n = p. We conducted experiments similar to
the ones described above with 2 ~ n = p ~ 14. The first
result is that for 8 = 0.05 and 0.1, none of the election
schemes can tolerate even one failure. With 8 = 0.2,
however, all the election schemes except Fractional,
Log scale, and Proportional can tolerate upto two correl-
ated failures.

10 20 30 40 50 60 70 80 90

n

FIG. 15. ffi~.1 vs n for different p.

ment, the values of 8 = e were chosen to be 0.05,0.1, and
0.2.

The first experiment measured 9t;;6. We found that for
8 = 0.05 and 0.1 no failures could be tolerated by any of
the election schemes while for 8 = 0.2 one failure could

be tolerated.
The second experiment measured 9t~~. Figure 16

shows a plot of the number of failures that can be toler-
ated vs n for three values of e. Note that all the election
schemes were able to tolerate the same number of fail-
ures.

6.5. Summary

In this section we studied the effect of misreported
votes on the performance of election schemes. We de-
fined two failure models and showed via simulations that
the random failure model is less severe than correlated
failures.

In real systems we would expect a failure model that is
a mix of both the models we have examined. There will
be subsets of nodes that will form coalitions and there
will be other nodes that will suffer random failure. There-
fore, the robustness exhibited by election schemes in
such systems will "lie in between" the robustness pre-
dicted by the two models studied here.

Finally, we note that Fractional, Proportional, and

c -error= 0.2
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a -error= 0.05

F 10
a

I Iu
r
e
s 6

4

2

6.4. Effects of Correlated Failure

Unlike the random failure model studied above, the
correlated failure model assumes that all the nodes that
fail assign a large weight to the same candidate. We
would thus expect a much lower degree of robustness as
compared to the random failure model.

Case I: p ~ n. As above, the weights of the weight
matrix were chosen from an exponential distribution with
mean A = 1. To simulate correlated failure, a specific
node was chosen to be the one to receive a large weight
(set arbitrarily at 100). We chose the values 8 = 6 = 0.05,
0.1, and 0.2. The number of candidates ranged between
2 s p s 5 and n took values 10, 30, 50, 70, and 90. We
computed 95% confidence intervals and determined that
the interval half-widths were within 5% of the point val-
ues.

In Fig. 17 we plot ffl~~.1 vs the number of nodes n for
different values of p. The legend used there is: f, frac-
tional; I, logscale; p, proportional; and 0, others. We
noted that the election schemes Plurality, Approval,
PluApp, Borda, and Copeland exhibit the same degree of

0

2 3 4 5 6 7 8 9 10 11 12 13 14

n=p

FIG. 16. ffi~~ vs n = p for different 8.
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FIG. 17. Plot of fflro.1 vs n.

Log scale elect the optimal leader with a high probability
but are less tolerant to correlated failure than Borda, Plu-
rality, Copeland, Pluapp, and Approval. All the election
schemes are equally tolerant to random failure, however .

votes, with every vote representing a secret. The com-
munication cost is shown to be 2n + c (c a constant) in
[7, 16]. Once all the nodes have received the votes from
all the others, they execute the appropriate election
scheme to determine the leader(s). With the exception of
Copeland every other election scheme requires time
O(np) to execute (where n is the number of nodes and p
the number of candidates). Copeland requires time
O(np2) since pairwise elections are run between all pairs
of candidates.

IMPLEMENT A TION ISSUES

8. CONCLUSIONS AND FUTURE WORK

We began this paper with the postulate that electing
leaders based upon the individual preferences of the
nodes would yield a leader that gives a high system-wide
performance. As earlier sections have shown, this claim
has been well justified. We also defined two new models
of failure that occur when some nodes report incorrect
votes. These kinds of failure cannot be detected because

The process of leader election, as described in this
paper, proceeds in two steps. In the first step, all the
nodes determine their vote based upon the local function,
gi, being maximized. The implementation of this first step
is system dependent and is not addressed in this paper .
The second step involves the collection and collation of
votes to determine the leader(s). There are several exist-
ing algorithms that can be easily adapted to implement
this step.

Gossiping algorithms address the problem of all-to-all
communication between n nodes. Each node is assumed
to possess a "secret" that has to be communicated to all
the others in the shortest time. Clearly these algorithms
can be easily adapted to the problem of collection of the
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