
Agile Traffic Merging for DCNs?

Qing Yi and Suresh Singh

Portland State University, Department of Computer Science,
Portland, Oregon 97207
{yiq,singh}@cs.pdx.edu

Abstract. Data center networks (DCNs) have been growing in size
and their power consumption is becoming a matter of concern. Many
recent papers, including ElasticTree and CARPO, propose new near-
energy-proportional DCNs, aiming at reducing the power consumption
by dynamically powering off idle network switches and links. In this pa-
per, we examine the power optimization model for DCNs, and present
a scalable heuristic algorithm that finds a near-optimal subset of net-
work switches and links that satisfies a given traffic load and consumes
minimal power. Furthermore, we apply merge networks to each switch in
order to power off the idle interfaces of the active switches, thus further
reducing the energy consumption of active switches and achieving greater
energy savings than ElasticTree. We finish by simulating large-scale fat-
tree DCNs and comparing the energy cost of our techniques versus the
ElasticTree method. The results demonstrate that our solution is more
energy-efficient.

Keywords: Data center, routing, merging, fat-tree

1 Introduction

Data center networks (DCNs) are designed to support high communication band-
width between servers. However, since many data centers have light loading for
significant lengths of time or localized loading, large parts of these networks re-
main under-utilized. Networking equipment continues to consume energy even
when sitting idle, and therefore contributes significantly to the overall operating
costs of the data center over time. Two notable approaches have been studied
to address this problem. In ElasticTree [12], the network forces traffic to the
leftmost switches in a fat-tree topology to allow powering off unused switches.
An orthogonal approach [16] replaces larger switches with many smaller ones in
a fat-tree DCN to enable better packing of traffic into fewer switches compared
with ElasticTree, hence achieving greater energy savings. Additionally, there are
other approaches that primarily focus on changing link rate in response to load.

All these approaches achieve the goal of saving energy, but they have not
proved to be able to adapt to changes in loading patterns efficiently. For instance,
the approach proposed in [16] is static since the switch sizes and topology is fixed

? This work was funded by the NSF under award No. 1217996.

at design time. As a result, the design is only energy efficient for the specific
loads that the network was designed for. Indeed, as shown in the paper, only
when loads are smaller than 30% is the topology using many small switches
more energy efficient than the one using large switches. ElasticTree is a more
adaptive mechanism for saving energy since it computes routes every second.
However, there is still considerable amount of energy wasted by switches that
are powered on with light traffic on all its interfaces. Indeed, the number of such
lightly loaded switches is significant, and, as a result, the overall energy savings
are sub-optimal.

Pod 1 Pod 2

k/2 edge

switches

k/2 aggregation

switches

k /4 core switches
2

k pods

1 2 k/2 k/2+1 k
2
/4

k/2 servers

Fig. 1: Fat-tree model

To explain the deficiency of the prior approaches as well as to motivate our
contribution, we consider the 3-layer fat-tree DCN shown in Fig. 1. The fat-tree
network is divided into k pods, each of which has two layers of switches. The
bottom layer of k/2 switches are called edge switches while the upper layer of k/2
switches are called aggregation switches. k/2 servers are attached to each edge
switch and each edge switch is connected to each of the aggregation switches in
the same pod. The leftmost aggregation switch in each pod is connected to the
first k/2 core switches, and so on. Thus there are k2/4 core switches.

In previous approaches such as ElasticTree, the k2/2 edge switches are always
fully powered on as they are connected to servers. Although link rate adaptation
at low loads will reduce energy consumption, the reduction is only a very small
fraction of the interface energy cost. At the aggregation layer, switches that are
powered on in ElasticTree do not fully load their interfaces (facing the edge
switches) because each interface is connected to an edge switch. Even if the edge
switch has very little traffic going to the aggregation switch, the link is fully
powered on but very lightly loaded. Our contribution in this paper is to enable
powering off a subset of interfaces in active switches. This is accomplished by
merging traffic carefully.

1.1 Our Approach: Merging

Consider the case of an edge switch connected to k/2 servers, each of which

k/2 x k/2 Merge

k/2 x k/2 Merge

k port edge switch

k/2 links

k/2 links

k/2 links to k/2 servers

k/2 links to k/2 aggregation switches

Fig. 2: Merge networks applied to a
switch

offers a load of λ (expressed as a frac-
tion of link rate). Then the total traf-
fic to this switch from the servers is
kλ/2. If k = 8, then for λ ≤ 0.25, one
switch interface will suffice to han-
dle the traffic from all four servers.
In other words, if there was a way to
merge the traffic from the four servers,
we could potentially power off three of
the four switch interfaces connected to
the servers. In a previous paper [14],
we provided a design of a hardware
device called merge network. Rather
than repeating that discussion here,
we provide a functional model of what
such a network does, and then use it
in the remainder of this paper. Fig. 2
shows a k

2 ×
k
2 merge network connected to k/2 servers on one side and to the

k/2 ports of an edge switch on the other side.

1. The merge network is a fully analog device with no transceivers and, as a
result, its power consumption is below one watt. The merge network can be
visualized as a train switching station where trains are re-routed by switching
the tracks (rather than store-and-forward).

2. Consider the uplink from the servers to the merge network. All traffic coming
into the merge network is output on the leftmost m ≤ k/2 links connected
to the m leftmost interfaces of the switch, where m = dkλ/2e (assuming
a normalized unit capacity for links). This is accomplished internally by
sensing packets on links and automatically redirecting them to the leftmost
output from the merge network that is free.

3. On the downlink to the servers, traffic from the switch to the k/2 servers is
sent out along the leftmost m ≤ k/2 switch interfaces to the merge network.
The packets are then sent out along the k/2 links attached to the servers from
the output of the merge network. The manner in which this is accomplished
is described in [14] (note that the challenge is to correctly route the packets
flowing through the merge network to the appropriate destinations).

To apply merge networks to a fat-tree network, we add two k
2×

k
2 merge networks

to each edge switch as shown in Fig. 2. The connections are similar for each
aggregation switch. For the core switches, we connect a k × k merge network.

1.2 Contributions and Paper Organization

In this paper, we revisit the problem of reducing energy consumption in fat-tree
DCNs by attaching merge networks to each switch. In addition to the savings
we obtain by forcing traffic to the left as in ElasticTree, we achieve significant

additional savings by powering off unused interfaces in active switches which is
made possible by merge networks.

The remainder of the paper is organized as follows. In the next section, we
present an optimization model for computing routes with the goal of minimizing
energy consumption. This model is different from those developed in previous
papers because we also consider merge networks and our minimization func-
tion includes the number of active interfaces as a parameter. In section 3, we
present an algorithm that computes routes every second based on traffic load.
The results of the optimization are compared against the simulated algorithm
for a variety of loading scenarios, which show good agreement between the two.
Finally, in section 4, we present the results of simulating more realistic larger
fat-tree networks and analyze the energy savings obtained when using merge
networks. Section 5 presents related work and section 6 summarizes the main
contributions and future work.

2 Minimizing Energy Consumption

To compute the minimal power required by a DCN, we formulate a power model
for all network elements including switches and links. A network G(V,E) is
given, where V is the set of nodes in the network and E is the set of links. We
consider both the end hosts and the switches as network nodes and thus we have
V = V1 + V2, where V1 is the set of end hosts and V2 is the set of switches.
Link (u, v) ∈ E connects node u and node v (u, v ∈ V). Assuming each switch
consumes power Ps and each link consumes power Pl, the total power consumed
by the entire network can be expressed as

Ptotal =
1

2

∑
u∈V2

ku × Pl + n× Ps +
ε

2
×

∑
u∈V,w∈Vu

fu,w (1)

where n is the number of active switches and ku is the number of active interfaces
of switch u. Vu is the set of nodes connecting to node u. ε is the dynamic
energy consumption factor representing the power consumption per unit data
transmitted through a link. fu,v is amount of traffic flow assigned to link (u, v).
We use binary variables yu and xu,v to represent the power state of node u and
link (u, v), respectively. For instance, if xu,v = 1, link (u, v) is active; if it is 0,
link (u, v) is idle and can be powered off. Therefore, ku and n can be written as

n =
∑
u∈V2

yu (2)

∀u ∈ V2, ku =
∑
w∈Vu

xu,w (3)

2.1 Optimization Model

Based on the power model defined above, we define an optimization problem
in order to find the optimal flow assignment that involves a minimum subset

of active network elements, (n, ku), with the minimal total power consumption
Ptotal for a given network topology and a traffic load. This optimization problem
is a Mixed Integer linear Programming problem (MIP), and is an extension to
the capacitated Minimum-Cost MultiCommodity Flow problem (MCMCF). A
classical MCMCF problem is subject to three constraints - capacity constraint,
flow conservation and demand satisfaction, which are written as

∀(u, v) ∈ E, fu,v ≤ cxu,v (4)

∀u, u 6∈ S and u 6∈ D,
∑
w∈Vu

fu,w −
∑
w∈Vu

fw,u = 0 (5)

∀s ∈ S,

∑
w∈Vs

gis,w −
∑

w∈Vs

giw,s = tis,d

∀d ∈ D,
∑

w∈Vd

giw,d −
∑

w∈Vd

gid,w = tis,d
(6)

where c is the capacity for each link. S is the set of source nodes and D is the
set of destination nodes. Vs and Vd is the set of switches that connect to source
node s and sink node d, respectively. fu,w is the total flow assigned on link (u,w)
and fu,w =

∑
i

giu,w, where giu,v represents the flow of the ith traffic demand tis,d

routed through link (u, v).
Capacity constraint (4) takes account of maximum link utilization and en-

sures that the total traffic flow assigned to a link does not surpass the link ca-
pacity. The capacity constraint also forces flows to go through active links only.
For example, inactive link (u, v) has xu,v = 0, which causes fu,v = 0 meaning
no traffic flow is assigned to this link. Flow conservation (5) ensures that traffic
entering an intermediate node equals to traffic exiting from it. Demand satisfac-
tion (6) describes that the overall traffic departing a source node or entering a
destination node equals to the traffic demand.

Besides these three constraints, the bidirectional link rule ensures that both
directions of a link are powered on if there is a flow assigned to either direction
of the link. The bidirectional link constraint is expressed as

∀(u, v) ∈ E, xu,v = xv,u (7)

Additionally, we include constraints that correlate the power states of switches
and links. For each node u and the connected links (u,w) and (w, u), we have

∀u ∈ V, ∀w ∈ Vu, xu,w ≤ yu and xw,u ≤ yu (8)

∀u ∈ V, yu ≤
∑
w∈Vu

(xu,w + xw,u) (9)

Constraint (8) makes sure that a switch is powered off only when all its connected
links are powered off, and constraint (9) ensures that a switch be powered off
when all its connected links are powered off. Optionally, we can include a non-
splitting constraint as follows to prevent flow splitting:

∀i,∀(u, v) ∈ E, giu,v = ti × riu,v (10)

where riu,v is a binary decision variable that indicates whether the traffic demand

ti is assigned to link (u, v). Constraint (10) ensures that giu,v, the flow assignment
to link (u, v), is either equal to the ith traffic demand ti or equal to zero.

Furthermore, we define heuristic constraints to reduce the problem size. For
example, since a k-ary fat-tree network has 5k2/4 switches and each switch has
at most k active links, we explicitly apply an upper bound and a lower bound to
ku and n as 0 ≤ ku ≤ k and 0 ≤ n ≤ 5

4k
2, which can greatly improve convergence

time for the problem.
We implement the power optimization model using CPLEX, which is an

optimization solver for integer programming problems. For a given traffic matrix,
the optimization model outputs the numbers of active switches and links, and
the flow assignment to each link corresponding to every traffic flow demand. Our
model is implemented with both flow-splitting and non-flow-splitting options.

2.2 Energy Savings Due to Traffic Merging

A primary contribution of this paper is to illustrate the additional energy savings
achieved by merge networks when compared with approaches such as ElasticTree.
To quantify this benefit, we run the optimization problem on several different
types of network loadings for a small fat-tree topology of size k = 4. In this
topology, there are 8 edge switches, 8 aggregation switches and 4 core switches.
For each edge switch, there are 2 servers connected for a total of 16 servers in 4
pods. We assume that there is a 2× 2 merge network connected to either side of
each edge and aggregation switch and there is a 4× 4 merge network connected
to each core switch.

Traffic patterns in data centers can vary greatly, and to ensure our results
are widely applicable, we run the optimization algorithm on the following types
of traffic: Random, Stride(n), Staggered(n) [4]. In Random, the source and
destination are randomly selected from among the servers. For Stride(n), the
destination of a flow from server i is server [(i+ n) mod 16], where servers are
numbered left to right as 0, 1, · · · , 15. For example, in a k = 4 fat-tree network,
Stride(1) has almost half of the traffic goes between servers connected to the
same edge switch and the other half traffic goes to aggregation and core switches.
On the other hand, Stride(4) sends all traffic between pods, resulting in a larger
number of switches to participate in forwarding traffic. The Staggered traffic
model assigns a probability p1 for traffic going to a server in the same subnet
(i.e., connected to the same edge switch), a probability p2 for traffic going to a
server in the same pod but different subnet, and a probability 1− p1− p2 where
the flow is destined to a server in a different pod. By varying these probabilities,
we can generate a large number of different loading patterns.

Fig. 3a plots the percentage of active switches for our approach as well as
for ElasticTree for different loading patterns and different loads. As we have
expected, the number of active switches for Stride(1) does not vary with λ. This
is because almost all the traffic goes to the server in the same subnet or in the
same pod and therefore, the active switches required are always the eight edge
switches, one aggregation switch per pod and one core switch. Stride(8) shows

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

λ

F
ra

ct
io

n
of

 a
ct

iv
e

sw
itc

he
s

Fraction of switches active out of 20

Random
Stride(1)
Stride(2)
Stride(4)
Stride(8)
Staggered(1)
Staggered(2)
Staggered(3)

(a) Number of active switches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
4

6

8

10

12

14

16

λ

A
dd

iti
on

al
 a

ct
iv

e
in

te
rf

ac
es

 in
 E

la
st

ic
T

re
e

Improvement over ElasticTree

Random
Stride(1)
Stride(2)
Stride(4)
Stride(8)
Staggered(1)
Staggered(2)
Staggered(3)

(b) Total number of active interfaces

Fig. 3: Difference in number of active switches and active interfaces network-wide

the highest number of active switches because all the traffic is inter-pod traffic
and hence more core switches are used.

In order to illustrate the potential benefits of traffic merging, we take a
difference between the total number of active interfaces when using ElasticTree
and using traffic merging with the above optimization. The results, shown in Fig.
3b, clearly illustrate the benefits of merging. In the case of Stride(1), ElasticTree
uses 12 more interfaces than merging. The reason is that one aggregation switch
is active per pod. In ElasticTree, all the four interfaces to this switch are active
(albeit with very low traffic). In our approach, in contrast, we merge the traffic
using a merge network and use only a single interface of the switch.

The overall energy cost of a switch can be roughly partitioned into the cost
of the chassis and the cost of the interfaces. As described in [8,16], a reasonable
approximation to the cost of a switch is

Switch Cost = C +m logm+m

where m is the number of active switch ports. The constant C accounts for static
costs of a switch such as fan, etc. The second term corresponds to the cost of
the interconnection fabric within the switch, which is a significant contributor
to energy consumption (typically 30% ∼ 40%). This cost scales as m logm for
a switch with m active ports. The last term is the cost contribution from the
active interfaces. This term folds into itself the cost of the line cards that the
interfaces are on. For the purpose of comparing the overall cost reduction of
traffic merging relative to ElasticTree, we set C to 50% of the maximum switch
cost and express it as

C = mmax logmmax +mmax

where mmax is the number of switch ports. If the traffic load fraction going to a
switch is λ, the merge network will switch the traffic to the leftmost k = dλme
ports. Thus, the cost of a switch with merge networks is written as

Traffic Merging Switch Cost = C + k log k + k

Therefore, the fraction of cost savings of traffic merging over ElasticTree is cal-
culated as

Cost Savings =
m logm− k log k +m− k

C +m logm+m

Fig. 4 plots the fraction of reduction of network cost using traffic merging over
ElasticTree. It is noteworthy that, for all traffic patterns and across all loads,
the traffic merging reduces the overall energy cost even for a small-sized network
consisting of 20 switches. These savings are more substantial when we consider
realistic DCNs as we do later in this paper.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

λ

%
 im

pr
ov

em
en

t o
ve

r
E

la
st

ic
T

re
e

Cost improvement over ElasticTree

Random
Stride(1)
Stride(2)
Stride(4)
Stride(8)
Staggered(1)
Staggered(2)
Staggered(3)

Fig. 4: Reduction in total cost when using traffic merging

3 Greedy Flow Assignment

The optimization model can find the optimal flow assignment for a given network
topology and traffic loading. However, since a MCMCF problem is NP-hard, the
optimization problem for a large-sized DCN cannot be solved within a reasonable
time frame. To address this problem, we propose a heuristic greedy algorithm
to find a near-optimal flow assignment.

3.1 Algorithm

Our greedy flow assignment algorithm is based on Dijkstra’s algorithm that
solves the shortest path problem. For a given network topology and a given traffic
flow, our algorithm finds a route between the source node and the destination
node with sufficient bandwidth and the lowest cost. We define the cost of a route
as the sum of the cost of the nodes and links along the route. By carefully defining
the value of the cost of each node and each link, our greedy algorithm finds the
lowest-cost route for each traffic flow incrementally and ultimately obtains the
optimal routing for all the traffic flows that uses the minimum number of switches
and links. The greedy algorithm is described as in Algorithm 1.

Each link in the network has a fixed capacity. We only assign a flow to a link
when there is available capacity in that link. Once a flow is assigned to a link,

Algorithm 1 Flow assignment algorithm

1: function flowAssign(s, d, t)
2: for each vertex v in Graph do
3: dist[v]← Infinity
4: previous[v]← nil

5: dist[s]← 0
6: insert (s, dist[s]) to Q
7: while Q is not empty do
8: u← first pair in Q
9: remove u from Q

10: if u == d then
11: break
12: for each neighbor v of u do
13: if capacity(u, v) > t then
14: alt← dist[u]+ cost(v)+

cost(u, v)
15: else
16: alt← Infinity

17: if alt < dist[v] then
18: erase (v, dist[v]) from Q
19: dist[v]← alt
20: previous[v]← u
21: insert (v, dist[v]) to Q

22: v ← s
23: while v! = nil do
24: insert v to route
25: v ← previous[v]

26: return route

the corresponding amount of capacity is subtracted from the available capacity
of the link. The cost(u, v) is a constant value of 2 for all links, which counts each
link along the route, no matter whether it was used previously or not. Therefore,
we will always find the shortest route that involves a minimum number of links.
Cost(v) is the cost of node v and the value is initialized as 1 for all nodes. Once
a node was used for a route once, its cost value will be updated to 0. This will
make sure that a switch that has been used in a previous route has a higher
priority to be reused. As a result, we can minimize the overall number of active
switches. We set higher cost for links than for switches to avoid routing loops.

3.2 Validation of Greedy Algorithm

The greedy algorithm is not optimal but, as we show below, the routes produced
by the algorithm are very close to those produced by solving the optimization
formulation in section 2. We use the same fat-tree topology as in section 2.2 with
k = 4. For a given traffic load, we generate a number of packet traces following
certain DCN traffic patterns [5]. The packet traces in each one-second interval
are organized as a traffic matrix and is fed into the CPLEX optimization model
and the simulated greedy algorithm. We obtain the number of active switches
and active interfaces for the eight traffic patterns and seven traffic loads shown
in Table 1.

The results we get from the simulated greedy algorithm are very close to
those get from the CPLEX optimization model, especially for the lighter loads.
Since the optimization model can only scale to a fat-tree DCN with k = 6, we
use the greedy algorithm to simulate the optimization of a large-scale fat-tree
network in the next part of this paper.

Table 1: Number of active switches and interfaces from optimization vs. from
simulated greedy algorithm

load

Staggered(1) Staggered(2) Staggered(3) Random

act SW act I/F act SW act I/F act SW act I/F act SW act I/F

opt sim opt sim opt sim opt sim opt sim opt sim opt sim opt sim

10% 8 8 16 16 13 13 40 40 13 13 40 40 13 13 40 40

20% 8 8 16 16 13 13 40 40 13 13 40 40 13 13 40 40

30% 8 8 16 16 13 13 40 40 13 13 40 40 14 14 48 48

40% 8 8 16 16 13 13 40 40 13 13 40 40 14 14 48 48

50% 8 8 16 16 13 13 40 40 14 14 48 47.2 14 14 48 48

60% 8 8 16 16 13 13 40 40 14 14 48 53.4 18 19 64 72

70% 8 8 16 16 13 13 40 40 18 19 64 72 19 19 72 72

load
Stride(1) Stride(2) Stride(4) Stride(8)

act SW act I/F act SW act I/F act SW act I/F act SW act I/F

opt sim opt sim opt sim opt sim opt sim opt sim opt sim opt sim

10% 13 13 40 40 13 13 40 40 13 13 40 40 13 13 40 40

20% 13 13 40 40 13 13 40 40 13 13 40 40 13 13 40 40

30% 13 13 40 40 13 13 40 40 14 14 48 48 13 14 40 44

40% 13 13 40 40 13 13 40 40 14 14 48 48 14 14 48 48

50% 13 13 40 40 17 17 58 56.2 17 17 60 60.8 17 17 60 63.6

60% 13 13 40 40 18 18 64 64 19 19 72 72 19 20 72 75.2

70% 13 13 40 40 19 18 66 64 19 19 72 72 19 20 72 75.6

4 Simulation Results

We simulate a k = 12 fat-tree network which supports 432 servers and 180 12-
port switches. In this network, there are 12 pods and each of which has six edge
switches and six aggregation switches. We assume that each of the core switches
has extra ports to be connected to external Internet through border routers. We
assign 1Gbps capacity to each link. We experiment with synthetic traffic data
from a traffic generator and real packet traces from a university data center.
Since flow splitting will incur packet reordering cost, which is not a desirable
practice in real data centers, we implement our simulation using non-splitting
flow assignment.

4.1 Synthetic Traffic Data

We generate network traffic following ON/OFF patterns derived from many
production data centers [5,6]. The duration of the ON and OFF periods and the
packet interarrival time follow the lognormal distribution. Like in Section 2.2,
we study traffic patterns Random, Stride(n) and Staggered(n). In a k = 12 fat-
tree network, every edge switch is connected to six servers. For Stride(1), flows
sourcing from the first five servers of the edge switch go to servers in the same
subnet, and flows from the sixth server travel to the server in the next subnet
or in the next pod. In contrast, all the flows in Stride(6) go to the neighboring
subnet, and all the traffic in Stride(36) and Stride(216) is inter-pod traffic. For

Staggered(n), it has fixed values for p1 and p2 as the probabilities of flow going
to the same subnet and other subnets of the same pod, respectively. Table 2
shows these values for all traffic suites studied.

Table 2: Probabilities of flows going to the same subnet (p1), to other subnets
in the same pod (p2), and to different pods (1 − p1 − p2) for all traffic suites
studied.

Traffic Suite p1 p2 1− p1 − p2 Traffic Suite p1 p2 1− p1 − p2
Staggered(1) 100% 0% 0% Stride(1) 83.3% 13.9% 3%
Staggered(2) 50% 30% 20% Stride(6) 0% 83.3% 16.7%
Staggered(3) 20% 30% 50% Stride(36) 0% 0% 100%
Random 1.2% 7% 91.8% Stride(216) 0% 0% 100%

The load fraction λ offered by each server varied from 0.1 to 0.7. Our simu-
lation outputs the number of active switches (Fig. 5a) and the number of active
interfaces of each switch with varies traffic loads and patterns. In general, the
number of active switches increases with the traffic load. However, both Stride(1)
and Staggered(1) have constant number of active switches and active interfaces.
This is because, for Stride(1), all loads can be satisfied by using a minimum
spanning tree. For Staggered(1), only edge switches are used since all the traffic
flows are local traffic within the same subnet.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

λ

F
ra

ct
io

n
of

 a
ct

iv
e

sw
itc

he
s

Fraction of switches active out of 180

Random
Stride(1)
Stride(6)
Stride(36)
Stride(216)
Staggered(1)
Staggered(2)
Staggered(3)

(a) Number of active switches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

λ

A
dd

iti
on

al
 a

ct
iv

e
in

te
rf

ac
es

 in
 E

la
st

ic
T

re
e

Improvement over ElasticTree

Random
Stride(1)
Stride(6)
Stride(36)
Stride(216)
Staggered(1)
Staggered(2)
Staggered(3)

(b) Total number of active interfaces.

Fig. 5: Number of active switches and active interfaces network-wide for a k = 12
fat-tree network

Fig. 5b illustrates the difference of total numbers of active interfaces of a
DCN using merge networks versus ElasticTree. It shows that more interfaces of
the active switches become idle when the traffic is light, which demonstrates
that traffic merging can save more energy with lighter traffic (Fig. 6). Stride(1)
achieves the most energy savings over ElasticTree (around 42%) because, for
each active edge switch, the energy consumed by the five idle interfaces is wasted.

Staggered(1) saves 30% energy consumption since for the entire network, only
half of the interfaces (facing the severs) of the edge switches are used.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

45

λ

%
 im

pr
ov

em
en

t o
ve

r
E

la
st

ic
T

re
e

Cost improvement over ElasticTree

Random
Stride(1)
Stride(6)
Stride(36)
Stride(216)
Staggered(1)
Staggered(2)
Staggered(3)

Fig. 6: Reduction in total cost when us-
ing traffic merging

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fraction of cost with Random traffic

λ

F
ra

ct
io

n
of

 c
os

t

ElasticTree
Traffic Merging
Ideal Energy Proportionality

Fig. 7: Compare the total cost of Elas-
ticTree and traffic merging

ElasticTree provides an energy-efficient solution for DCNs. However, the
drawback of ElasticTree is that, a DCN still consumes a large amount of power
with light load [12]. In contrast, as shown in Fig. 7, our approach reduces energy
consumption when the network is lightly loaded, which demonstrates that traffic
merging achieves better energy proportionality than ElasticTree.

4.2 Empirical Traffic Data

We use packet traces from a university data center published by Benson et al. [5].
This university data center has about 500 servers providing services for campus
users. 60% of the traffic is for Web services and the rest is for other applications
such as file sharing services. Traffic traces are captured by a sniffer installed at
a randomly selected switch in the data center. Fig. 8 illustrates the total load of
the packet traces within 50 minutes. The overall load is very small for a high-
bandwidth fat-tree topology. We observe that power cost decreases from 30% to
17% when applying merge networks compared with ElasticTree (Fig. 9).

5 Related Work

The development of Internet communication and service applications requires
increased bandwidth support and more powerful routing protocols for a DCN.
For the past few years, many new DCN topologies have been proposed, including
fat-tree [4], Clos [7] and flattened butterfly [13]. These hierarchical interconnec-
tion topologies are designed to maximize cross-section bandwidth and optimize
the cost-effect ratio. Alternatively, some server-centric DCN architecture, such
as DCell [10], BCube [9] and CamCube [2], use simple switches and push network
routing to the servers, thus obtaining better scalability and fault-tolerance.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

Time (second)

T
ot

al
 tr

af
fic

 lo
ad

 (
M

B
)

Total traffic load of a university data center

Fig. 8: Traffic load of a university data
center

0 500 1000 1500 2000 2500 3000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (second)

P
ow

er
 c

os
t

Fraction of power cost of a fat−tree network

ElasticTree
Traffic merging

Fig. 9: Energy savings when using traf-
fic merging

In general, these proposed network topologies are intended to support in-
creasing number of servers and provide high capacity for bandwidth-hungry ser-
vices. However, the rising energy cost of DCNs has attracted the attention of
many researchers. New designs of energy-efficient network devices have been ex-
amined. For example, Abts et al. [1] explore dynamically tuning the link rate
according to traffic intensity to save energy. Inspired by the earlier work of
Gupta et al. [11], other researchers propose energy-proportional DCN topologies
through powering off idle interfaces or devices. For example, Heller et al. pro-
posed ElasticTree [12] that adapts the network topology to varying traffic loads.
CARPO [15] examines the dynamic topology by consolidating timely-negative-
correlated flows into a smaller set of links and shutting off unused ones. More
recently, Adnan and Gupta propose an online path-consolidation algorithm to
right-size network dynamically [3]. Widiaja et al. [16] compare the energy sav-
ings of optimizing fat-tree networks deployed with different sizes of switches and
conclude that, with the same number of servers, it is more energy efficient to use
more smaller-sized switches than using less large-sized switches when the traffic
is highly localized.

Our work complements prior work by utilizing a universal greedy flow as-
signment algorithm to find the optimal network subset. The greedy bin-packing
algorithm used in ElasticTree leverages the regularity of hierarchical DCNs and
uses left-most heuristics to find the shortest route. Our greedy algorithm can
find flow assignments close to the MIP model, for not just hierarchical network
topologies, but also random or irregular DCN topologies. Furthermore, we apply
merge networks to each switch and scale switch energy cost to the number of
busy interfaces of each switch.

6 Conclusions

This paper addresses the power optimization problem of DCNs. We present a
greedy algorithm that is applicable to all types of DCN topologies. We demon-
strate that this algorithm can find near-optimal flow assignments comparable to

solutions achieved from optimization model. In addition, by applying merge net-
works to each switch, we further reduce power consumption of active switches.
With very light load, our approach saves 20% ∼ 40% energy cost compared
with ElasticTree, depending on the traffic types. Traffic with small number of
inter-pod and inter-subnet flows can benefit even more from traffic merging. In
the future, we will apply merge networks to switches in different ways to explore
methods that further reduce energy consumption of DCNs.

References

1. Abts, D., Marty, M. R., Wells, P. M., Klausler, P., and Liu, H. Energy
Proportional Datacenter Networks. In ISCA (2010).

2. Abu-Libdeh, H., Costa, P., Rowstron, A., O’Shea, G., and Donnelly, A.
Symbiotic Routing in Future Data Centers. In SIGCOMM (2010), pp. 51–62.

3. Adnan, M. A., and Gupta, R. Path Consolidation for Dynamic Right-Sizing
of Data Center Networks. In Proceedings IEEE Sixth International Conference on
Cloud Computing (2013).

4. Al-Fares, M., Loukissas, A., and Vahdat, A. A Scalable, Commodity Data
Center Network Architecture. In SIGCOMM (2008), pp. 63–74.

5. Benson, T., Akella, A., and Maltz, D. A. Network Traffic Characteristics of
Data Centers in the Wild. In IMC (2010).

6. Benson, T., Anand, A., Akella, A., and Zhang, M. Understanding Data
Center Traffic Characteristics. In WREN (2009).

7. Clos, C. A Study of Non-Blocking Switching Networks. The Bell System Technical
Journal 32, 2 (March 1953), 406–424.

8. Eramo, V., Germoni, A., Cianfrani, A., Miucci, E., and Listanti, M. Com-
parison in Power Consumption of MVMC and BENES Optical Packet Switches.
In Proceedings IEEE NOC (Network on Chip) (2011), pp. 125–128.

9. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y.,
and Lu, S. BCube: A High Performance, Server-centric Network Architecture for
Modular Data Centers. In SIGCOMM (2009), pp. 63–74.

10. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., and Lu, S. DCell: A Scalable
and Fault-Tolerant Network Structure for Data Centers. In SIGCOMM (2008),
pp. 75–86.

11. Gupta, M., and Singh, S. Greening of the Internet. In Proceedings of ACM
SIGCOMM (2003).

12. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P.,
Banerjee, S., and McKeown, N. ElasticTree: Saving Energy in Data Center
Networks. In NSDI (2010).

13. Kim, J., Dally, W. J., and Abts, D. Flattened Butterfly: A Cost-Efficient
Topology for High-Radix Networks. In ISCA (2007), pp. 126–137.

14. Singh, S., and Yiu, C. Putting the Cart Before the Horse: Merging Traffic for
Energy Conservation. In IEEE Communications Magazine. June 2011.

15. Wang, X., Yao, Y., Wang, X., Lu, K., and Cao, Q. CARPO: Correlation-
Aware Power Optimization in Data Center Networks. In INFOCOM (2012),
pp. 1125–1133.

16. Widjaja, I., Walid, A., Luo, Y., Xu, Y., and Chao, H. J. Switch Sizing for
Energy-Efficient Datacenter Networks. In Proceedings GreenMetrics 2013 Work-
shop (in conjunction with ACM Sigmetrics 2013) (Pittsburgh, PA, June 2013).

