An Experimental Study of TCP’s Energy
Consumption over a Wireless Link

Sandeep Agrawal and Suresh Singh

Abstract— In this paper we examine TCP’s energy consumption behav-
ior over wireless links and suggest improvements that result in significant
energy savings. The various modifications and fine-tunings to TCP code
suggested here help in conserving battery power at nodes by saving on soft-
ware overhead and reducing protocol processing. These modifications were
tested with experiments done on three laptops equipped with 11Mbps Lu-
cent WaveL AN wireless cards. The results obtained from these experiments
indicate that, with certain modifications made in the implementation of
TCP code, we can attain as much as a 25% improvement in TCP’s effi-
ciency for the same amount of energy consumed. This work is ongoing and
as a next step we will be examining the energy behavior of TCP in more
complex wireless environments.

I. INTRODUCTION

Nodes in wireless networks need to remain on battery power
for extended periods of time and thus these nodes need to be
energy conserving. For instance, significant amount of power
is consumed by the display, by spinning disks, by the CPU,
by 1/0 devices and also by the transceiver radio. Recently
some researchers have begun studying the problem of reduc-
ing power consumption at the wireless interface. Some exam-
ples of this work include power-efficient MAC protocols [7], [2]
and energy-efficient routing [8], [3]. Little work has been done
to address the energy consumption issues at the transport layer,
however. In this paper we examine, in detail, how TCP’s en-
ergy consumption can be reduced while remaining within the
standards-imposed constraints.

The results of the experiments reported in this paper doc-
ument TCP’s energy consumption behavior in wireless envi-
ronments. In our experiments we use laptops equipped with
11Mbps 802.11 cards. For each experiment the laptops are
charged to capacity after which data is sent over a TCP con-
nection until the battery drains out. We measure the time as well
as the amount of data transmitted for each modification made to
TCP code. Some modifications do yield improvements in the
energy-efficiency of TCP (e.g., larger MTU sizes are more effi-
cient) while others make little difference (e.g., the window scale
option). In this paper we report all of our attempts (successful as
well as unsuccessful) as a guide to other researchers interested
in working on the same problem. The remainder of the paper is
organized as follows:

« Section Il presents the specific modifications we made to TCP
in an effort to improve its energy-efficiency.

« Section Il presents experimental results along with a discus-
sion of why some techniques work while others do not.

This research was funded by DARPA under contract F33615-C-00-1633 and
the NSF under grant No. NCR-9706080

Department of Computer Science, Portland State University, Portland, OR
97201 ,singh@cs.pdx.edu

Il. APPROACHES FOR IMPROVING TCP’S ENERGY
CONSUMPTION BEHAVIOR

The current implementations of TCP in Linux incorporate
several optimizations including reduced copy operations, header
prediction and efficient checksum computation that do result in
reduced energy consumption as compared with older TCP im-
plementations. Unfortunately, however, along with these modi-
fications current TCP implementations include certain options
and extensions which are only useful for long fat networks
(LFN) where the delay-bandwidth product is large. These op-
tions cause extra protocol processing both at the receiver and
sender which makes them problematic for wireless networks.
Wireless ad-hoc networks have a relatively small bandwidth
(11Mbit/s for the new WaveL AN cards) and the propagation de-
lay of the medium is low since the distance between the source
and destination is generally not very large. The upshot of this is
that the delay-bandwidth product for ad hoc networks is much
smaller than for LFNs and thus many of the options imple-
mented to support LFNs will not be suited to ad hoc networks.
These various options, which are suitable only for LFNs and
need to be modified for slow wireless networks, are discussed
below. We describe how each of these options work and give
reasons why they may need to be turned off in wireless net-
works.

A. Timestamp Option

TCP implements reliable data delivery by re-transmitting seg-
ments that are not acknowledged within some retransmission
timeout (RTO) interval. Accurate dynamic determination of
an appropriate RTO is therefore essential to TCP performance.
RTO is determined by estimating the mean and variance of the
measured round-trip time (RTT), i.e., the time interval between
sending a segment and receiving an acknowledgment for it [5].
Many TCP implementations base their RTT measurements upon
a sample of only one packet per window. While this yields an
adequate approximation to the RTT for small windows (used in
mobile ad-hoc systems), it results in an unacceptably poor RTT
estimate for LFNs which have very large sized windows.

The timestamp option is one in which the sender uses 12
bytes of the TCP options field to place a timestamp in every
segment sent (including retransmissions) to the receiver. The
receiver echoes this timestamp value in the ACK packet sent
to the sender. By using this timestamp option in every packet
the sender is able to get a better value of the round trip time
(RTT). Clearly, this option is very useful for high-speed net-
works because the RTO can be adjusted quickly resulting in bet-
ter usage of the large bandwidth. In wireless networks, on the
other hand, the overhead of obtaining frequent RTTs is not jus-
tified for at least two reasons — first, the window size of TCP
tends to be small (small delay*bandwidth product) unlike LFNs

and second, using this option results in additional computation
and communication overhead corresponding to the additional 12
bytes of RTT. Thus by not using this option we would hope to
gain a small amount of energy efficiency.

PAWS (Protection Against Wrapped Sequence Numbers)
uses the same TCP Timestamps option as the RTT mechanism
described above, and assumes that every received TCP segment
(including data and ACK segments) contains a timestamp whose
values are monotone non-decreasing in time. The basic idea
is that a segment can be discarded as an old duplicate if it is
received with a timestamp which has a value that is less than
the last previous timestamp received on this connection. This
is again a very useful option for high-speed networks because
of the high bandwidth. However, this feature is not required
for slower wireless networks since the wrap around of sequence
numbers will not occur within the MSL (Maximum Segment
Lifetime) due to the much lower transmission speeds of wire-
less links. It should be mentioned here that having the PAWS
checking is not much of a load on the nodes by itself but still
it would be better not to have it because PAWS checking is the
first step in the frequent fast path of the TCP code (section I1-D)
and, as we will discuss, it is best to get rid of it for efficiency
reasons.

B. Window Scale Option

The TCP header uses a 16-bit field to report the receive-
window size to the sender. Therefore, the largest window that
can be used is 2'6 = 65K bytes. The window scale extension
expands the definition of the TCP window to 32 bits and then
uses a scale factor to carry this 32-bit value in the 16-bit Win-
dow field of the TCP header. The scale factor is carried in a new
TCP option called Window Scale. This option is sent only in a
SYN segment (a segment with the SYN bit on), hence the win-
dow scale is fixed in each direction when a connection is opened.
Again it should be noted that very large windows are not nec-
essary for slower wireless connections and hence this option is
not required by wireless TCP. However it does have a purpose
in high-speed connections as the window size is a limitation in
those connections and larger window sizes might have to be ne-
gotiated in the SYN segment if allowed by both the receiver and
the sender.

C. SACK Option

Any packet loss in a LFN can have a catastrophic effect on
TCP’s throughput because of two reasons — the sender only re-
transmits the lost packet when a timeout occurs resulting in an
underutilization of the network resources, and second, because
of TCP’s use of cumulative ACKSs, several packets following the
lost packet get retransmitted unnecessarily. This happens be-
cause the sending TCP has no information about segments that
may have reached the receiver and been queued since they were
not at the left window edge. So it may be forced to retrans-
mit these segments (since they will time-out soon after the lost
packet times out - unless a new updated ACK is received from
the receiver). A Selective Acknowledgment (SACK) mecha-
nism, combined with a selective repeat retransmission policy,
can help to overcome these problems for LFNs. Here, the re-
ceiving TCP sends back SACK packets to the sender informing
the sender of data that has been received. The sender can then

retransmit only the missing data segments.

Unlike LFNs, however, in slower wireless connections TCPs
reliance on timeouts and use of cumulative ACKs will probably
not have the same impact on performance. This is because not
many segments after the lost segment would have been transmit-
ted to the receiver anyway (smaller windows) and thus the num-
ber of needless retransmissions would be very small (if any).
TCP may however experience poor performance when multiple
packets are lost from one window of data. With the limited in-
formation available from cumulative acknowledgments, a TCP
sender can only learn about a single lost packet per round trip
time. An aggressive sender could choose to retransmit packets
early (fast retransmit and fast recovery), but such retransmitted
segments may have already been successfully received.

If SACK is implemented in wireless networks, there is a ben-
efit of not retransmiting needlessly (thus conserving energy) but
the protocol processing involved in implementing SACK might
overcome this small benefit gained. There is thus a tradeoff be-
tween the amount of power required by the sender to retrans-
mit the packets and the power required to do the SACK proto-
col processing. In the non-LFN regime therefore, while selec-
tive acknowledgements reduce the number of packets retrans-
mitted (not a whole lot) they may not otherwise improve per-
formance, making their complexity (and extra power consumed
due to this complexity) of questionable value. Finally, it must be
kept in mind that SACKSs are only useful if the physical medium
is highly error-prone and there is a general tendency of getting
more than a single packet error in a particular window.

D. Header Prediction

Header prediction [4] is a high-performance transport proto-
col implementation technique that is most important for high-
speed. This technique optimizes the code for the most common
case, receiving a segment correctly and in order. Using header
prediction, the receiver asks the question, ”Is this segment the
next in sequence?” This question can be answered in fewer ma-
chine instructions than the question, ”Is this segment within the
window?”” Adding header prediction to the timestamp procedure
leads to the following sequence for processing an arriving TCP
segment - this is also the implementation in Linux:

H1) Check timestamp - this means check to see if the packet
is not an older delayed packet by checking the timestamp value
with the most recent timestamp value received earlier.

H2) Do header prediction - if the segment is next in sequence
(checked by using the frequent path code which basically has
about five comparisons) and if there are no special conditions
requiring additional processing, accept the segment, record its
timestamp, and skip H3.

H3) Process the segment normally - (this is the slow path which
would only be taken if there are errors etc). This includes drop-
ping segments that are outside the window and possibly send-
ing acknowledgments, and queuing in-window, out-of-sequence
segments.

In the above algorithm the modification that we can make for
wireless networks would be to interchange steps H1 and H2,
i.e., to perform the header prediction step H2 first, and per-
form H1 and H3 only when header prediction fails. This can
be done because H2 basically checks for H1 also except for the
case when the packet received is exactly the same packet (i.e.

next in sequence with the same headers) but from the previous
window of 232 bytes. This could be a performance improve-
ment, since the timestamp check in step H1 is very unlikely to
fail and timestamp checking requires interval arithmetic on a fi-
nite field, which is a relatively expensive operation. To perform
this timestamp check on every single segment is contrary to the
philosophy of header prediction and speeding up the frequent
path. However, putting H2 first would create a hazard: a seg-
ment from 232 bytes in the past might arrive at exactly the wrong
time and be accepted mistakenly by the header-prediction step.
The following reasoning has been introduced in [6] to show that
the probability of this failure is negligible. If all segments are
equally likely to show up as old duplicates, then the probabil-
ity of an old duplicate exactly matching the left window edge is
the maximum segment size (MSS) divided by the size of the
sequence space. For IEEE802.11b, the maximum MSS size
is 2296 bytes that gives us a probability of 211/232 = 2721,
This probability of error is smaller than the unreliability of
TCP’s checksum (with a 16-bit checksum, this unreliability is
2716)1 Thus, a protocol mechanism whose reliability exceeds
the reliability of the TCP checksum should be considered "good
enough”, i.e., it won’t contribute significantly to the overall error
rate. From the above reasoning it can be concluded that we can
ignore the problem of an old duplicate being accepted by doing
header prediction (step H2) before checking for the timestamp
(step H1). Hence H1 can be done after H2 in the algorithm and
this would obviously cause some saving in the power consumed
without causing any effect on the reliability of TCP. The sav-
ing would come from the fact that most of the packets received
would satisfy H2 (which would now be before H1) and would
not have to go through H1 at all.

E. MTU Sze

As we know, the Ethernet supports a maximum MTU (Mes-
sage Transfer Unit) size of 1500 bytes. However, for wireless
transmissions the MAC protocol used is the IEEE802.11b stan-
dard that allows a larger MTU size of 2296 bytes and it allows all
protocols running above it to use this size as their MTU. Hence
the IP layer above the 802.11 MAC protocol will not fragment
datagrams that it receives from the transport layer which are
within 2296 bytes. So the TCP layer can negotiate a MSS (max-
imum segment size) of 2296 bytes and send datagrams with a
maximum size of 2296 bytes without the fear of having the IP
layer fragment them and thus increase processing costs. This
support for large MTU sizes enables us to select “correct” MTU
size for a specific application. There are benefits as well as
drawbacks to using large versus small MTU sizes. With large
MTU sizes, it takes fewer packets to send a file and saves on en-
ergy because fewer header bits are used and fewer packets need
to be processed. On the other hand using small MTU sizes has
a lower probability of error in a transmitted packet implying a
lower retransmission cost (retransmitting a large packet is more
expensive than retransmitting a small packet).

F. Cumulative and Delayed ACK Implementation

In the current implementation of TCP in Linux, delayed
ACKs are implemented based on the packet count as well as
time. Thus, for every two full packets received, the receiver
sends an ACK to the sender. This is done so as to provide in-

stant feedback to the sender about the condition of the path —
necessary in LFNs because of the high delay-bandwidth prod-
uct of these networks. For mobile systems, on the other hand,
delayed ACK implementation based on packet count is not nec-
essary - specifically the receiver need not send an ACK for every
two packets received from the sender. The more useful choice
here is to implement delayed ACKs based on time so that we
can reduce the number of ACKs sent. Power savings are ob-
tained here because the receiver saves by having to send fewer
ACKSs and the sender saves by having to respond to fewer ACKs.
Also the contention and collisions at the MAC layer would be
reduced thus contributing to the overall power savings.

Another point to bear in mind is that the IEEE802.11 MAC
protocol has a low bit error rate and also has link layer acknowl-
edgements and retransmissions. Hence the assumption of hav-
ing an error prone wireless link is not entirely true from the point
of view of the TCP layer. The TCP layer in fact can view the
link to be quite error-free and so should be tuned accordingly to
get better power and throughput performance.

Finally, we observe that most of the options discussed above
are important for LFN’s and/or very high-speed networks. For
low-speed wireless networks, it would be a performance opti-
mization to NOT use these options. A TCP user concerned about
optimal performance over low-speed wireless paths should con-
sider turning these extensions and options off for low-speed re-
liable wireless paths.

I1l. EXPERIMENTAL STUDY

We ran experiments to evaluate the potential for energy sav-
ings using the above modifications. For our testbed we used
two Samsung SENS 800 laptops with Pentium-90Mhz proces-
sors and 24MB RAM and one Toshiba Liberetto 100 with 32MB
RAM and a 266MHz Pentium. The operating system installed
on the Samsung laptops was RedHat Linux v6.1 while the
Liberetto ran Win95. The wireless PCMCIA cards used were
Lucent WaveLAN TURBO 11Mb SILVER with 64-bit encryp-
tion capability.

The power characteristics of the WaveL AN cards is the fol-
lowing: Doze Mode — 10mA, Receive Mode — 180mA, Transmit
Mode — 280mA, Power Supply — 5V. These wireless PC cards
use the IEEE 802.11b standard as the MAC (CSMA/CA) pro-
tocol and the transmit range varies depending on the transmit
speed. They support 4 speeds namely 11Mb/s, 5.5Mb/s, 2Mb/s
and 1Mb/s. The R-F Frequency band range is 2.4GHz and the
number of usable channels is 11, as specified by the FCC.

11" or Bij

Linux laptops
11Mbps 802.11

Windows 95 Laptop
11Mbps 802.11

Fig. 1. Experimental Setup for single-hop experiments.

A. Methodology

We used the driver [1] developed by Andreas Neuhaus and
the version of the driver was waveLan/IEEE driver v1.0.3. The
driver is available for Linux Kernel v2.x.x. This driver allowed
us to modify the segment MTU size used in transmissions. In
ad-hoc mode the driver allowed us to setup the speed of trans-
mission and also the channel to be used. For our experiments
we selected channel 1 (the default) and set the speed to its maxi-
mum i.e. 11Mb/s. The encryption was turned off. For the initial
experiments the two Samsung laptops were placed about one
inch from each other and the distance between the two anten-
nas was about 13 inches. We repeated the experiments for the
case when they were 30ft apart and did not notice any change in
the results. For all the experiments one of the Sansung laptops
was used as a sender and the other as a receiver. The third laptop
was used as a source that generated interfering traffic. In the first
set of experiments (section I111-B) we did not use the interfering
source because we wanted to reduce the number of variables in
the experiment. We then repeated some of the more interest-
ing experiments with the interfering source turned on and report
those results in section I11-C.

For each experiment the battery for the sender was always
fully charged for 2 hours with the laptop in off/charge mode.
It should be noted that the charge of the battery is typically re-
stored to its full capacity in about 1.5 hours but the laptop was
kept in the same mode (off/charge) for another 0.5 hours. The
setup of the laptops was changed so that no power saving fea-
ture was on. All the various devices (disk, display, I/O devices
etc) of the laptop were in full power consumption mode as long
as the battery lasted. Before the start of the experiments the
monitor display of the sender was turned off and the experi-
ment was started by disconnecting the power connector from
the sending node and hence the sender operated exclusively on
its battery. The experiment itself consisted of the sender trans-
mitting a 1MB buffer continuously to the receiver using a TCP
socket. This buffer, when received at the receiver, was discarded
and the receiver was immediately ready for the next buffer. Tcp-
dump with appropriate filter settings was run on the receiver to
record the amount of time the sender was alive and the number
of bytes the receiver received from the sender.

One concern we had about the above methodology was
whether the energy consumption by the other hardware devices
within the laptop (disks etc.) would swamp out the energy con-
sumed by data transmission and processing. If so we would
not be able to make meaningful statements about TCP’s energy
behavior. Therefore, before we ran any experiments we per-
formed a benchmark where we charged the laptops and let them
run until discharged without transmitting any data. We then re-
peated this experiment but performed data transmission where
the sender sent out pings continuously. The time to discharge
without any data transmission was 223 minutes while with time
to discharge in the second case was about 101 minutes. The
difference in these two times (i.e., with and without data trans-
mission) is therefore significant with the data transmission case
resulting in a 50% reduction in battery lifetime. Therefore we
note that data transmission and processing does consume a sig-
nificant amount of battery power and, in addition, can be reliably
measured by measuring the time to discharge of the laptop’s bat-
tery.

A second concern we had was the reliability of the laptop’s
battery itself and whether the battery would have a shortened
lifetime after several hours of experiments. To ensure that the
battery was reliable over the course of our experiments we mea-
sured the time to discharge (without any data transmission) pe-
riodically and compared this value with the time we had mea-
sured when we started our experiments. Thus far the battery has
proved to be reliable with no significant reduction in its lifetime
or capacity.

B. No interfering sources

The first set of experiments we ran did not use the third laptop
as an interferer. The reason was that we wanted to reduce the
number of variables in order to better understand the impact of
turning on/off the various options discussed earlier. In section
I11-C we discuss the results obtained by running some of the
more interesting experiments with an interferer. Finally, note
that in many experiments we did not use RTS/CTS (Request
To Send/Clear To Send)® because we had a single sender and a
single receiver. However, we did evaluate how RTS/CTS would
impact on the overall savings and this is reported in section I11-
B.7.

In sections 111-B.1 to 111-B.6 we use the default settings for
all options except for the one being evaluated. The default set-
tings are: MTU is 1500 bytes, SACK on, Window Scale on,
Time Stamp on, Header Prediction normal, Delayed ACK every
2 packets. In section I11-B.7 we use a combination of several
settings to get a value for the cumulative savings possible.

B.1 Varying the MTU size

We ran experiments with four different sizes of MTU — 2296,
1500, 1000 and 500 bytes. Figure 2 shows the results of the
number of bytes transported during the lifetime of the sender
and the number of minutes for which the sender was active for
the different MTU sizes. As we can see the number of bytes
transported increases as the MTU size increases. This is because
of three reasons:

1. With larger MTUs we save on header overhead.

2. The amount of protocol processing does not depend on the
packet size, therefore with larger MTUs the total protocol pro-
cessing is reduced.

3. Once the sender acquires the channel, more data is sent if we
use larger MTUs.

It is interesting to note that the sender’s lifetime decreases
with increasing MTU sizes. The reason for this is quite simple —
with larger MTU sizes the sender transmits a lot more data and
therefore consumes more energy. Finally, note that with larger
MTUs the total protocol processing overhad at the receiver is
also reduced thus resulting in energy savings there as well.

B.2 Time Stamp Option

Figure 3 shows the effect that turning the time stamp option
off has on the number of bytes transmitted by the sender. Note
that we only ran this experiment with the maximum MTU size
(2296 bytes) because using the maximum size is more efficient
than using smaller sizes (see section 111-B.1). In this figure we

LThis is a mechanism in 802.11 that allows a sender to reserve the channel
prior to sending data.

< ¥ 10° Bytes Transmitted vs MSS
T T

Bytes Transmitted(bytes)
N
o
T

0 500 1000 1500 2000 2500
MSS(bytes)

Life Time of Sender vs MSS
140

T
120+
100+
80
60
40
20

0 500 1000

Fig. 2. Effect of varying the MTU size (no RTS/CTS).

1500 2000 2500
MSS(bytes)

Life Time of Sender(minutes)

see that the effect of turning this option off is quite significant
and this can be explained by the fact that turning this option off
causes the frequent fast path to be much faster because, if there
is no time stamp, then there is no processing for PAWS check-
ing. However, when combined with modified header prediction
in which the PAWS checking is done away with, we will not get
any improvement by having this option off. So it is better to
have this option on and at the same time get the saving in en-
ergy by modifying the header prediction to get rid of the PAWS
checking.

B.3 Window Scale Option

Figure 4 shows the effect that turning the window scale option
off has on the bytes transmitted by the sender. As explained
previously this option does not cost much protocol processing
and so the improvement is minimal.

B.4 SACK option

Figure 5 shows the effect doing away with the SACK option.
Here we vary the MTU size and measure the total number of
bytes transmitted with and without SACK. In this graph we see
that turning off SACK only helps for the maximum MTU size of
2296 bytes. For all other MTU sizes we get better performance
by having the SACK option turnd on. This can be explained by

. x10° Bytes Transmitted vs MSS - TSTAMP
T T

TSTAMP ON
TSTAMP OFF

Bytes Transmitted(bytes)
w S
T T

)
T

0 I I I I
0 500 1000 1500 2000 2500

MSS(bytes)

LifeTime vs MSS - TSTAMP
120 T T

TSTAMP ON
TSTAMP OFF

80

60

LifeTime(minutes)

40

20+

0 I I I I
0 500 1000 1500 2000 2500
MSS(bytes)

Fig. 3. Effect of using the Timestamp option (no RTS/CTS).

the fact that the SACK option only increases efficiency when
there are multiple losses in a single window. As the MTU size
increases a single window contains fewer number of packets and
hence the probability of having multiple losses from within a
single window deceases. So for large MTU it is in fact better
to have the SACK option off and save power by not having to
undergo the SACK protocol processing instead.

B.5 Header Prediction Modification

Figure 6 shows the effect of header prediction modification
on the number of bytes transmitted by the sender. As mentioned
earlier the improved efficiency is due to the fact that the PAWS
checking is moved out of the frequent fast path. This saving
is quite significant and is comparable to the saving achieved by
turning the time stamp option off. But, as explained, it is better
to have the time stamp option on and at the same time modify
the header prediction so as to get the same effect.

B.6 Delayed ACK implementation

Figure 7 shows the effect of the implementation of delayed
ACK based on time on the number of bytes transmitted by the
sender. This improvementis due to the fact that fewer number of
ACK:s are sent by the receiver to the sender and fewer number of

5 x 10° Bytes Transmitted vs MSS - WSCALE; MTU = 1500
. T

+ I

WSCALE OFF
WSCALE ON ~

Bytes Transmitted(bytes)

- N w
o N o w &
T T T T T
I I I I I

[
T
I

o
2
T
L

I I
0 500 1000 1500 2000 2500
MSS(bytes)

LifeTime vs MSS - WSCALE; MTU = 1500

140 T T
WSCALE OFF

- WSCALE ON

120 q

100 q

LifeTime(minutes)
®
S}
T
I

=)
S
T
I

I I
0 500 1000 1500 2000 2500
MSS(bytes)

Fig. 4. Effect of turning on/off the window scale option (no RTS/CTS).

ACKSs have to be received and processed by the sender. Hence
the savings are at both the receiver and the sender. On examining
the tcpdump output we observed that without the modification
one ACK is sent for every two packets received but with the
modification there is a delayed ACK every 500ms if there are no
errors in transmission.

B.7 Cumulative Savings

Figure 8a shows the comparison between unmodified and
modified TCP with all the significant optimizations incorpo-
rated. From the above discussion we know that the optimiza-
tions that should be incorporated are: MTU increased to 2296,
SACK option off, header prediction modified to remove the
PAWS check from the critical path and delayed ACK imple-
mented based only on time. This graph shows that the energy
efficiency achieved is almost about 25%.

Figure 8b is the same as Figure 8a with RTS/CTS enabled.
For all the above experiments as mentioned we had this feature
turned off but for this experiment we had this featured turned
on. For a packet of size greater than 1000 bytes there would be
an initial RTS/CTS handshake performed between the two MAC
layers to ensure that the media is reserved. By choosing the size
as 1000 bytes for mandatory handshaking we ensure that ACKs

. x10° Bytes Transmitted vs MSS — SACK
T T

| I |
0
1000 1500

MSS(bytes)

SACK ON
SACK OFF

Bytes Transmitted(bytes)
w S
T T

)
T

I
2000 2500

LifeTime vs MSS - SACK

140 : T T
SACK ON
SACK OFF
1201 g
100+
g
5 801
2
£
)
£
's e0F
2
400
20t
o \
0 500 1000 1500 2000 2500

MSS(bytes)

Fig. 5. Comparison of bytes transmitted with and without SACK (no RTS/CTS).

do not need any initial handshaking whereas data packets do
need handshaking. This figure shows us that there is a greater
saving in energy with the RTS/CTS feature turned off. This can
be attributed to the extra processing involved in processing and
exchanging RTS/CTS packets.

Figure 9 shows the savings in the case that all optimizations
are turned on except that the MTU size used is 1500 bytes. This
experiment was done because of the observation that Ethernet
supports a maximum MTU of 1500 bytes and if a node in an
ad hoc network sets up a connection that traverses a LAN (Eth-
ernet), then the max MTU TCP will be able to use will be no
more than 1500 bytes. As we can see, there are still significant
savings (8%) though not as dramatic as in the case that a 2296
byte MTU is used.

B.8 Variable Distance

For this experiment we increased the distance between the
sender and receiver to 30ft. However within experimental limits
we found the results to be similar to the results obtained when
the distance between the sender and receiver was 13 inches.

x 10° Bytes Transmitted vs MSS - Modified Header Prediction
6 T T T T

Header Prediction Modified
Header Prediction not Modified

Bytes Transmitted(bytes)
w S
T T

N
T

0 I I I I
0 500 1000 1500 2000 2500

MSS(bytes)

LifeTime vs MSS - Modified Header Prediction
120 T T

Header Prediction Modified
Header Prediction not Modified

LifeTime(minutes)
o @
<) <)
T T

IN
S
T

20+

I I I
0 500 1000 1500 2000 2500
MSS(bytes)

Fig. 6. Effect of modifying header prediction (no RTS/CTS).

B.9 Errors at the TCP layer

We measured the total number of retransmissions at the TCP
layer of the sender during its life-time. This gave us a measure of
the quality of the wireless link. The number of retransmissions
in the course of the experiment foran MTU of 1500 was found to
be about 50. This is quite a high error rate considering the fact
that the MAC protocol is considered to be reliable. However
the number of retransmissions is generally high because of the
timer interactions between the TCP and the MAC layers and
also because of the competing and redundant retransmissions by
the TCP Layer since duplicate ACKSs are not suppressed by the
MAC layer. Similar error rates were observed for other MTU
sizes as well.

C. Interfering Trafic

To verify our results for the case of interfering traffic we ran
additional experiments. A total of 8 sets of experiments were
run and Tables | and 1l summarize the results that we obtained.
In the experiments summarized in Table | continuous interfering
traffic was generated by the third laptop. While for the exper-
iments summarized in Tablell the interfering node would send
about 5MB of data every 5 minutes. In these experiments we

x10° Bytes Transmitted vs MSS - Cumulative ACK Modified
6 T T T

Cumulative ACK based on packet count
Cumulative ACK based on time

Bytes Transmitted(bytes)
w S
T T

)
T

0 I I I I
0 500 1000 1500 2000 2500

MSS(bytes)

LifeTime vs MSS - Delayed ACK Modified
T T

120

Delayed ACK based on packet count
Delayed ACK based on time

LifeTime(minutes)
o @
<) <)
T T

IN
S
T

20+

I I I I
0 500 1000 1500 2000 2500
MSS(bytes)

Fig. 7. Effect of delayed ACKs (no RTS/CTS).

Lifetime SACK OFF | SACK ON

RTS/CTS ON 128 132

RTS/CTS OFF 124 117

Bytes Transmitted | SACK OFF | SACK ON

RTS/CTS ON 2970847921 | 3058387131

RTS/CTS OFF 3811377004 | 3647866576
TABLE |

CONTINUOUS INTERFERING TRAFFIC CASE.

included all the modifications to TCP and we used an MTU of
1500 bytes. RTS ON means that all the three nodes had the set-
ting for RTS/CTS handshaking on for packet exchanges in ex-
cess of 100 bytes. From the table we can see that for the case of
continuous traffic the lifetime of the sender was generally high
but the bytes transmitted was generally low. Also there is a sig-
nificant difference between the SACK on and SACK off case
when RTS/CTS is off. This shows that a huge amount of power
is expended in executing the code for SACK and hence the to-
tal number of bytes transmitted is lower during the lifetime of
the sender. This is not the case with intermittent load however.
This means that when we have no initial handshaking and the

X 109 No RTS/CTS; Best and No Changes

6 T T
Best
Unmodified

sk i
P B
@
2
=
a
=1
2
g3t :
2
s
=
«
L
=
@

oL i

1 i

0 I I I

0 500 1000 1500 2000 2500
MSS(bytes)
s x 10° RTS/CTS enabled; Best and No Changes
T T T
Best
451 Unmodified b

Bytes Transmitted(bytes)
- N w
o N o w w N
T T T T T T

-
T

051

0 500 0 15 2000 2500
MSS(bytes)
Fig. 8. Cumulative savings.
Lifetime SACK OFF | SACK ON
RTS/CTS ON 111 112
RTS/CTS OFF 106 109
Bytes Transmitted | SACK OFF | SACK ON
RTS/CTS ON 3646355620 | 3631339254
RTS/CTS OFF 4183867981 | 4185749921
TABLE Il

INTERMITTENT INTERFERING TRAFFIC CASE.

traffic load is high it is better not to have the SACK option on
- since a lot of power would be consumed in going through the
SACK code. Again it should be noted that depending on the
traffic conditions a decision about having the SACK option on
or off has to be made. Other than that the table shows results
that are intuitive.

IV. FUTURE WORK

In the next stage of this experimental study are exploring
questions such as, how do multi-hop wireless TCP connections
perform? if the last hop of a TCP connection is over a wired
network, will the use of large MTUs cause a decrease in perfor-
mance (due to fragmentation)? in more complex environments

35

Bytes Transmitted(bytes)
N
N o

e
o

0.5

Bytes Transmitted(bytes)

x10° Bytes Transmitted - RTS/CTS off; Best and No Changes,
45 T T T T
4r Best (MTU=1500) B
Unmodified
35F q
3L i
25F q
2L i
151 q
1k i
0.5r q
0 I I I
0 500 1000 1500 2000 2500
MSS(bytes)
x 10° Bytes Transmitted - RTS/CTS enabled; Best and No Changes,
T T T T
L Best(MTU=1500) i
Unmodified
I I I
0 500 1000 1500 2000 2500
MSS(bytes)

Fig. 9. Cumulative savings with smaller MTU of 1500 bytes only.

with many transmitters, how will the modified TCP behave as
opposed to the unmodified case? We will use a similar method-
ology to study these questions.

(1]
(2]

(31
(4]
(5]
(6]

[71

8]

REFERENCES

Andy’s Homepage - Linux - WaveLAN/IEEE802.11 driver,
http://www.fasta.fh-dortmund.de/users/andy/wvlan/
Nicholas Bambos and Sunil Kandukuri, “Power-Controlled Multiple Ac-
cess (PCMA) in Wireless Communication Networks”, |EEE Infocom
2000.

Jae-Hwan Chang and Leandros Tassiulas, “Energy-Conserving Routing in
Wireless Ad Hoc Networks”, |EEE Infocom 2000.

V. Jacobson, “4BSD Header Prediction”, ACM Computer Communication
Review, Vol. 20, No. 1, April 1990, pp. 13-15.

V. Jacobson, “Congestion Avoidance and Control”, ACM SSGCOMM '88,
Stanford, CA., August 1988.

V. Jacobson, R. Braden, and L. Zhang, “TCP Extension for High-Speed
Paths”, RFC-1185, LBL and USC/Information Sciences Institute, October
1990.

S. Singh and C. S. Raghavendra, “PAMAS: Power-Aware Multi-Access
protocol with signalling for ad hoc networks”, ACM Computer Communi-
cation Review, July 1998.

S. Singh, M. Woo and C. S. Raghavendra, “Power-Aware Routing in Mo-
bile Ad Hoc Networks”, ACM/IEEE Mobicom 1998, pp. 181-190.

