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Abstract

The Role of Type Equality in Meta-programming

Emir Pasalic

Supervising Professor: Timothy E. Sheard

Meta-programming, writing programs that write other programs, involves two kinds of languages. The

meta-language is the language in which meta-programs, which construct or manipulate other programs, are

written. The object-language is the language of programs being manipulated.

We study a class of meta-language features that are used to write meta-programs that are statically guar-

anteed to maintain semantic invariants of object-languageprograms, such as typing and scoping. We use

type equality in the type system of the meta-language to check and enforce these invariants. Our main

contribution is the illustration of the utility of type equality in typed functional meta-programming. In

particular, we encode and capture judgments about many important language features using type equality.

Finally, we show how type equality is incorporated as a feature of the type system of a practical functional

meta-programming language.

The core of this thesis is divided into three parts.

First, we design a meta-programming language with dependent types. We use dependent types to ensure

that well-typed meta-programs manipulate only well-typedobject-language programs. Using this meta-

language, we then construct highly efficient and safe interpreters for a strongly typed object language. We

also prove the type safety of the meta-language.

Second, we demonstrate how the full power of dependent typesis not necessary to encode typing proper-

ties of object-languages. We explore a meta-language consisting of the programming language Haskell and

a set of techniques for encoding type equality. In this setting we are able to carry out essentially the same

meta-programming examples. We also expand the range of object-language features in our examples (e.g.,

x



pattern matching).

Third, we design a meta-language (called Omega) with built-in equality proofs. This language is a signif-

icant improvement for meta-programming over Haskell: Omega’s type system automatically manipulates

proofs of type equalities in meta-programs. We further demonstrate our encoding and meta-programming

techniques by providing representations and interpretersfor object-languages with explicit substitutions and

modal type systems.
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Chapter 1

Introduction

1.1 Meta-programming

Meta-programming is the act of writing programs that generate or manipulate other programs. The pro-

grams manipulated are calledobject-programsand are represented as data. The programs doing the ma-

nipulation are calledmeta-programs.The language in which meta-programs are written is called ameta-

language.The language of object-programs is called anobject-language.

Meta-programming systems can be classified into two broad classes: homogeneous meta-programming

systems and heterogeneous meta-programming systems. In homogeneous systems the object and meta-

language are the same. In heterogeneous systems, the object- and meta-language are different.

Homogeneous meta-programming languages have received a lot of attention over the years. Several

homogeneous meta-programming languages have been implemented [112, 121, 77]. Many issues in homo-

geneous meta-programming have been thoroughly explored: quasi-quotation [126, 7]; type systems [30, 29,

128, 15, 137]; semantics [10, 82, 128, 129, 86, 108]; intentional analysis [86, 85]; applications [37, 117, 42]

and so on.

Programming languages designed specifically to support heterogeneous meta-programming have re-

ceived less attention. The thesis of this dissertation is that heterogeneous meta-programming can be made

into a useful meta-programming paradigm that can provide some of the same benefits as the homogeneous

meta-programming paradigm:

1. Static type safety for heterogeneous meta-programs.Type safety of heterogeneous meta-programs

involves the following. The meta-program is written in a strongly typed languageLM . The object

program is written in some object-languageLO, which is also strongly typed, but its type system may

be different from the type system of the meta-language. A type-safe heterogeneous meta-program

is one that statically guarantees that both the meta-program (in LM ) is type correct, and that any

object-language program it generates or analyzes is also type correct (in the type system ofLO).

1



2

2. Semantic invariants.From the point of view of the meta-programs, object-programs are just data.

Often, this means that the values that represent object-programs in a meta-program represent only the

(abstract) syntax of object-language programs. In a heterogeneous meta-programming framework

the programmer should be given the tools to specify additional invariants that the representation of

object-language programs should obey. For example, the meta-program might guarantee that only

well-formed, correctly scoped object-programs are constructed.

3. Practical concerns.Much of the success of meta-programming languages (e.g., MetaML, Scheme)

comes from the abstractions they provide that make common meta-programming tasks easy to write.

Such abstractions include quasi-quotation for constructing object-programs, built-in support for re-

naming of bound variables (hygiene), and so on.

In a heterogeneous meta-programming language, common tasks such as defining new object-

language syntax, parsing, and implementing substitution should be supported by the meta-language.

The programming language abstractions that serve as the interface to these common tasks should be

intuitive and easy to learn, and should be well integrated with other (non meta-programming specific)

features of the meta-language.

1.2 Contributions

We support our thesis by designing a language-based framework for heterogeneous meta-programming. In

doing so, we have made a number of specific contributions. Here, we point out the three most significant

ones, in order of importance.

First, we illustrate the value of type equality in functional meta-programming languages. We have

shown how judgments about many important features of object-languages (such as typing judgments for

the simply typedλ-calculus, pattern matching, and box and circle types) can be captured using type equal-

ity, and manipulated safely by functional meta-programs. We present detailed descriptions of relevant

meta-programming examples as a tutorial intended to demonstrate and teach type-equality based meta-

programming.

Second, we show how type equality can be used in an existing functional language (Haskell) and, more

importantly, how support for type equality can be built intoa sophisticated type system for a practical pro-

gramming language (called Omega). In Omega, the programmercan use a generalized notion of algebraic

data-types conveniently combined with support for type equality to represent interesting judgments about

object-language programs. We have implemented a prototypeof Omega, and demonstrated its utility on

comprehensive heterogeneous meta-programming examples.



3

Third, we design a programming language with dependent types and support for meta-programming

(called MetaD). We use this language to present a novel way ofaddressing an interesting meta-programming

problem (tagless and well-typed interpreters). We also explore the theoretical aspects of such languages by

formalizing a core MetaD-like calculus and proving its typesafety. We also compare the approach to

meta-programming using dependent types in MetaD to the morelightweight approaches using Haskell and

Omega.

1.3 Background

We outline some historically relevant work in meta-programming that represents the most direct roots of our

own research. In the most general view, meta-programming isubiquitous in computing. Any program that

constructs or manipulates something else that could be considered a program is a meta-program. For ex-

ample, compilers which translate a program in one object language to programs in another object language

are meta-programs. On a more mundane level, even printing toa PostScript printer is meta programming:

an application creates a PostScript program based on some internal data-structure and ships this program to

the printer, which interprets and executes it to produce a hard copy.

At another level, meta-programming is the study of meta-programs (and meta-languages) as formal sys-

tems in their own right. While meta-programming is possiblein any programming language that allows for

representing data, a number of languages have been designedwith abstractions that are intended to make

writing meta-programs easier.

The notion of treating programs as data was first explicitly developed by the LISP community. In this con-

text, the notion ofquasi-quotation[126, 8] was developed as a way of making the interface to the data rep-

resenting the object program “as much like the object-language concrete syntax as possible [118].” Quasi-

quotation is a linguistic device used to construct LISP/Scheme s-expressions that represent LISP/Scheme

object programs. The Scheme community has also developed the notion of hygiene [68] to prevent acciden-

tal capture and dynamic scoping when manipulating object-language representations that contain binding

constructs.

The need for a meta-language (as a programming language thatcan be used as a common medium

for defining and comparing families of (object) languages) was described by Landin [69]. Around the

same time, Böhm also proposed using theλ-calculus-based language CuCh as a meta-language for formal

language description [12].

Nielson and Nielson [90, 93, 92] define programming languages and calculi that syntactically distinguish

meta-level from object-level programs as a part of the language. These two level languages provided a tool
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for formulating and studying the semantics of compilation.

Two important meta-programming systems emerged from the study of constructive modal logic by

Davies and Pfenning [30, 29]. Davies and Pfenning observed acorrespondence between propositions in

constructive modal (and temporal) logic and types that can be assigned to certain classes of meta-programs.

The considerable body of research on MetaML [135, 130, 82, 15, 129, 134] described a strongly typed

meta-programming language that supports construction andexecution of object programs in a strongly

typed setting.

Language abstractions that support meta-programming are not limited to functional languages.Template

meta-programming[36, 37] in C++ (re)uses1 the notion of a template to perform program generation at

compile time. This mechanism has been successfully used in the design and implementation of high-

performance C++ libraries [28, 27]. The work cited above just touches the surface of the vast area of meta-

programming (Chapter 9 contains a more in-depth discussionof related work), but it illustrates several key

ideas that have inspired our research.

Starting with Landin, and throughout the work outlined above, the crucial idea is to approach meta-

programming by studying meta-languages as formal systems in their own right. This allows us to concen-

trate not on any particular meta-program and its properties, but on large classes of meta-programs, and to

understand meta-programming at a considerably higher level of abstraction.

The work on quasi-quotation and hygiene in Scheme, MetaML, and even the C++ templates, under-

scores the importance of thinking clearly about internal object-language representation, and of the interface

between the concrete syntax and the internal object-language representation.

The work on logical modalities and type systems (Davies and Pfenning, MetaML) underscores both the

utility and the importance of strong and expressive type systems for meta-programming languages.

1.4 A Meta-programming Taxonomy

In this section, we shall outline some basic ways of classifying meta-programs and meta-programming

languages. We shall also define some of the vocabulary that will allow us to be precise about distinc-

tions between meta-programming systems. Then, we will examine the “heterogeneous vs. homogeneous”

classification in more detail.

1It was initially designed as a preprocessing mechanism to add generics to C++.



5

Generator vs. Analyzer. A basic classification of meta-programs can be expressed in terms of the two

broad categories ofprogram generatorsandprogram analyzers[118]. A meta-program is aprogram gener-

ator if it only constructs object-language programs based on some inputs. Aprogram analyzeris a meta-

program that observes (analyzes) an object program, and computes some result. Some meta-programs can

be both analyzers and generators, as in the case of source-to-source transformations and optimizations.

Some meta-programming languages have meta-programming abstractions for writing of both generators

and analyzers (e.g., Scheme, Lisp,ν� [86]), while others (e.g., MetaML or C++ with template meta-

programming) only support writing generators.

Homogeneous vs. Heterogeneous.Another way of classifying meta-programs is by dividing them into

homogeneousandheterogeneous[128, 118] meta-programs. This division is based on the identity of the

meta- and object- language. A homogeneous meta-program, written in a language L, is a meta-program that

constructs or manipulates other L programs. A heterogeneous meta-program is a meta-program, written in

a languageL1 that constructs or manipulates object-programs written insome languageL2.

The property of being homogeneous and heterogeneous is closely related to the way that object-programs

(considered as data that meta-programs manipulate) are represented in the meta-language. In a weak

sense, any programming language with strings can be used to write heterogeneous (or homogeneous)

meta-programs, since strings can be used to represent object-programs. However, when we speak about

homogeneous meta-programminglanguages,we mean those programming languages that have some built-

in data-structures and abstractions that are designed and intended for representing object-programs and are

integrated into the larger system.

There is much work in the area of homogeneous meta-programming, in particular, programming lan-

guages with special abstractions for writing homogeneous program generators. This work has led to both

theoretical breakthroughs and practical benefits.

Open vs. Closed. In our discussion of object-language representation we have touched upon an important

design decision faced by the designer of ameta-language. Basically, it involves the two following choices:

A closed meta-language.In this situation, the meta-language designer chooses boththe meta- and the

object- language in advance of any actual meta-programming. The language designer decides on a particular

set of linguistic features (e.g., quasi-quotation, typingdiscipline, hygiene) which are built into the meta-

language to allow the programmer to construct object-language programs. A good example of a closed

meta-language is MetaML.

The closed-language scenario offers a number of benefits. The meta-language and object-language are



6

identified once and for all. Theprogrammerwho uses the meta-language never needs to concern himself

with representing, parsing, printing, or even type checking the object-programs. All of these problems

can be addressed and solved by the language implementer. This promotes a tremendous amount of reuse

across all meta-programs. Moreover, restricting the programmer’s access to the underlying representation

of object-language programs makes it easier to establish meta-theoretic properties that hold for all object

programs. These properties can be used by the compiler/interpreter to perform optimizations, as is the case

with the MetaML [121] implementation.

The obvious disadvantage of a closed meta-language manifests itself if the meta-language does not sup-

port the object-language the programmer wants to manipulate. For example, MetaML provides the pro-

grammer with an excellent way of constructing and executingMetaML object-programs, but if a program-

mer wants to construct Java programs, he is entirely left to his own devices.

An open meta-language.In this situation, the designer of the meta-language cannotassume what partic-

ular object-language the meta-programmer is interested inmanipulating. All the language designer can do

is to design the meta-language so that it contains useful features that will allow the programmer to encode

and manipulate the object language(s) of his choice.

A meta-language can be open with respect to a particular feature of an object language. Many general

purpose programming languages do provide some abstractions for encoding object-language syntax. How-

ever, most general purpose languages do not provide abstractions for meaningful manipulation of the object-

language syntax (e.g., renaming of bound variables, capture-avoiding substitution, and so on). Rather, these

operations must be implemented by the programmer for each new object language. This results in a great

deal of repeated work across many implementations.

For example, a general-purpose programming language like Standard ML may be open with respect to

the programmer’s ability to define abstract syntax of new object-languages. Algebraic data-types are a

particular mechanism that SML offers to the programmer to accomplish this. Moreover, the type system of

SML can guarantee that only syntax-correct object-language terms are ever constructed or manipulated by

his meta-programs. SML offers the programmer no comparableabstractions that would allow him to encode

sets of well-typed object-language terms. Of course, he canstill make sure, by meta-theoretic reasoning

about a particular meta-program, that this program manipulates only well-typed expressions. However,

the meta-language offers him no guarantee that its type system will reject any meta-programs that try to

construct ill-typed object programs.
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1.4.1 Homogeneous and Heterogeneous Meta-programming

Homogeneous Meta-programming

A classical example of a homogeneous meta-programming language is Scheme [112]. Here, we present a

simple example of such meta-programming. Consider the following two functions written in Scheme. The

first function,sum, takes a list of numbers and computes their sum. This is a fairly standard functional

program involving no meta-programming.

(define (sum l)

(if (null? l) 0 (+ (car l) (sum (cdr l)))))

;; Scheme session transcript

1:=> (sum ’(1 2 3))

6

The second function,sumgen, is quite similar tosum, except for the use of Scheme’s meta-programming

abstractions. Instead of adding the numbers in a list,sumgen computes a Scheme program that when

executed produces the sum of all the numbers in a list.

(define (sumgen l)

(if (null? l) 0 ‘(+ ,(car l) ,(sumgen (cdr l)))))

;; Scheme session transcript

1:=> (sumgen ’(1 2 3))

(+ 1 (+ 2 (+ 3 0)))

1:=> (eval (sumgen ’(1 2 3)))

6

Scheme’s meta-programming facilities are particularly convenient to work with because programs in

Scheme are represented using the same structured expressions as all other data. In Scheme, any expression

can be marked byback-quote, (‘exp) , indicating that the expression should be consideredas constructing

an s-expression representing a Scheme program. Inside a quoted expression, commas(,exp) are used

as an escape notation. An expression escaped with a comma is evaluated to an s-expression representing a

Scheme program, which is then spliced into the larger program, where the comma occurs.

Using these language constructs, the functionsumgen is a meta-program which acts as a program gener-

ator. Given a list of numbers’(x 1 x2 x3 ... x n) , it constructs a scheme expression(+ x 1 (+

x2 (+ x 3 ... (+ x n 0)))) . Scheme also comes equipped with the constructeval , which takes

an s-expression representing a Scheme program and executesit. Thus the expression(eval (sumgen ’(1 2 3)))

first generates a program(+ 1 (+ 2 (+ 3 0))) , and then evaluates it, returning the result6.
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Most homogeneous meta-programming languages rely onquasi-quotation[8] (e.g., back-quote and

comma in Scheme), which can be thought of as a special syntactic interface for constructing object-program

code. Some of these languages (e.g., Scheme and MetaML) provide constructs for executing the object-

language programs constructed by the meta-program (e.g.,eval in Scheme andrun in MetaML).

A drawback of programming in Scheme is that Scheme is not statically typed. First, there is no way

of statically guaranteeing type correctness of meta-programs. Second, there is no way of knowing object-

programs are well-typed until they are executed byeval . For example, consider the following Scheme

session:

1:=> (define bad-program ‘(1 2))

bad-program

1:=> bad-program

(1 2)

1:=> (eval bad-program)

*** ERROR:bigloo:eval:

Not a procedure -- 1

#unspecified

Using the back-quote notation the programmer is able to construct a nonsensical program(1 2) . When

we invokeeval on it, a runtime error is raised for attempting to apply the number 1 as if it were a

function. Static typing in meta-programs has a number of advantages. In addition to guaranteeing that

the meta-program encounters no type-errors while manipulating object-programs, a statically typed meta-

programming language can also guarantee that any of the object-programs generated by the meta-program

are also type-correct. A dissadvantage of these type systemis that (in case of meta-programming languages

with weaker type systems) they sometime may be too restrictive in object-programs that the programmer is

allowed to construct (for an example of this phenomenon see Chapter 2.1.1).

MetaML [128, 137, 129] (and its derivative, MetaOCaml [77])are examples of staticallytypedhomo-

geneous meta-programming languages. MetaML is designed asa conservative extension of the functional

programming language Standard ML [80]. In MetaML, the type system is extended with a special type

constructor (calledcode) that is used to classify object programs. For example, a program of typeInt

is a program that produces an integer value. On the other hand, a program of type(code Int) is a

(meta-)program that produces an object program which, whenexecuted, will produce an integer value.

Let us revisit oursumgen example, this time written in MetaML. In MetaML, code brackets (written

< ... > ) play the role of back-quote in Scheme, while tilde (called “escape”) is analogous to Scheme’s

comma operator. The type of code is written with code brackets surrounding a type:
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<f x>

(f x)

<<2>>

<2>

Meta-language (stage 1) Meta-language (stage 2)

Object language

...

...

...

MetaML

Figure 1.1: Multi-stage structure of a Homogeneous Meta-Language

(* sum : int list -> int *)

fun sum [] = 0

| sum (x::xs) = x + (sum xs)

(* sumgen : int list -> <int> *)

fun sumgen [] = <0>

| sumgen (x::xs) = < x + ˜(sumgen xs) >

Many homogeneous meta-programming languages, MetaML included, supportmulti-stage program-

ming. The structure of a multi-stage programming language is illustrated in Figure 1.1. In a multi-stage

program, a meta-program can be used to generate an object program which is itself a meta-program gen-

erating another program, and so on. The execution time of each meta-program is acomputational stage.

Typed homogeneous meta-programming languages of the MetaML family have three properties that make

them well-suited for meta-programming:

1. Strong typing and type safety [131].The strong typing of MetaML (alsoλ�, λ©, and some other

statically typed homogeneous meta-languages) guaranteesthat meta-programs are free from runtime

type errors (e.g., adding strings to integers, and so on). Furthermore, their type systems also guarantee

that any object programs constructed by a well-typed meta-program will be free of runtime type errors

when executed.

2. Phase errors. Phase errors occur when an object-language variable is usedas if it were a meta-

language variable. Consider the following Scheme definition:
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1:=> (define f1 ‘(lambda (x) (+ 1 x)))

1:=> f1

(lambda (x) (+ 1 x))

1:=> (define f2 ‘(lambda (x) ,(+ 1 x)))

*** ERROR:bigloo:+:

The first definition,f1 creates an object program, i.e., a function that adds one to its argument. The

second definition,f2 attempts to create an object program that is a function. However, inside the

body of thelambda abstraction, the comma operator forces Scheme to evaluate (i.e., in the meta-

program) the expression(+ 1 x) , wherex is a variable that is bound only in the object program,

and has no value assigned to it. Thus, when trying to evaluate(+ 1 x) the Scheme interpreter can

find no value forx , and raises a runtime exception. If one tries to writef2 in MetaML, the type

checker statically catches such an error:

val f2 = <fn x => ˜(1+x) >

Error: phase error in 1 + x.

3. Semantic coherence [129].Object-program code in MetaML is implemented as an abstractdata

type. This abstract data-type has an important meta-theoretic property, which guarantees that if two

MetaML programs,p1 andp2, are semantically equivalent, no meta-program can distinguish between

their representations as code.

This property guarantees the soundness of a simple equational theory that can be used to reason

about object programs. For example, a program that generates <(fn x => x) 4> is equivalent

to the program that generates just<4>. Since no meta-program can distinguish between those two

programs, the MetaML implementation can perform optimizing source-to-source transformations

automatically, resulting in the construction of cleaner, more efficient code.

However, MetaML’s semantic coherence has more restrictiveconsequences. In particular, no meta-

program can safely analyze the values of the abstract type that represents object-language programs.

The only thing that can safely be done with object-programs,once constructed, is to execute them

with run . In other words, MetaML only supports the writing of programgenerators. This prevents

the user from implementing a whole class of interesting programs such as syntax-to-syntax transfor-

mations (optimizations).

Heterogeneous Meta-programming

In a heterogeneous meta-program, the meta-language and theobject-language are different. A typical

heterogeneous meta-programming exercise has the following steps:
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1. The programmer encodes the syntax of the object language as some form of structured data in the

meta-language.

2. The programmer writes a meta-program that

(a) Constructs an object program, or

(b) Transforms an existing object- program into another object-program (which may be written in

the same object language or not), or

(c) Computes some other result over an existing object-program, e.g., its meaning, its size, its free

variables, its data flow graph, and so on.

How does this scenario compare to meta-programming in the homogeneous setting? When writing a

homogeneous meta-program in MetaML the step (1) is unnecessary. The decision about how to represent

object-language programs has already been made, once and for all, by the language designer. MetaML

provides support for Step (2a) by its strongly typed quasi-quotation. Step (2b) is not directly possible in

MetaML, since the language supports onlygenerativemeta-programming – once constructed, MetaML

object programs cannot be analyzed, only executed.

At first glance point (2c) looks like it is not possible in MetaML. But, consider the possibility when

the object language is not MetaML, but some other object language represented by an algebraic data-type.

Then, an interpreter for this language can be modified so thatit computes a residual MetaML program.

When run, this program will compute the result more efficiently than simply interpreting the original pro-

gram [67, 117]. This is a well-known technique often calledstagingan interpreter. We will return to this

idea many times later in the dissertation.

1.5 Problem: Object-language Representation

The main problem of designing a useful heterogeneous meta-programming paradigm is the problem of

choosing object-language representations. In the next section, we outline a specific set of proposals and

approaches to solve this problem. Here, we examine four waysof representing object-programs, and point

out the advantages and disadvantages of using each in meta-programming.

Strings. The simplest way of representing object-language programsis to use strings, i.e., to represent

object programstextually. This technique can be used in both homogeneous and heterogeneous meta-

programs, but has an important drawback. Any meta-languagewith only standard string manipulation
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operations (e.g., concatenation, indexing, and so on) offers no abstractions to statically enforce the invari-

ant that strings must representonly syntactically correct object-language programs. In practice, object-

programs represented as strings may be quite difficult to analyze: some form of parsing must be used to

access the underlying structure implicit in the strings. This process is both complicated and error-prone.

One success case with string representations is Perl, a popular programming language for writing CGI

scripts. Perl uses a powerful regular expression facility and a number of libraries to make string manipula-

tion of programs more palatable to the programmer.

Algebraic data-types. In functional programming languages, the abstract syntax of object-language pro-

grams can be represented using algebraic data-types. Alternatively, other higher-level programming lan-

guages have different structured data-facilities such as object hierarchies in Java or s-expressions in Lisp

and Prolog. Here, we shall mainly address algebraic data-types in functional languages, but much of the

argument should hold for similar data-representations as well.

As a way of representing object-language syntax, algebraicdata-types have a major advantage over

strings. First, they are a natural way of encoding context-free abstract syntax trees. Consider the following

BNF [87] specification of the syntax of a smallλ-calculus based language:

〈Var〉 ::= x, y, z, . . .

〈Exp〉 ::= 〈Var〉 | λ〈Var〉.〈Exp〉 | 〈Exp〉 〈Exp〉

〈Decl〉 ::= let 〈Var〉 = 〈Exp〉 | letrec 〈Var〉 = 〈Exp〉

The following Haskell declarations define three data-types, one for each non-terminal specified in the

BNF grammar above.

type Variable = String

data Exp = Var Variable

| Abs Variable Exp

| App Exp Exp

data Decl = Let Variable Exp

| LetRec Variable Exp

It is not difficult to convince oneself that the three data-types in Haskell represent exactly2 the parse

trees specified by the BNF grammar. It is also important to note that ill-formed syntax trees are statically

rejected by Haskell’s type system: just as there is no derivation for the ill-formed term(let x) λ y, there is

no well-typed analogue in Haskell (i.e., the Haskell expression(App(Let "x") Abs "y") is rejected

by the type-checker).

2Modulo undefined values and infinite trees.
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The algebraic data-type representation significantly alleviates the draw-backs of string representations.

For example, in functional languages pattern matching can be used to analyze algebraic data-types that

represent object-programs. The typing discipline of the meta-language like Haskell or Standard ML catches

and rejects meta-programs that can build syntactically incorrect object-programs.

However, there are interesting properties of object-programs other than syntactic correctness that are

not statically enforced by the meta-language using an algebraic data-type representation. For example,

context-sensitive properties like typing of object-programs cannot be automatically checked and enforced.

For example, a capture avoiding substitution operation fora typed object language should not only produce

syntactically well-formed results, but should preserve the type of object-language terms on which it oper-

ates. In a meta-program using algebraic data-types, it is upto the programmer to craft his meta-programs

so that this meta-theoretic property holds.

Abstract code type. Particularly interesting is the representation for object-language programs used by

the homogeneous meta-language MetaML. In a MetaML program,values representing object-language

programs are classified by a built-in abstract type ofcode. The programmer constructs and manipulates

such values that represent object-language programs usinga built-in quasi-quotation mechanism. However,

the programmer has no access to the concrete, underlying representation of object-language programs: this

representation is chosen by the implementers of MetaML, andfixed once for all.

The MetaML style of code representation has major benefits. First, it statically guarantees that object-

language programs represented in this way are syntax-correct and type correct. Second, this representation

has several useful meta-theoretic properties: it enforcesthe correct static scoping discipline; it makes code

representations of allαβ-equivalent object programs observationally equivalent to meta-programs. The

latter allows the programmer to perform standard equational reasoning about meta-programs in the presence

of therun construct.

In a heterogeneous setting, a MetaML-style abstract code type is also plausible. However, it is important

to note that the choice of how to represent such code internally is a design decision taken bythe language

designer(and implementer), not by the programmer who merely uses themeta-language to write his own

meta-programs. Therefore it is less likely to be useful in practice, since one would have to design and

implement a new meta-language for every new object-language.

Dependent types. Finally, we describe the most promising approach to representing object-language pro-

grams. This particular technique of representation is not new – it has a long history in the logical framework,

theorem proving, and type theory community, but has very seldom been used in meta-programming.
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This technique is similar to using algebraic data-types to represent the syntax of object-language pro-

grams. However, instead of algebraic data-types, it relieson advanced type-theoretic techniques such as

the inductive families in the Calculus of Inductive Constructions, predicate encoding in Cayenne [3], or

LF [53]. Enriching the meta-language’s type system with dependent types allows the programmer to en-

code not only simple syntactic properties, but semantic ones as well. For example, the programmer can

specify a data-type that encodes a set of only syntacticallycorrectand type correct syntax trees. All func-

tions that either generate or analyze an object program are forced statically by the meta-language to preserve

the semantic properties of the object-language specified bythe programmer.

One area of concern when using dependent types is the accessibility and transparency of the type sys-

tem to the programmer. While a dependent type system can statically enforce object-language program

invariants, violating these invariants in meta-programs can result in complex and arcane compilation/type-

checking errors that are not easily understood by a novice programmer. Furthermore, to appreciate and use

dependent types, one is usually needs considerable background in theoretical computer science and type

theory, making dependent types still less accessible to theaverage programmer.

Generalized algebraic data-types. Using dependent types is an expressive mechanism. We conjecture

that properties represented this way can be arbitrarily complex. But, in practice, even very simple proper-

ties such as those that enforce correct scoping and typing disciplines of object programs are quite useful.

Perhaps something less than the full expressive power of dependent type theory can still be useful in meta-

programming?

We will show that this is the case, by devising a method which is an extension of algebraic data-types

with the notion of equality between types. We will use this method in two settings. Both of these are

sufficient to specify scoping, typing and other invariants of object-language representations.

First, we shall encode type equality in Haskell3, and use it in conjunction with Haskell’s existing algebraic

data-types. This technique can be presented to the Haskell programmer as a new programming idiom and

is accessible even to Haskell programmers without highly advanced type theoretic background.

Second, we shall design a language (Omega) in which type equality, as a built-in, primitive notion is

added to algebraic data-types. Omega provides the programmer with a practical and intuitive interface to

type equality leading to smaller programs that are easier tounderstand and debug than their equivalents in

the Haskell setting.

3By “Haskel” we actually mean Haskell plus a number of commonly available extensions such as higher-rank polymorphism and
existential types, which are available in most popular Haskell implementations.
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1.6 Heterogeneous Meta-programming: Desiderata and Approaches

In this section, we shall outline our proposal for putting heterogeneous meta-programming into practice. To

do this, we shall have to design a meta-language for heterogeneous meta-programming. We shall outline

the requirements, choices, and goals in designing such a meta-language, and the concrete approaches we

take to meet them.

There are many useful heterogeneous meta-programs. Recallthe example of a postscript printer: the

object language is (significantly) different from the meta-language. Another example is a compiler which

translates a program in one object language (the input program) into a series of programs in various inter-

mediate languages, finally resulting in a machine-languageprogram.

Left with only general-purpose languages, the programmer must re-implement many heterogeneous

meta-programming features from scratch every time he writes a meta-program manipulating a new object

language. Moreover, using the abstractions of the meta-language, the programmer has no way to formally

check that important semantic invariants of the object-language are preserved. To address these problems

we needan open meta-language for manipulating object-programs that allows for specifying and enforcing

their key semantic properties.

There are a number of goals that such a meta-language should achieve:

1. It must be possible to easily define and manipulate manydifferentobject languages.

2. It must be possible to express and statically enforce important object language properties such as

typing and scoping.

3. It should take into account efficiency, in the sense that the ability to express and manipulate the

semantic properties of the object-language should not incur large runtime penalties.

4. It must support good abstraction mechanisms, found in most general purpose-programming lan-

guages, for writing software. Such abstraction mechanismsinclude, but are not limited to recursive

definitions, pattern matching, input/output, and so on.

5. It must preserve phase distinction between static type-checking and dynamic (runtime) computation.

Points (1) and (2) are a simple consequence of the fact that wewant anopenmeta-language for het-

erogeneous meta-programming. The meta-language designerhas no knowledge of the object-language

particulars, but must instead equip the programmer with abstractions and techniques for object-language

representation.

They should begood techniques and abstractions, or at least better than what’scurrently offered in

general-purpose programming languages: first, the meta-language should be equipped with a type system
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that guarantees important semantic properties of object-languagesstatically, where they can be automat-

ically checked and enforced by the meta-language implementation; second, common techniques and pro-

gramming idioms should be presented to show how the languagefeatures of an open meta-language can best

be utilized. For example, there should be a clear process of implementing efficient and reliable interpreters

for object languages.

The requirement (3) has to do with a general scheme we have forcreating implementation of object

languages: we shall use staging to make meta-programs such as interpreters highly efficient, applying and

extending the technique of staged interpreters [117].

The requirements (4) and (5) have to do with wanting to designa practical programming language –

effects (e.g., I/O, imperative features, and so on) must be reconciled with the need to effectively statically

type-check meta-programs.

What do we propose to satisfy these requirements? We tried several approaches:

1. We can look for some existing meta-languages that were designed to address other problems and

try to use them to solve ours. In fact, several languages usedin the logical framework and theorem

proving communities (e.g., LF, Coq) seem like good candidates. They allow us to specify type safe

heterogeneous meta-programs and to encode semantic properties of object languages. However, in

practical terms they leave much to be desired: none of them seem as good candidate for a practical

programming language.

2. Lacking an existing meta-language, we can design and implement our own. We shall argue that this

is a plausible approach. We describe MetaD, a meta-languagewe designed to support open hetero-

geneous meta-programming. We demonstrate the plausibility of MetaD by using it to implement an

interesting example of heterogeneous meta-programming. We also present some theoretical results

that establish the type safety of a calculus with the same features as MetaD.

The drawback of this approach is that MetaD is a rather large language with number of advanced

programming language features. Adopting MetaD requires many programmers to confront a rather

steep learning curve. Implementing, maintaining and promoting such a new language is resource-

intensive.

3. We can try combining the approaches (1) and (2). Rather than completely designing a new meta-

language from scratch, we can experiment with adding new features to an existing programming

language to make it more effective for heterogeneous meta-programming. Of course this approach

can be as fraught with complications as the previous approach if we are not careful.

Fortunately, we read about a new technique for encoding equality proofs in Haskell [143, 4]. This
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allowed us to experiment using a set of “tricks” for simulating dependent types in Haskell [75]. We

applied these techniques to the problem of representing object-languages with semantic properties

and found them highly expressive and very useful. This experimentation was very valuable because

it allowed us to test our ideas without getting involved in making any changes to Haskell to start

with. We learned much in this process. However, our experience pointed out some practical weak-

nesses with this approach: constructing Haskell programs that preserve semantic properties of object-

language programs is awkward and tedious when using explicit equality proofs since it requires the

programmer to explicitly manipulate them at a very low levelof abstraction.

4. Experimenting with equality types in Haskell provided motivation for the next step, the design of

the Omegalanguage. We were able to add small number of features to Haskell: built-in support

for equality types, and inductive kinds. Omega-style equality types allowed us to retain (and even

improve upon) the expressiveness of the Haskell-based approach we developed earlier, while making

many of the tedious and routine tasks of manipulating equality proofs completely automatic.

In the following sections, we discuss each of these approaches in more detail. We begin by explain-

ing our choice to reject the first approach (Section 1.6.1), and concentrate on the latter two approaches

(Sections 1.6.2 and 1.6.3).

1.6.1 Heterogeneous Meta-Programming in Logical Frameworks

Casting about for good candidates for an open heterogeneousmeta-language it would not do to overlook a

group of formal languages we shall somewhat loosely call logical frameworks [53]. Such meta-languages

include various forms of dependently typed calculi [5], andsystems such as Twelf [109], and Coq [6].

Implementing programming languages in these systems is based on a powerful idea: use highly expressive

types systems with dependent types to represent semantic properties of the object language.

The most important technique is to representtyping judgmentsof the object language as a form of struc-

tured data so that only well-typed object programs can be constructed. As we shall see later, this is precisely

the technique we shall advocate in the rest of this dissertation. However, from the pragmatic point of view

of meta-programming these systems have a number of drawbacks.

1. They are not designed as real programming languages.Logical framework-based systems such as

Twelf and Coq are mostly targeted at a theorem proving audience. The languages themselves usually

have some flavor of dependent typing, and use the Curry-Howard isomorphism to encode logical

properties of programs. However, some of these systems (e.g., Alfa [52]) provide only the most

rudimentary support for execution of user constructed programs.
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Perhaps the most attractive of these languages for open meta-programming is Coq. Although it is

a proof checker/theorem prover based on type theory, it is designed to supportextractionof pro-

grams [105]. Extraction allows the user to automatically synthesize a program in Scheme, Haskell

or Objective Caml from Coq definitions and theorems. As we demonstrate in Appendix A, this

scheme, however, has certain draw-backs of its own: the extracted programs are often type-incorrect

(as viewed from the point of view of the extracted-to language). Moreover, the programmer has

no direct control over the extraction process and must rely on the implementation of extraction to

guarantee the correctness and static safety of generated programs.

More importantly, Coq places considerable restrictions onthe programs the user can write: all pro-

grams must be guaranteed to terminate,4 and there is no support for standard programming language

features such as I/O or other effects.

Being a consistent proof theory, Coq trades its effectiveness as a programming language to maintain

its logical consistency by omitting any programming language features that do not have a pure type-

theoretic (logical) meaning. In designing a language for heterogeneous meta-programming, we hope

to more evenly balance the requirements of expressiveness with more practical software-engineering

concerns.

2. They are difficult to learn and use by meta-programmers.In using these systems the programmer

must learn a great deal of type theory and logic. This may be inevitable, but perhaps we can find a

way to express the necessary type-theoretic and logical concepts in a notation that would be more

understandable to a programmer.

3. They do not address pragmatic concerns such as efficiency.Efficiency of programming language

implementations is an important concern. When semantic properties of object languages are encoded

in a meta-language, this encoding may require additional information (such as proofs of these prop-

erties) to be constructed and manipulated by the meta-program even when all these properties are

static. This often makes meta-programs unnecessarily complex and inefficient.

1.6.2 A Language with Staging and Dependent Types - MetaD

The approach we propose in the first part of the dissertation (Chapter 2) relies on a meta-language with the

following features:

1. Dependent types,

4This is quite limiting in deriving implementations of object-languages that have recursion or other control features that introduce
non-termination.
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2. Meta-ML-style staging, and

3. Representation (singleton) types.

We will describe how these features of the meta-language areutilized in heterogeneous meta-programming

and how they fit together by presenting a detailed example of meta-programs that manipulate a typed object

language. We also prove the type safety of a formalized core (meta-)language that has the features discussed

above.

Dependent types. The meta-language we describe in Chapter 2 supports a generalization of algebraic

data-types called dependent inductive type families [35].

The semantic properties of object-language syntax, such asobject-language typing, are expressed by

encoding the typing judgments of the object language as elements of dependent type families. The meta-

programs we write manipulate these judgments as well as the syntax of object-language programs. Thus, we

assure that whatever manipulations of object programs are performed by the meta-program, only well-typed

object programs can be constructed or analyzed.

Meta-ML-style staging. MetaML-style generative meta-programming (also calledstaging) can be very

useful in an open heterogeneous meta-language. To illustrate why this should be so, consider implementing

an interpreter for some object languageL. The programmer first defines a data-type representing the set of

expressions ofL. Usually, an interpreter maps values from this set ofL programs into some set of values

V that denote the meanings ofL programs.

A standard programming technique relying on MetaML-style staging [117] can be used to improve the

interpreter forL in the following ways:

1. Staging can be used to remove the interpretive overhead [67, 117] as a way of generating a more

efficient interpreter. First, MetaML meta-programming facilities are be used to divide the interpreter

into two stages: the static stage, where theL expressions are analyzed by the interpreter, and the

dynamic stage where computation of the interpreted program’s value takes place.

The staged interpreter maps the set ofL expressions into a residual meta-language program of

type (code V ) . When the staged interpreter is evaluated on some inputL-expression, it com-

putes/constructs a residual program is the result of (a) unfolding the interpreter – i.e., removing the

case analysis over object programs; (b) removing environment look-ups. Therefore, executing the

residual program generated by the staged interpreter for some particularL-expression is significantly

more efficient than executing the original, non-staged, interpreter no the sameL-expression [48, 67].
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2. Moreover, if the object language is strongly typed, the user can define a set of values that represent

only well-typed expressions ofL. In this case, an interaction between the highly expressivedepen-

dent type system and staging can result in an even more efficient staged interpreter by removing the

tagging overhead[102] that is often present in interpreters written in typedfunctional programming

languages. (We will address this problem in considerable detail in Chapter 2.)

As we will see, tagging overhead is caused by the type of the use universal value domainV – by

replacing the universal value domainV with a dependent type can make tagging unnecessary.

Representation (singleton) types. Finally, we will try to address the issues that arise when combining

dependent types and effects such as I/O or non-termination in programming languages. This will require

reformulation of the dependently typed meta-language to use singletontypes [58, 116] – a restricted form

of dependent typing.

1.6.3 Haskell as a Heterogeneous Meta-programming Language

The second part of the thesis develops another approach to heterogeneous meta-programming. This ap-

proach is primarily motivated by pragmatic considerations. In the first part of the dissertation, we show

that introducing a new meta-language with a considerable number of novel features can be used to pro-

duce meta-programs that correctly and efficiently manipulate type-correct object-language programs. The

second part of the thesis explores the question of whether itis possible that the same (or similar) kind of

benefits could be derived in the setting of a functional language like Haskell.

The answer to this question is a qualified “yes.” We shall explore how some semantic properties of

object-languages can be encoded in the type system of Haskell with commonly available extensions such

as existential types and higher-rank polymorphism.

Our approach depends on a technique of encoding equality between types to “fake” dependent and sin-

gleton types in Haskell. The only language feature we propose adding to these fairly common extensions

of Haskell isstagingwhich is essential, we shall argue, for efficient implementations. We shall re-develop

the interpreter examples in this new paradigm and compare the two approaches. The comparisons are use-

ful. The techniques are effective, but using them can prove tedious, since they force the programmer to

explicitly manage equality proofs in great detail.
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1.6.4 Extending Haskell - Omega

We shall adopt an extension to Haskell’s type system that makes these techniques significantly easier to

use by automating most of the simple, but tedious, equality proof management. We call the resulting meta-

language Omega.

We shall also present three further examples of heterogeneous meta-programming. First, we shall define

a couple of type-preserving source-to-source transformations on object languages. We shall also extend the

range of object-language features presented in Chapters 4 and 5. The goal of this exposition is to provide

a kind of meta-programming practicum that can be a source of examples and inspiration to heterogeneous

meta-programmers.

1.7 Outline of the Dissertation

The main method of supporting our thesis is demonstration. For meta-programming, we shall concentrate

on an interesting class of examples: implementing (staged)interpreters for object-languages. Implementing

these interpreters provides the motivation for introduction of the language features and techniques that we

design for heterogeneous meta-programming. We demonstrate the open nature of our meta-language by

defining and manipulating several different object languages. An important part of the thesis is a tutorial-

like presentation that demonstrates how to handle many possible object-language features. We intend this

to show how more than just toy object-language features can be incorporated into our framework.

Aside from this introduction chapter, this dissertation isdivided into four parts.

• Part I: Dependent Types for Open Heterogeneous Meta-programming.In the first part of the disser-

tation, we define a new meta-language for heterogeneous meta-programming called MetaD. MetaD

is a functional language with staging and dependent types. As an example, define a small functional

object language, and implement an interpreter for it, demonstrating along the way the benefits de-

rived from the new language features built into MetaD. Next,(Chapter 3) we sketch out a proof of

type safety of a simplified core calculus with the same features as MetaD. This proof combines stan-

dard syntactic type safety proof techniques [145] with syntactic techniques developed for multi-stage

languages [129].

• Part II: Open Heterogeneous Meta-programming in Haskell.Rather than implement a meta-language

with novel features, we propose a technique for encoding semantic properties of object languages in

Haskell.
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The key technique that enables heterogeneous meta-programming in Haskell is to replace depen-

dently typed inductive families of MetaD with carefully designed type constructors that encode typ-

ing judgments of the object language. We will show how to do this in considerable detail (Chapter 4

describes the general techniques), and implement object-language interpreter similar to the the one

used as the main example in Part I (Chapter 5).

• Part III: Omega and Further Applications.First, in Chapter 6, we address some of the awkwardness

of the Haskell-based techniques introduced in Part II. We dothis by proposing a couple of exten-

sions to the type system of Haskell that greatly simplify thewriting of typing judgments of the object

language. The new language extensions (bundled up in a Haskell-based programming language we

call Omega) are presented through several examples. Most interesting of these examples is an imple-

mentation of well-typed substitution over simply typedλ-terms, an interesting demonstration of the

power of Omega support writing object-language type-preserving syntax-to-syntax transformations.

Next, we proceed to define and implement meta-programs that manipulate two rather different typed

object languages whose type systems are based on modal logic(Chapter 7) and linear-time temporal

logic (Chapter 8).

• Part IV: Conclusion.First, we survey the relevant related work (Chapter 9). Finally, we summarize

our findings, and discuss relevant topic for future work (Chapter 10).
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Dependent Types for Open

Heterogeneous Meta-programming
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Chapter 2

Meta-programming in a Dependently Typed

Framework

2.1 Introduction

In this chapter1 we begin to explore the design space of heterogeneous meta-programming systems, and to

show the advantages of heterogeneous meta-programming over existing approaches to language implemen-

tation.

We will begin our exploration by examining the problem of defining tagless interpreters for typed object-

and meta- languages. This problem in general is caused by limitations of the type systems of traditional

meta-languages.

Type systems of programming languages, especially strongly, statically typed functional languages such

as Haskell, are syntactic formal system designed to guarantee the invariant that certain runtime behaviours

of programs (runtime type errors such as applying a non-function value) never occur in programs accepted

as valid by the type system. In most programming language implementations, the checing of the type

validity of programs is performed statically, in a phase prior to execution. In Haskell and ML, to make the

type system tractable and amenable to type inference, the type system is designed so that certain programs,

even though they do not violate the runtime typing invariants, are nevertheless rejected by the type system.

For example, consider the following function, written in aninformal, Haskell-like notation:

1 -- f :: Int → Int → ??

2 f 0 x = x

3 f n x = \y→ (f (n-1) (x+y))

The functionf takes two integer arguments,n andx and produces ann-ary function that sums those

1This chapter is based on material first published in [102].
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arguments up. Thus, for example(f 2 0) results in the function\x→\y→ x+y+0 .

While the functionf never causes runtime errors, functional languages such as Haskell or ML reject it

because they cannot give it a type: the result type in line2 is an integer, while the result of the function in

the line3 is a function type that takes an integer argument. In fact,f has a wholefamily of function types

whose codomain type varies in a regular, predictable way with the value of the function’s first argument.

Type systems of functional languages such as Haskell do not allow types to depend on values, and reject

such functions despite the fact that they can be shown, by meta-theoretical means, never to violate typing

discipline at runtime.

In operational terms, what happens when the Haskell type checker tries to infer a type forf ? First, it

tries to infer the result type of the bodies of both branches of the definition off . Then, it attemplts to prove

that they are the same type by trying to unify them. However, since it can find no solution to the equation

Int = Int->? , it rejectsf .

It is worth noting, however, that the functionf canbe given a type in a richer, dependently typed system.

Instead returning a result of one particular type,f can be seen as returning a result type which depends on

the value of the argumentn:

f 0 :: Int → Int → Int

f 1 :: Int → Int → Int → Int

f 2 :: Int → Int → Int → Int → Int

. . . . . .

f n :: Int → Int →

n times
︷ ︸︸ ︷

Int → · · · → Int

Thus, if we could write a functiong from integers totypes, we could easily give a type forf :

g 0 = Int

g n = Int → (g (n-1))

f :: (n:Int) → Int → (g n)

f 0 x = x

f n x = \y→ f (n-1) (x+y)

Unfortunately, we cannot write such a functiong in Haskell. If one wanted to implement similar func-

tionality, we would be forced to resort to a more indirect technique.

Recall that the reason why the type-checking in Haskell of the functionf fails is that for some values of

its argument it must return an integer, and for others a function. But Haskell’s type system assumes that, no

matter what the value of an argument is, the function always returns a result of the same type. A solution

to this problem is to use Haskell’s data-type facility (combining sum and recursive types in this case) to
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produce a type of values that can be either an integer or an n-ary function:

data Univ = Z Int

| S (Int →Univ)

Now, we can define a function that encodes the result off , using the data-typeUniv : f :

f :: Int → Int →Univ

f 0 x = Z x

f n x = S ( \y→ f (n-1) (x+y))

The typeUniv is used to unify the two possible kinds of values thatf computes: integers and functions

over integers. The constructorsZ andS, which are there to allow the Haskell type-checker to veryfythat the

two cases in the definition off return a value of the same type, also result in runtime behavior of tagging

the integer or function values with those constructors.

Now if we apply the functionf to some integer arguments, e.g.,f 2 0 , it yields a function value

equivalent to:

S( \a→S( \b→Z(0 + a + b)))

We can even define an application operation, which takes the arity of the Univ value, theUniv value

itself, a list of integer arguments to be applied to it (emptyif none), and returns the result of the application.

The list here serves as another “universal data-type,” usedto store a (statically unknown) number of argu-

ments to the function encoded byUniv . Note that if there is a mismatch between the arity, the number of

arguments in the list, and the structure of theUniv , a runtime error is raised:

applyUniv :: Int →Univ → [Int] →Univ

applyUniv 0 v [] = v

applyUniv n ( S f) (arg:args) = applyUniv (n-1) (f arg) args

applyUniv _ _ _ = error "Error in application of Univ"

And here is the main difference between theUniv -based solution and true dependent types. Whereas the

function f can be statically type-checked with a dependent type system, theUniv -based Haskell solution

defers a part of this static type-checking to runtime in formof checking for the tagsS and Z. In other

words, whereas we want to statically enforce the invariant thatf is never applied to the wrong number/type

of arguments, Haskell’s type system as we have used it here, can only enforce the weaker invariant thatf

is eithernever applied to the wrong number/type of argumentsor if it is, an error value results at runtime.

In this chapter, we shall concentrate on a very similar problem, that ofsuperfluous taggingthat often

arises in staging and partial evaluation of object languageinterpreters.
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Object Language

data Exp = I Int | Var String | Abs String Exp | App Exp Exp
data Val = VI Int | VF Val->Val

(define mkI (lambda (i) ‘( I, i)))
(define mkVar (lambda (x) ‘( Var, x)))
(define mkAbs (lambda (n e) ‘( Abs, n, e)))
(define mkApp (lambda (e1 e2) ‘( App, e1, e2)))

M
etalan

g
u

ag
e

Object Language
Untyped Typed

U
n

typ
ed

(S
ch

em
e)

(define eval (lambda (t env)
(match-case t

(( I ?i) ‘( VI, i))
(( Var ?n) (lookUp env n))
(( Abs ?n ?t0)

‘( VF ,(lambda (v)
(t0 eval (extend-env env n v)))))

(( App ?t0 ?t1)
(match-case (eval t0 env)

(( VF ?f) (f (eval t1 env)))
((?r) (raise-error "type error"))))

)))

(define eval (lambda (t env)
(match-case t

(( I ?i) i)
(( Var ?n) (lookUp env n))
(( Abs ?n ?t0)

(lambda (v)
(eval t0

(extend-env env n v))))
(( App ?t0 ?t1)

((eval t0 env) (eval t1 env)))
)))

Typ
ed

(H
askell)

eval e env =
case e of

I i →VI i
| Var s → env s
| Abs (s,e) →

VF ( \v→ eval e (ext env s v))
| App f e →

case (eval f env) of
VF vf → vf (eval e env)

| VI i → error "Runtime type error"

eval e env =
case e of

I i →VI i
| Var s → env s
| Abs (s,e) →

VF ( \v→ eval e (ext env s v))
| App f e →

case (eval f env) of
VF vf → vf (eval e env)

| VI i → error "Impossible case"

Figure 2.1: Interpreters and Tagging

2.1.1 Superfluous Tagging

Superfluous taggingis a subtle but costly problem that can arise in interpreter implementations whenboth

the object- and the meta-language are statically typed. In particular, in most typed meta-languages, there

is generally a need to introduce a “universal datatype” (also called “universal domain”) to represent object-

language values uniformly (see [128] for a detailed discussion). Having such a universal datatype means

that we have to perform tagging and untagging operations at the time of evaluation to produce and manip-

ulate object-language values represented by the universaldomain.

When the object-language is untyped (or dynamically typed), as it would be when writing a Haskell

interpreter for Scheme, the checksare really necessary.

When both the the object-language and the meta-language arealso statically typed, as it would be when

writing an ML interpreter in Haskell, the extra tags are not really needed. They are only necessary tostati-

cally type check the interpreter as a meta-language program. When this interpreter is staged, it inherits [81]

this weakness, and generates programs that containsuperfluous tagging and untagging operations.
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Figure 2.1 provides a brief illustration of this phenomenon. Consider an evaluator forλ-calculus terms,

which are defined at the top of the figure: the first two lines represent Haskell data-types encoding the set

of expressions and values of theλ-calculus; the bottom four lines are Scheme functions illustrating the

structured representations ofλ-calculus terms. The bottom half of Figure 2.1 is a table divided into four

quadrants, along two dimensions: the horizontal dimensionshows whether the object language is statically

typed, while the vertical dimension shows whether the meta-language is statically typed. Each quadrant

shows a sample implementation of an evaluator: the top row inHaskell (a statically typed meta-language)

and the bottom row in Scheme (a dynamically typed meta-language).

In Haskell we use a universal data-typeVal to represent all the possible values that the evaluator can

compute. In the Scheme implementation, we use a particular form of s-expression: integer values are tagged

in a list where the head is the atom‘VI and whose second element is the integer itself; the functionvalues

are tagged in a list whose head is the atom‘VF whose second element is the function value itself.

1. Untyped Meta-language (Scheme).

(a) Untyped Object Language.For a dynamically typed object language we must check at runtime

whether the value we are applying is indeed a function. If it is not, we must define some

semantics of runtime type errors (functionraise-error in Figure 2.1). We note in passing

that it is possible to omit this runtime check, and rely on Scheme’s dynamic typing system to

catch the error if a value other than a function is applied2. However, it is more reasonable to

assume that a language designer would want to define her own semantics of runtime type errors.

(b) Typed Object Language.Here, since we can assume (orknowby meta-theoretical proof) that the

object language is statically typed there is no need to implement runtime typing. For a function

application we simply evaluate the function expression andthe argument expression and then

apply the first resulting value to the second.

2. Typed Meta-language (Haskell)

(a) Untyped Object Language.Similar to the untyped object language implementation in Scheme,

we must introduce tags on runtime values that allow us to check whether what we are applying

is indeed a function. We do this with a case analysis on the typeVal . If the value being applied

is not a function, we report a runtime type error.

(b) Typed Object Language.This is surprising: because the object language is stronglytyped, we

can assume that no type error will occur at runtime (thus,error "Impossible case" ),

2In that case the interpreter would look exactly like 1b.
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and yet still the meta-language (Haskell in this case) forces us to use tags anyway. These tags are

a puzzling source of asymmetry – we would expect the Haskell implementation of a statically

typed object-language to be a lot more like the one in Scheme.

This asymmetry can be quite costly. Early estimates of the cost of tags suggested that they produce up to

a 2.6 times slowdown in the SML/NJ system [133]. More extensive studies in the MetaOCaml system show

that slowdown due to tags can be as high as 10 times [16, 62]. How can we remove the tagging overhead

inherent in the use of universal value domains?

In the rest of this section we describe the problem of superfluous tags in more detail, and discuss existing

approaches to solving it.

An Untyped Interpreter

We begin by reviewing how one writes a simple interpreter in an untyped language. For notational parsi-

mony, we will use Haskell syntax but disregard types. An interpreter for a small lambda language can be

defined as follows:

data Exp = I Int | Var String | Abs String Exp | App Exp Exp

eval e env =

case e of

I i → i

| Var s → env s

| Abs s e → ( \v → eval e (ext env s v))

| App f e → (eval f env) (eval e env)

This provides a simple implementation of object programs represented by the datatypeExp. The function

eval evaluatese (anExp) in an environmentenv that binds the free variables in the term to values.

This implementation suffers from a severe performance limitation. If we were able to inspect the result of

applyingeval , such as(eval (Abs "x" (Var "x")) env0) , we would find that it is equivalent

to

( \v→ eval (Var "x") (ext env0 "x" v)).

This term will compute the correct result, but it contains anunevaluated recursive call toeval . This

problem arises in both call-by-value and call-by-name languages, and is one of the main reasons for what

is called the “layer of interpretive overhead” that degrades performance [67]. Fortunately, this problem can

be eliminated using staging [128].
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Staging the Untyped Interpreter

Staging annotations partition the program into (temporally ordered) computational stages so that all com-

putation at stagen is performed before any of the computations at stagen + 1. Brackets〈 〉 surrounding

an expression lift it to the next stage (building code). Escape ˜ drops its expression to a previous stage.

The effect of escape is to splice pre-computed code values into code expressions that are constructed by

surrounding brackets. Staging annotations change the evaluation order of programs, even evaluating under

lambda abstraction. Therefore, they can be used to force theunfolding of the recursive calls to theeval

function at code-generation time. Thus, by just adding staging annotations to theeval function, we can

change its behavior to achieve the desired operational semantics:

eval’ e env =

case e of

I i → 〈i 〉

| Var s → env s

| Abs s e → 〈\v→ ˜(eval’ e (ext env s 〈v〉)) 〉

| App f e → 〈 ˜(eval’ f env) ˜(eval’ e env) 〉

Now, applyingeval’ to ( Abs "x" ( Var "x")) in some environmentenv0 yields the result

〈\v→ v〉. Now there are no leftover recursive calls toeval’ , since the abstraction case ofeval’ uses es-

cape to evaluate the body of the function “under the lambda:”〈\v→ ˜(eval’ e (ext env s 〈v〉)) 〉.

Multi-stage languages come with a run annotationrun _ that allows us to execute such a code fragment.

A staged interpreter can therefore be viewed as user-directed way of reflecting a object program into a meta-

program, which then can be handed over in a type safe way to thecompiler of the meta-language.

Staged Interpreters in a Meta-language with Hindley-Milner Polymorphism

In programming languages, such as Haskell or ML, which use a Hindley-Milner type system, the above

eval function (staged or unstaged) is not well-typed. Because both integers and functions can be returned

as a result of the interpreter, each branch of the case statement may have a different type, and these types

cannot be reconciled by simple first order unification.

Within a Hindley-Milner system, we can circumvent this problem by using a “universal type.” A universal

type is a type that is rich enough to encode values of all the types that appear in the result of a function like

eval . In the case above, this includes function as well as integervalues. A typical definition of a universal

type for this example might be:

data V = VI Int | VF V→V.

The interpreter can then be rewritten as a well-typed (Haskell) program:
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unF ( VF f) = f

unF ( VI _) = error "Tag mismatch, expecting function"

eval e env =

case e of

I i → I i

| Var x → env x

| Abs x e → F ( \v→ eval e (ext env x v))

| App f e → ( unF (eval f env)) (eval e env)

Now, when we compute(eval ( Abs "x" ( Var "x")) env0) we get back a value

( VF ( \v→ eval ( Var "x") (ext env0 "x" v))).

Just as we did for the untypedeval , we can stage this version ofeval :

eval e env =

case e of

I i → 〈VI i 〉

| Var x → env x

| Abs x e → 〈VF ( \v→ ˜(eval e (ext env x 〈v〉))) 〉

| App f e → 〈( unF ˜(eval f env)) ˜(eval e env) 〉

Now computing(eval ( L("x", V "x")) env0) yields: 〈( VF ( \v→ v)) 〉

Problem: Superfluous Tags

Unfortunately, the result above still contains the tagVF. While this may seem like minor issue in a small

program like this one, the effect in a larger program will be aprofusion of tagging and untagging operations.

Such tags would indeed be necessary if the object-language was untyped. But if we know that the object-

language is statically typed (for example, as a simply-typed lambda calculus) the tagging and untagging

operations are really not needed.

There are a number of approaches for dealing with this problem. Type specialization [63] is a form

of partial evaluation that specializes programs based not only on expressions, but also on types. Thus,

a universal value domain in an interpreter may be specialized to arbitrary types in the residual versions,

removing tags. Another recently proposed possibility is tag elimination [133, 132, 73], a transformation

that was designed to remove the superfluous tags in a post-processing phase. Under this scheme, a language

implementation is divided intothreedistinct stages (rather than the traditional two, static and dynamic). The

extra stage,tag elimination, is distinctly different from the traditional partial evaluation (or specialization)
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stage. In essence, tag elimination allows us to type check the object program after it has been generated.

If it checks, superfluous tags are simply erased from the interpretation. If not, a “semantically equivalent”

interface is added around the interpretation. Tag elimination, however, does notstaticallyguarantee that all

tags will be erased. We must run the tag elimination at runtime (in a multi-stage language). None of the

proposed approaches, however, guarantees (at the time of writing the staged interpreter) that the tags will

be eliminated before runtime.

We will present an alternative approach that does provide such a guarantee: in fact, the user never intro-

duces the tags in the first place, because the type system of the meta-language is strong enough to avoid any

need for them.

2.2 Tagless Interpreters Using Dependent Types

The solution to the tagging problem that we will present is based on the use of a dependently typed multi-

stage language as the meta-language in which to implement object languages.

A language has dependent types if its types can depend on values in the program. We have shown an

informal example of this in Section 2.1. Crucial to this is the notion oftype families– collections of related

types indexed by a value. A typical dependent type is the dependent product, often writtenΠx : τ1.τ2,

where the typeτ2 may depend on the value of the bound variablex. For example, a dependent product

(Πx : Int. if x == 0 then Int else Bool) is a type of a function that takes an Integer, and if that Integer is

0, returns another integer; otherwise it returns a Boolean.

We demonstrate this solution by means of an example: we builda compiler from an interpreter [117] by

staging, from beginning to end. The slogan we are guided by is“tag elimination by never introducing the

tags in the first place!”

We start by presenting a definition of a simple, strongly typed, object language, calledL0, giving its

syntax and semantics. The remainder of this chapter describes an implementation of a tagless interpreter

for L0 using dependent types and staging.

Dependent types are used to express the invariant that only well-typed object-language programs can be

constructed and manipulated by well-typed meta-programs.The interpreter for object-language programs

is given family of types that vary with respect to the (object-language) type of the object-language program.

For example, this allows it to return function values for object-languages with function types, integer values

for object-programs with integer types, and so on. If the object-language type system is designed correctly

to exclude object-language programs that “go wrong,” then the meta-language type system forces the inter-

preter to preserve this invariant without needing to check tags to ascertain at runtime whether the execution
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of the object-program has indeed “gone wrong.”

To illustrate viability of combining dependent types with staging, we have designed and implemented

a prototype language we call MetaD. We use this language as a vehicle to investigate the issues that arise

when implementing staged language implementations in a dependently typed setting: we thus re-develop

theL0 implementation as a staged interpreter in MetaD. We also discuss the issues that arise in trying to

develop a dependently typed programming language (as opposed to a type theory).

For comparison, we give an implementation of a tagless interpreter forL0 in Coq [139] in Appendix A,

where we shall critically examine our Coq implementation and consider its strengths and weaknesses com-

pared to MetaD.

In a subsequent chapter, we will present the technical contribution of formalizing a multi-stage language

with such features, and proving its type safety. We do this bycapitalizing on the recent work by Shao, Saha,

Trifonov and Papaspyrou’s on the TL system [116], which in turn builds on a number of recent works on

typed intermediate languages [55, 25, 147, 114, 26, 140].

2.2.1 Object-Language Syntax and Semantics

We begin by considering a definition of the syntax and semantics ofL0. L0 is sufficiently simple to make

our development and presentation manageable. It is, however, sufficient to demonstrate the main issues

that arise when constructing a tagless interpreter with staging and dependent types. We begin by formally

presenting the syntax and semantics of the object language.

τ ∈ T ::= N | τ → τ

Γ ∈ G ::= 〈〉 | Γ, τ

e ∈ E ::= n | λτ. e | e e | Var n

EXP Γ ⊢ n : N
(Nat)

EXP Γ, τ ⊢ e : τ ′

EXP Γ ⊢ λt.e : τ → τ ′
(Lam)

EXP Γ ⊢ e1 : τ → τ ′ EXP Γ ⊢ e2 : τ

EXP Γ ⊢ e1 e2 : τ ′
(App)

VAR Γ ⊢ n : τ

EXP Γ ⊢ Var n : τ
(Var)

VAR Γ, τ ⊢ 0 : τ
(Var-Base)

VAR Γ ⊢ n : τ

VAR Γ, τ ′ ⊢ (n + 1) : τ
(Var-Weak)

Figure 2.2: Syntax and static semantics of ofL0

Syntax. Figure 2.2 defines the syntax and type system ofL0. The language is a version of the simply

typedλ-calculus. Types include a base type of natural numbers (N ), and function type former (→). For

simplicity of the development, we use de Bruijn indices for variables and binders, where natural number

indices that identify a variable represent the number of interveningλ-abstractions between the variable’s

use and binding site.
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Type system. The type system ofL0 is presented also in Figure 2.2. It consists of two judgments: the

well-typedness judgment defined inductively over the expression,e, (EXP Γ ⊢ e : τ), and the auxiliary

variable judgment,(VAR Γ ⊢ n : τ), which projects the appropriate type for a variable index from the

type assignmentΓ. The splitting of the typing rules into two judgments is not essential, but will make

our presentation a bit simpler when we define functions by induction on expressions and variable indices,

respectively.

TJNK = N

TJτ1 → τ2K = TJτ2KTJτ1K

TAJ〈〉K = 1

TAJΓ, τK = TAJΓK × TJτK

JEXP Γ ⊢ e : τK : JΓK → JτK
JEXP Γ ⊢ n : NK ρ = n

JEXP Γ ⊢ Var n : τK ρ = JVAR Γ ⊢ n : τK ρ

JEXP Γ ⊢ λτ.e : τ → τ ′K ρ = x 7→ (JEXP Γ, τ ⊢ e : τ ′K (ρ, x))
JEXP Γ ⊢ e1 e2 : τK ρ = JEXP Γ ⊢ e1 : τ ′ → τKρ(JEXP Γ ⊢ e2 : τ ′Kρ)

JVAR Γ ⊢ n : τK : JΓK → JτK
JVAR Γ, τ ⊢ 0 : τKρ = π2(ρ)
JVAR Γ, τ ′ ⊢ (n + 1) : τKρ = JVAR Γ ⊢ Var n : τK(π1ρ)

Figure 2.3: Semantics ofL0

Semantics. The semantics of the languageL0 is shown in Figure 2.3. This semantics consists of three

parts:

1. The semantics of types, which maps the (syntactic) types of L0 to their intended meaning, is given

as the semantic functionTJ·K : T→ ∗ in Figure 2.3. The typing we give the semantic functionTJ·K,

T→ ∗ is purely for reader’s convenience. The base setsN, 1, as well as products and function spaces

used are set-theoretical entities. For example, the meaning of the typeN is the set of natural numbers,

while the meaning of the arrow typeτ1 → τ2 is the function spaceTAJτ2K
TAJτ1K. This function’s

role is to compute that type of the semantic function for expressions (similar toeval above), when

given that expression’s type.

2. The semantics of type assignments are defined as a semanticfunctionTAJ·K : G → ∗: each type

assignmentΓ is mapped into a product of the sets denoting the individual types in the assignment. For

example, the meaning of the type assignmentΓ = 〈〉, Int, Int→ Int, is the product set(1×N)×(N→

N). This function’s role is to compute the type of the runtime environment of the semantic function,

given the particular type assignment under which we type theobject-language expressions whose

meaning we are trying to compute.

3. Finally, the semantics of programs is defined ontyping judgments. Given a typing judgmentJEXP Γ ⊢

e : τK, it maps the meaning of the type assignmentΓ, TAJΓK, to the meaning of the type of the object
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expressionTJτK.

The definition of the semantic functionJEXP · ⊢ · : ·K : (EXP Γ ⊢ e : τ) → TAJΓK → TJτK is

given in Figure 2.3 . For its variable case, it uses an auxiliary function which projects (i.e., looks up)

that variable’s value from the runtime environment:JVAR· ⊢ · : ·K : (VAR Γ ⊢ n : τ) → TAJΓK→

TJτK.

This is a standard way of defining the semantics of typed languages [138, 51, 110] (also known as

categorical style), and the implementation in the next section will be a directcodification of this definition.

2.3 A Brief Introduction to Meta-D

In this section we shall enumerate here the main ingredientsand features of Meta-D, a meta-language in

which we shall then implement the tagless interpreter forL0. The purpose of this section also is also to

familiarize the reader with the syntax and type system of Meta-D, proceeding informally and by example.

Dependent types. In designing Meta-D, we opt for a predicative style of dependent types with universes.

The Coq sortsSet andProp are unified into a single sort∗1, which in turn is classified by an increasing

order of sorts∗2, ∗3, . . .. All this is fairly standard [2, 139]. This flavor of dependent types, while it works

very well in a type-theoretic theorem prover, may introducesome practical problems in a programming lan-

guage implementation. We will explore how some of these problems may be solved while still maintaining

the expressiveness of the type system.

Basic staging operators. The type system of Meta-D includes a modal type constructor© (pronounced

“code of”), as well as with the standard staging annotations(see Section 2.1.1 for examples of the notation).

Typing rules of the code constructors are fairly standard [30, 29, 128]. The type system prevents phase

errors, i.e., prevents uses of values defined at later stagesduring earlier stages.

Inductive families. Inductive type families (e.g., [33, 22]) can be thought of asdependent data types.

While not strictly necessary (one can use Church encodings), they greatly improve the usability of the

meta-language.

The syntax for inductive families is largely borrowed from Coq, and has a very similar feel. Syntactically,

each data-type defined must first be given its own type (special constants*1 , *2 are sorts, where*1

classifies types,*2 classifies kinds, and so on). Each constructor’s type is written out fully, and is subject

to standardpositivity conditions[6] to ensure that the data-type defined is truly inductive.
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For example, to define the inductive family of natural numbers, instead of writing

datatype Nat = Z | S of Nat we write

inductive Nat : *1 = Z : Nat | S : Nat →Nat .

The inductive notation is more convenient when we are defining dependent data-types. Also, it allows

the user to define not only inductive types, but also inductive kinds(by simply changing, say,∗1 to ∗2 in

the definition). As an example ofdependentinductive families, consider the following definition:

inductive List (a:*1) : Nat → *1 =

Nil : List a Z

| Cons : a → (n:Nat) → (List a n) → (List a (S n))

The inductive family(List a n) is a family of lists of elements of typea with lengthn. After a

family’s name,List , the user lists zero or moreparameters. A parameter toList , in this case, is a typea

: *1 . The parameters are arguments to the type family which do notchange in any of the constructors.

Next, after the colon, we give the typing of the type family. In the case ofList a , it is a function from

natural numbers, representing the list’s length, to the sort of types,∗1. Note thatNat here is the type of

an indexof the type family. The difference betweenparametersandindexesis that while parameters may

not be changed anywhere in the types of the constructors, different constructors of the family may vary the

values of theindexes. For example, the constructorCons takes as its argument the valuea, and a list of

lengthn. The list it constructs, however, has a different index value, namelyS n indicating that it is one

element longer.

To give an example, the listex1 below is a list of integers of length three:

val ex1 :: List Int (S (S (S Z))) =

Cons (102 ( S ( S Z)) ( Cons 101 ( S Z) ( Cons 100 Z Nil)))

Values of inductive families can be deconstructed using thecase construct. The case is designed to be

as similar as possible to case expressions in functional programming languages. For example, the following

is a map function that converts a list ofas to a list ofbs:

fun mapList (a:*1) (b:*1) (f : (a → b)) (n:Nat) (l : (List a n))

: (List b n) =

case l of

Nil→Nil

| ( Cons x m xs) → ( Cons (f x) m (mapList a b f m xs))

Dependent products (functions). Functions in Meta-D are defined using an ML-style syntax:

fun funName (arg 1:Typ 1) ... (arg n:Typ n) : Typ r = ... . The function name follows thefun

keyword, and is followed by declarations of the function’s arguments, and finally the type of the func-

tion’s codomain. Function types,(x:t 1) → t 2 , (unlike in Coq, they are always written with the arrow
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→) can be dependent, i.e., the codomain typet 2 may mention the variablex . Also, theλ-notation is

modeled on ML:fn (x:t) → e is an anonymous function that takes an argument of typet .

To demonstrate dependent function types, we revisit the example from section 2.1. This involves the

function f , which takes an argumentn, some initial integer valuex , and produces ann-ary function that

sums up its arguments. The argumentx is the integer value for the “nullary” case wheren is zero. First, we

define the functiong which computes the type we can give tof :

fun g (n:Nat) : *1 =

case n of

Z → Nat

| S n’ → (Nat → (g n’))

The functiong takes a natural numbern and constructs a type
n times

z }| {

Nat → · · · →Nat .

Now we are define to construct some inhabitants of this type. In particular, the functionf from Sec-

tion 2.1 Are there any inhabitants of this type, for a givenn? Consider:

fun f (n:Nat) (x:Nat) : (g n) =

case n of

Z→ x

| S n’ → (fn (y:Nat) → (f n’ (x+y)))

As we have seen, inductive functions can be defined using recursion. It is assumed that the type-checker

can prove that recursively defined functions terminate3.

Another interesting function might bemakeList , which, given a natural numbern, produces a list of

zeros of the lengthn:

fun makeList (n:Nat) : (List Nat n) =

case n of

Z→ Nil

S n’ → ( Cons Z n’ (makeList n’))

Dependent sums. Dependent sum types are also available. Dependent sum typesare written as[x:t](f

x) . An element of such a sum is a pair of values: the first is a element of typet ; the second element is of

typef t , i.e., its type may depend on the value of the first element. The syntax for constructing such a pair

3In the actual implementation the user can instruct the type-checker to ignore termination checking, in which case type-checking
may not terminate, as in Cayenne. This makes the type system,viewed as logic, unsound, but may be acceptable in programming
practice [2]
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is written[x=e 1]e 2 . Informally, the typing rule for sum introduction may look something like this:

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : (τ2[x := e1])

Γ ⊢ [x = e1]e2 : [x : τ1]τ2
(Sum)

Dependent sums do not have a special elimination construct.Instead, the user can deconstruct them using

case expressions and pattern matching.

2.4 A Tagless Interpreter

After that short introduction to the syntax of Meta-D, we cannow begin to implement a tagless interpreter

for L0. First, we define data types that represent the syntax ofL0: the basic types, typing environments and

expressions. The following non-dependent type families correspond to the syntactic categories ofL0:

inductive Typ : *1 = NatT : Typ

| ArrowT : Typ →Typ →Typ

inductive Env : *1 = EmptyE : Env

| ExtE : Env →Typ → Env

inductive Exp : *1 = EI : Nat →Exp (* n *)

| EV : Nat →Exp (* Var n *)

| EL : Typ →Exp →Exp (* λτ.e *)

| EA : Exp →Exp →Exp (* e1 e2 *)

Expressions

1 inductive J : (Env, Exp, Typ) → *1 =
2 JN : (e 1:Env) → (n :Nat) → J(e 1,EI n,NatT)
3 | JV : (e 1:Env) → (n:Nat) → (t:Typ) →
4 JV(e 1,n,t) → J(e 1,EV n,t)
5 | JL : (e 1:Env) → (t 1 :Typ) → (t 2 :Typ) → (s 2:Exp) →
6 J(ExtE e 1 t 1,s 2,t 2) → J(e 1,EL t 1 s2, ArrowT t 1 t 2)
7 | JA : (e:Env) → (s 1:Exp) → (s 2:Exp) → (t 1:Typ) → (t 2 : Typ) →
8 (J(e,s 1,ArrowT t 1 t 2)) → (J(e,s 2,t 1)) → J(e, EA s 1 s2, t 2)

Variables

9 inductive JV : (Env, Nat, Typ) → *1 =
10 | VZ : (e 1:Env) → (t:Typ) → JV(ExtE e 1 t, Z, t)
11 | VW : (e 1:Env) → (t 1 :Typ) → (t 2 :Typ) → (i:Nat) → (JV(e 1,i,t 1)) →
12 (JV(ExtE e 1 t 2, S i, t 1))

Figure 2.4: The typing judgmentJ (without representation types)

Next, we implement the type judgment ofL0. To define the judgments, we need a dependent family

indexedby three parameters: a type assignmentEnv, an expressionExp, and a typeTyp . The relevant

definitions are shown in Figure 2.4. Each constructor in thisdatatype corresponds to one of the rules in the

type system for our object language.
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We shall examine the various constructors of the inductive family J from Figure 2.4 in turn. The basic

idea is to use the “judgments as types” principle [53]. We canview a typing rule as a combinator building

larger proofs judgments out of smaller ones. Members of the type J (e,s,t) are proofs of logical

assertions thate ⊢ s : t. These proofs are built-up using the constructors of the inductive typeJ . These

combinators take proofs of hypothesis judgments (and the values of their free variables) to construct the

proof conclusion judgment.

1. The rule for natural number constants (JN).

| JN : (e 1:Env) → (n:Nat) → J(e 1,EI n,NatT)

Given a type assignmente1, and a natural numbern, we can produce the proof of the typing judgment

J(e 1, EI n, NatT) , i.e.,e1 ⊢ n : N .

2. The rule for variables. Variables are implemented using the auxiliary judgmentJV, also an indexed

type family, whose indices are the type assignment, a numberrepresenting the de Bruijn index of a

variable, and the type of the given variable.

The variable judgment proofs have two cases.

inductive JV : (Env, Nat, Typ) → *1 =

. . . . . . . . .

(a) Base case, where the variable index is zero.

| VZ : (e 1:Env) → (t:Typ) → JV(ExtE e 1 t, Z, t)

(b) Inductive case (also calledweakening). Repeated applications of the weakening rule perform

the lookup from the environment.

| VW : (e 1:Env) → (t 1 :Typ) → (t 2 :Typ) → (i:Nat) → (JV(e 1,i,t 1)) →

(JV(ExtE e 1 t 2, S i, t 1))

3. The rule for lambda abstraction (Lam).

JL : (e:Env) → (t 1 :Typ) → (t 2 :Typ) → (s:Exp) →

J(ExtE e t 1, s, t 2) → J(e, EL t 1 s, ArrowT t 1 t 2).

In this case, the first argument to the constructor is the typeassignmente in which theλ abstraction is

typed. Next, it takes two typest1 andt2, for the domain and the co-domain of the function expression

respectively. Next, it takes an expressions which is the body of the lambda abstraction. Finally, it

takes the proof of the antecedent judgment that(e, t1 ⊢ s : t2), and constructs proof of the judgment

(e ⊢ λt.s : t1 → t2). The correspondence between the constructorJL and theLam rule from

Figure 2.2 should be apparent.



40

1 fun project (e:Env) (rho:(envEval e))
2 (n : Nat) (t:Typ)(j : JV(e,n,t)) : (typEval t) =
3 case j of
4 VZ e t → #2(rho)
5 VW e t 1 t 2 i j’ → (project e (#1(rho)) i t 1 j’)
6

7 fun eval (e : Env) (rho: envEval(e))
8 (s : Exp) (t : Typ) (j : J(e,s,t)) : (typEval t) =
9 case j of

10 JN e n → n
11 | JV e n t jv →project e rho n t jv
12 | JL e t 1 t 2 s2 j’ →
13 (fn v:(typEval t 1) → (eval ( ExtE e t 1) (rho, v) s 2 t 2 j’))
14 | JA e s 1 s2 t 1 t 2 j 1 j 2 →
15 (eval e rho s 1 (ArrowT t 1 t 2) j 1) (eval e rho s 2 t 1 j 2)

Figure 2.5: Dependently typed tagless interpreter

4. The rule for application (JA) implements theApp rule from Figure 2.2: given two premisese ⊢ s1 :

t1 → t2 ande ⊢ s2 : t1, the constructor builds the conclusione ⊢ s1 s2 : t2:

| JA : (e:Env) → (s 1:Exp) → (s 2:Exp) → (t 1 :Typ) → (t 2 : Typ) →

J(e,s 1,ArrowT t 1 t 2) → J(e,s 2,t 1) →

J(e, EA s 1 s2, t 2)

In the definition ofJs we see differences between the traditional datatype definitions and inductive

datatypes: each of the constructors can have dependently typed arguments and a co-domain typeJ whose

index arguments are different. Data-types in functional languages, on the other hand, force the constructors

to return always thesametype of the result. The variability of inductive family indexes will allow us to

define functions by cases in which each case produces or consumes a value of the same inductive type, but

where each case differs in the values of the indexes.

The definition ofJ allows us to use this variability in the indices to enforce the following invariant:

given a type assignmente, and an object-language expressions , and an object-language typet , if we can

construct an inhabitant (proof) of the judgmentJ(e,s,t) , thene ⊢ s : t (in the sense of the Figure 2.2).

No functions that manipulate and produce proofs of typing judgmentsJ can break this invariant and remain

well-typed in MetaD.

2.4.1 Interpreters of Types and Judgments

Having definedL0 typing judgments as Meta-D inductive families, we are readyto implement theL0

interpreter in form of the functioneval from Figure 2.5. One thing to note, however, is that the type of the

range of the functioneval must depend on theL0 type of the judgment being interpreted: for an integer

L0 program, the result will be an integer, for a functionL0 program, it will be a function and so on.
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This dependency is captured in the interpretation functiontypEval . Recall that syntax ofL0 are repre-

sented by inductive familyTyp . The functiontypEval gives the meanings of these object language types

by mapping the inductive familyTyp into meta-language types∗1:

1 fun typEval (t : Typ) : *1 =

2 case t of

3 NatT→Nat

4 | ArrowT t1 t1 → (typEval t1) → (typEval t2)

Predictably, typEval maps L0 type NatT to the meta-language type of natural numbersNat .

Similarly, given a L0 arrow type ArrowT t1 t2 , typEval computes a Meta-D arrow type

(typEval t1) → (typEval t2) as its meaning (line4, above).

Similarly, type assignmentsof L0 must be given a meaning as well, since the type judgments ofL0

programs depend on the structure of the type assignments which give types for the free variables in theL0

expressions. Recall thatL0 type assignments are represented by the inductive familyEnv: its structure is

that of a list ofL0 types.

The functionenvEval takes a representation of theL0 type assignment and computes the Meta-D type

of the runtime environments corresponding to that type assignment:

1 fun envEval (e : Env) : *1 =

2 case e of

3 EmptyE → unit

4 | ExtE e2 t → (envEval e2, typEval t)

The runtime environment corresponding to the empty type assignment is simply the unit type. For a type

assignmente2 extended by the typet , ExtE e2 t , the type of the runtime environment is the product of

the meaning ofe2 and the meaning oft : (envEval e2, typEval t) .

The functioneval is defined by case analysis on the proofs of the typing judgments (Figure 2.5). There

are four such cases, each of which we shall examine in some detail:

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

1. Natural number literals. The first case is the judgment forL0 literal expressions. If the proof of

the judgmentj of type J(e,s,t) is of the formJN e n , then by the definition ofJ , we know

that the expressions is of the formEI n, and that theL0 type t is equal toNatT. The codomain

type ofeval is typEval t , but sincet equalsNatT, we know that the result type of this case

branch must betypEval NatT , which is equal to the Meta-D typenat . Fortunately, we have a

nat , namely,n.

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

case j of
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JN e n → n

. . . . . . . . .

2. Variables. The variable case is more interesting. First, note that in this branch, the expression

index isEV n for the natural numbern which represents the index of the variable expression. The

constructorJV carries a proof of the variable sub-judgmentJV(e,n,t) .

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

case j of

JV e n t jv → project e rho n t jv

. . . . . . . . .

Thus, the meaning of variable judgments relies on the auxiliary functionproject , which imple-

ments the meaning of variable judgments:

fun project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) (j:JV(e ,n,t)) : (typEval t) =

case j of

VZ e t → #2(rho)

VW e t 1 t 2 i j’ → (project e (#1(rho)) i t 1 j’)

The functionproject is defined by cases on the inhabitants of the variable judgment JV(e,n,t) ,

wheren is the natural number index of the variable expression. There are two cases

(a) The base case where the natural number index is zero. In this case, we know thate is of
the form ( ExtT e’ t) . We also know that the type of the runtime environmentrho is
envEval ( ExtT e’ t) which is equivalent to the pair(evalEnv e’,evalTyp t) .
Now, to produce the result oftypEval t , all we have to do is project the second element of
the pairrho .

fun project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ)

(j:JV(e,n,t)) : (typEval t) =

case j of

VZ e’ t → #2(rho)

. . . . . .

(b) The case where the index is greater than zero. Thus, the index n is equal toS m. We also

know that the type assignmente is of the form(ExtE e’ t2) , and that we have the sub-

judgmentj’ of type JV(e’,m,t) . Furthermore, runtime environmentrho is of the type

(envEval ( ExtE e’ t2)) which is just a pair(envEval e’, envEval t2) .

Recall that the result we are computing is of the type(typEval t) . This result can be

obtained by projectingm-th variable from the sub-judgmentj’ under the first element ofrho :

fun project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) (j:JV(e ,n,t))

: (typEval t) =

case j of

. . . . . . . . .

| VW e’ t t 2 m j’ → (project e’ (#1(rho)) m t j’)
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3. Abstractions.

fun eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

case j of

. . .

| JL e t 1 t 2 s2 j’ →

(fn v:(typEval t 1) → (eval ( ExtE e t 1) (rho, v) s 2 t 2 j’))

In the case for abstraction judgments we know the following:

(a) s = EL t 1 s2

(b) j’ : J( ExtE e t 1,s 2,t 2)

(c) t = ArrT t 1 t 2

(d) The result typetypEval t is typEval ( ArrT t 1 t 2) , which is equal to(typEval t 1) → (typEval t

Thus, the value that we are constructing in this branch must be of a function type(typEval t 1)->(typEval t 2) :

weλ-abstract over a variablev : (typEval t 1) , and must produce a value of type(typEval t 2) .

Fortunately, we can do this if we evaluate recursively the proofs of the sub-judgmentj’ . This j’

must be evaluated in an extended runtime environment of type(envEval e,typEval t 1) ,

which we can construct by pairingrho with v .

4. Applications. Evaluating proofs application judgments is straightforward.

fun eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

case j of

. . .

| JA e s 1 s2 t 1 t 2 j 1 j 2 →

(eval e rho s 1 (ArrowT t 1 t 2) j 1) (eval e rho s 2 t 1 j 2)

The judgment proofj is constructed from two sub-proofs:

(a) j 1 : J(e,s 1, ArrT t 1 t 2)

(b) j 2 : J(e,s 2,t 1)

Recall that the value we are trying to compute is of the typet 2 . Recursively evaluatingj 1 gives us

a function of type(typEval t 1→ typEval t 2) . Recursively evaluating j2 gives us a value of

type typetypEval t 1 . Simply applying the former to the latter yields the required result.

To review, the most important feature to note about the function eval is that writing it does not require

that we use tags on the result values, because the type systemallows us to specify that the return type of

this function istypEval t . Tags are no longer needed to help us discriminate what type of value we are

getting back at runtime: the type system now tells us,statically.
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2.4.2 Staged Interpreters in Meta-D

Figure 2.6 shows a staged version ofeval . As with Hindley-Milner types, staging is not complicated by
dependent types. The staged interpreterevalS , returns a value of type©(typEval t) . Note that the
type of value assignments is also changed (seeenvEvalS in Figure 2.6): Rather than carrying runtime
values forL0, it carries pieces of code representing the values in the variable assignment:

fun envEvalS (e : Env) : *1 =

case e of EmptyE→unit | ExtE e2 t → (envEvalS e2, ©(typEval t))

fun evalS (e : Env) (rho: envEvalS e) (s : Exp) (t : Typ)
(j : J(e,s,t)) : ( ©(typEval t)) =

case j of
JN e1 n1 →〈n1〉

| JV e1 t 1 → #2(rho)
| JW e1 t 1 t 2 i j 1 → evalS e 1 (#1(rho)) (EV i) t 1 j 1
| JL ee1 et 1 et 2 es2 ej 1 →

〈fn v:(typEval et 1) → (˜(evalS (ExtE ee 1 et 1) (rho, 〈v〉) es 2 et 2 ej 1)) 〉
| JA e s 1 s2 t 1 t 2 j 1 j 2 →

〈˜(evalS e rho s 1 (ArrowT t 1 t 2) j 1) ˜(evalS e rho s 2 t 1 j 2) 〉

Figure 2.6: Staged tagless interpreter (without representation types)

Even though the eval function never performs tagging and untagging, the interpretative overhead from

traversing its input is still considerable. Proofs of judgments must be deconstructed by eval at run-time.

This may require even more work than deconstructing tagged values. With staging, all these overheads are

performed in the first stage, and an overhead-free term is generated for execution in a later stage. Executing

the functionevalS produces the tagless code fragments that we are interested in. For example, if we

construct and then evaluate the typing judgment for the expression( EA ( EL NatT ( EV 0)) ( EI

1)) , the code generated byevalS looks something like this:〈(fn (x : Nat) => x) 1 〉.

Staging violations are prevented in a standard way by Meta-D’s type system. The staging constructs

are those of Davies [30] with the addition of cross-stage persistence [135]. We refer the reader to these

references for further details on the nature of staging violations. Adding a run construct along the lines of

previous works [130, 82, 134] was not considered here.

Now we turn to addressing some practical questions that are unique to the dependent typing setting,

including how the above-mentioned judgments are constructed.

2.5 Constructing Proofs of Typing Judgments

Requiring the user of aL0 interpreter to construct and supply the proof of a typing judgment for each

program to be interpreted is not likely to be acceptable (although it can depend on the situation). The user

should be able to use the implementation by supplying only the plain text of the object program. Therefore,
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1 fun tcVar (e:Env) (n:Nat) : ([t:Typ](JV (e,n,t))) =
2 case n of
3 Z→ (case e of ExtE e’ t’ → [t=t’](VZ e’ t’))
4 | S n’ →
5 (case e of ExtE e’ t 2 →
6 case (tcVar e’ n’) of
7 [rx:Typ]j2 → [t=rx](JW e2 rx t2 n’ j2))
8

9 fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t)) =
10 case s of
11 EI n → [t = NatT](JN e n)
12 | EV idx →
13 let [rt:Typ]jv = tcVar e idx
14 in [t=rt]( JV e idx rt jv)
15 | EL targ s2 →
16 let [rt:Typ]j = (typeCheck ( ExtE e targ) s2)
17 in [t= ArrowT targ rt]( JL e targ rt s2 j)
18 | EA s1 s2 →
19 let [rt 1 :Typ]j 1 = (typeCheck e s 1)
20 [rt 2 :Typ]j 2 = (typeCheck e s 2)
21 in case rt 1 of
22 ArrowT tdom tcod →
23 [t=tcod](JA e s 1 s2 tdom tcod j 1
24 (cast [assert rt 2=tdom, fn (t:Typ) → J(e,s,t), j 2 ]))

Figure 2.7: The functiontypeCheck (without representation types)

the implementation needs to include at least a type checkingfunction. This function takes a representation

of a type-annotated program and constructs the proof of the appropriate typing judgment, if it exists. We

might even want to implement type inference, which does not require type annotations on the input. Figure

2.7 presents a functiontypeCheck . This function is useful for illustrating a number of features of Meta-D:

Dependent sums. The type of the result4 of typeCheck is a dependent sum, written

[t:Typ] J(e,s,t) 5. This means that the result oftypeCheck consists of anL0 type, and a typing

judgment that proves that the argument expression has that particular type under a given type assignment.

Since proofs of judgments are built from sub-proofs of sub-expression judgments, acase construct

in(strong dependent sum elimination) is need to deconstruct the results of recursive calls totypeCheck .

Equality types. The case for constructing proofs of application judgments (Figure 2.7, lines18-24) illus-

trates an interesting point. Building a proof for the judgment of the expression(EA s1 s2) first involves

computing the proofs for the sub-termss1 ands2 . These judgments assignL0 types(ArrowT tdom

4 In a pure setting (that is with no computational effects whatsoever) the result oftypeCheck should beoption ([t :
Typ] (J (e,s,t))) , since a particular term given totypeCheck may not be well-typed. In the function given in this paper, we
omit theoption , to save on space (and rely on incomplete case expressions instead).

5A note on the notation: the dependent product typesΠx : τ1.τ2 are written as(x:t1) → t2 in MetaD. Analogously, we shall
write dependent sum types using similar notation, replacing the parentheses with angle brackets. Thus,Σx : τ1.τ2 is written as
[x:t1]t2 .
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tcod) andrt2 to expressionss1 ands2 , respectively.

However, by definition of the inductive familyJ , in order to build the proof of the larger application

judgment,tdom andrt2 must be the sameL0 type. The equality betweentdom andrt2 must be known

statically, at type checking time of the functiontypeCheck so that theL0 judgment for the application can

be constructed. In particular, we must “cast”, for example,from the type(J(e, s2,rt2)) to (J(e,

s2,tdom)) .

How can we do this? A standard way, in type theory, to deal withproblems like this is to introduce a

type family representing equality over particular values.Such a type family may look something like this

in MetaD :

inductive EQ (a:*1, x : a) : a → *1 =

EQ Refl : (EQ x x)

Next, we define a function that can performsubstitution of equals for equals:

fun eqForEq : (a:*1) (x,y : a) (EQ a x y) (f : a -> *1) (f x) : (f y) = . ..

The functioneqForEq takes a proof that two values of typea, x andy , are equal. The next argument,

f , is a function describing a type in terms of avalueof typea. Next, a value of type(f x) is taken, and

(sincex andy are equal) returns a value of type(f y) .

One question remaining is how to construct the proofEQ a x y? This cannot be answered in general,

but for particular inductive types such as the data-typeTyp , representingL0 types, such proofs can be

constructed by inductively examining two terms, and combining proofs of equalities of sub-terms to produce

proofs of equalities of larger terms:

fun isEqTyp : (x : Typ) (y : Typ) : (option (EQ Typ x y)) =

case x of

NatT → (case y of NatT → ( SOME ( EQ Refl NatT))

| x → NONE)

| ( ArrowT t1 t2) →

(case y of ArrowT t3 t4 →

(case (isEqTyp t1 t3, isEqTyp t2 t4) of

( SOME p1, SOME p2) → ...

| _ → NONE)

| x → NONE)

Assert/cast. In our presentation of Meta-D, we shall examine an alternative to the style of equality de-

scribed above. We add two language constructs to Meta-D to express this sort of constraint between values.

First, the expression of the formassert e 1=e2 introduces anequality judgment, (EQ t e 1 e2) ,
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between values of equality types. The typeEQ t here isnot the inductive familyEQdefined above, al-

though it is designed to perform a similar role. Instead, it is treated as a primitive type, whose introduction

construct are theassert expressions.

An elimination constructcast [e 1,T,e 2] is introduced to perform casting based on an asserted equal-

ity. The typing rule forcast is as follows:

Γ ⊢ e1 : EQ τ t1 t2 Γ ⊢ T : τ → ∗1 Γ ⊢ e2 : (T t1)

Γ ⊢ cast[e1, T, e2] : (T t2)
CAST

Thecast expression takes three arguments: the first is the proof of equality between two valuest1 and

t2 of typeτ ; the second is a functionT that compute a type∗1 dependent on aτ value. Finally, it takes an

expression of(T t1) and converts it to an expression of type(T t2).

Operationally, the expressionassert e 1=e2 evaluates its two subexpressions and compares them for

equality. If they are indeed equal, computation proceeds. If, however, the two values are not equal, the pro-

gram raises an exception and terminates. Note that this forces us to useassert only over types of values

thatcanbe compared for equality at runtime. This would include integers, strings, various (ground) data-

types, but exclude functions, along the lines of automatically derivedequality typesin Standard ML [80].

The cast construct makes sure that its equality judgment introducedby assert is strictly evaluated

(resulting either in an equality proof or in runtime error),and if the equality check succeeds, acts simply as

an identity on the second argumente2.

The assert/cast is intended primarily to serve as a convenient programming shortcut and relieve

the user from the effort of explicitly constructing equality proofs. It has no analog in type theory. The

programmer need not use it: one can always use theEQ-like encoding of equality and construct equality

proofs by examining the terms involved inductively.

We examine the functiontypeCheck in some detail:

fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t)) =

case s of

. . . . . . . . .

1. Constant case.We start with an integer constant expressionEI n . We know that the resultingL0

judgment has the (L0) typeNatT . Thus, we build a dependent sum “package,”[t=NatT](JN e n) ,
which has the (Meta-D) type[t:Typ](J(e,s,t)) :

fun typeCheck (e:Env) (s:Exp) : ([t:Typ]J(e,s,t)) =

case s of

EI n → [t = NatT](JN e n)

2. Variable case. Following the usual pattern, we will use an auxiliary function tcVar to construct

the proof a variable judgment, which can then be plugged intothe proof for the variable-expression

judgment.
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fun tcVar (e:Env) (n:Nat) : ([t:Typ](JV (e,n,t))) =

case n of

Z→ (case e of ExtE e’ t’ → [t=t’]( VZ e’ t’))

| S n’ → (case e of ExtE e’ t 2 →

case (tcVar e’ n’) of

[rx:Typ]j2 → [t=rx]( JW e2 rx t2 n’ j2))

3. Abstraction case. The expressions is of the form( EL targ s2) , where theL0 type targ

is the type of the function’s argument, and theL0 expressions2 is the body of theλ-abstraction.

Type checking proceeds by first extending the type assignment e with theL0 type of the function’s

argument, and computing the proof for the abstraction bodys2 in the extended type assignment.

The recursive call totypeCheck returns a dependent sum[rt:Typ]j . The variablert is bound

to theL0 type of the abstraction expression’s body. The variablej , which has the (Meta-D) type

J(Ext e targ, s2, targ) , is bound to the corresponding proof of the typing judgment for

the abstraction body computed by the recursive call totypeCheck . Finally, the type for theλ-

abstraction is returned as(ArrowT targ rt) , and combined with the abstraction judgment proof

(JL e targ rt s2 j) :

fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t)) =

case s of

EL targ s2 →

let [rt:Typ]j = (typeCheck ( ExtE e targ) s2)

in [t= ArrowT targ rt]( JL e targ rt s2 j)

4. Application case. Starting with theL0 application( EA s1 s2) , we first compute the judgment

proof and type for each of the sub-expressionss1 ands2. Next, we check that the (L0) type index

rt 1 computed for the expressions1 is indeed an arrow type with domaintdom and codomain

tcod .

In order to build proof of the typing judgment for the entire application expression, we must ensure

that the type index of the judgment for the argument expressions2 must be equal totdom . To this

end, we usecast to convert the judgment (j 2 : J(e,s 2,rt 2) ) to J(e,s 2,tdom) which

is the type we need to construct the proof of the judgment for the entire application expression.

fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t)) =

case s of

EA s1 s2 →

let [rt 1 :Typ]j 1 = (typeCheck e s 1)

[rt 2:Typ]j 2 = (typeCheck e s 2)

in case rt 1 of

ArrowT tdom tcod →

[t=tcod](JA e s 1 s2 tdom tcod j 1
(cast [assert rt 2=tdom, fn (t:Typ) → J(e,s,t), j 2 ]))
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2.6 Representation Types

Another practical concern is that types that depend on values can lead to either undecidable or unsound type

checking in the meta-language. This happens when values contain diverging or side-effecting computations.

In this section we discuss how both of these concerns can be addressed in the context of Meta-D. Combining

effects with dependent types requires care. For example, the typeCheck function is partial, because there

are many input terms which are just not well typed inL0. Such inputs totypeCheck would cause runtime

pattern match failures, or an equality assertion exception. We would like Meta-D to continue to have side-

effects such as non-termination and exceptions. At the sametime, dependently typed languages perform

computations during type checking (to determine the equality of types). If we allow effectful computations

to leak into the computations that are done during type checking, then we risk non-termination, or even

unsoundness, at type-checking time. Furthermore, it is in general desirable to preserve the notion ofphase

distinctionbetween compile time and runtime [17], where static (type-checking) computation and dynamic

computation (program execution) are as clearly separated as possible.

The basic approach we adopt to dealing with this problem is toallow types to only depend on other types,

and not values. But, disallowing all dependencies of types on values would not allow us to express any of

the evaluation or type checking functions for the implementation ofL0, since all of their types depend to

some degree on the value of its argument.

A standard solution to restoring some of the expressivenessof dependent types is to introduce a mech-

anism that allows only a limited kind of dependency between values and types. This limited dependency

uses so-called singleton or representation types [58, 148,25, 26, 140]. The basic idea is to allow types to

depend not on arbitrary expressions, but rather, just the values of runtime computations. This is achieved

by a two-fold mechanism:

1. The language of types and kinds is sufficiently enriched toallow for defining a representation of

values at type level: the type language becomes in effect a powerful, butpure dependently typed

language.

The idea is that this type language contains not onlytypesof runtime values, but also a logic that can

be used to describe their properties. This is done by the standard “propositions-as-types” idea, except

that everything is lifted one level up: properties of types are represented as (inductive)kinds, while

proofs of those properties are lifted to the level of types. Aspecial (inductive) kind is reserved to

represent types that classify runtime expressions.

2. A runtime, orcomputationallanguage is introduced “below” the pure type language [116]. More

importantly, values in the computational language are typed uniquely by their counterparts in the
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type language. In MetaD, we shall use the built-in typeR to write such singleton types.

For example, the type of the runtime value1 is written as thetype (R 1) , where1 is a typeof

kind Int . The value1 in the runtime language is the only member of such a type (hence the name

singleton). When types are given to the functions at the computational level, their behavior must be

modeled at type level as well.

For example, the runtime function that adds 1 to an integer has the following type:

addOne : (n : Nat)(R n) -> (R (succ n))

2.6.1 Working with Representation Types

Now, we can rewrite our (pre-MetaD) interpreter so that its type does not depend on runtime values, which

may introduce effects into the type-checking phase. Any computation in the type checking phase can now

be guaranteed to be completely effect-free. The run-time values are now forced to have representation types

that reflect, in the world of values, the values of inductive kinds.

Meta-D provides the programmer with the interface to representation types through two main mecha-

nisms:

1. A special type constructR is used to express representation type dependency.

For example, we can define an inductivekindNat

inductive Nat : *2 = Z : Nat | S : Nat →Nat

Note that this definition is exactly the same as the one we had for the typeNat , except it is now

classified by*2 instead of*1 . Elements ofNat are nowtypesZ, (S Z) , (S (S Z)) , and so on.

The type constructR takes an element of an inductively defined kind such asNat , and forms a type

R(S Z) : *1 . The typeR (S Z) refers to a type that has a unique inhabitant that is the runtime

representation of the number 1.

2. We write the unique value inhabiting the type(R (S Z)) as (rep (S Z)) . In other words:

(rep (S Z)) : R (S Z) .

If one is to be able to analyze, at runtime, the elements of a representation typeR n, an elimination

construct is required. In particular, this is done by a form of case analysis on types [55, 25, 147, 114,

26]:

tycase x by y of Cn xn→en
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A pattern(C n xn) matches against a valuex of typeK, whereK is some inductive kind, only if we

have provided a representation valuey of typeR(x) .

A pattern(C n xn) matches against a representation typex , of inductivekind K. However, since

we cannot allow computation at runtime to depend on types (which are available statically), we must

also supply a runtime representation of the typex (i.e., a value of typeR(x) .

Inside the body of the case (en), the expressionrep x n provides a representation value for the part

of the inductive constructor thatxn is bound to.

Let us consider a simple example. We well define inductively an addition function that adds two

(singleton) naturals together. First note, however, that in order to give a type to this function, we must

produce an addition functionat the level of types(the functionplus’ ). This is done using primitive

recursion or, as in the example below, a special syntactic sugar for catamorphisms6:

plus’ (m:Nat) (n:Nat) : Nat =

cata m : Nat of

Z→n

| S m’ →S m’

fun plus : (m:Nat) (m’:R (m)) (n:Nat) (n’:R (n)) : R (plus’ m n) =

tycase m by m’ of

Z→n’

| S p → (rep (S)) (plus p (rep p) n n’)

2.6.2 Tagless Interpreter with Representation Types

Figure 2.8 presents the implementation with representation types. Introducing this restriction on the type

system requires us to turn the definition ofExp, Env, andTyp into definitions of kinds (again this is just a

change of one character in each definition):

1 type nat = [n:Nat](R (n))

2 inductive Nat : *2 = Z : Nat | S : (Nat →Nat)

4 inductive Typ : *2 = ArrowT : Typ →Typ→Typ | NatT : Typ

6 inductive Exp : *2 = EI : Nat →Exp | EV : Nat →Exp

7 | EL : Typ →Exp→Exp | EA : Exp →Exp→Exp

9 inductive Env : *2 = EmptyE : Env | ExtE : Env →Typ→Env

6A more general primitive recursion scheme can be implemented as in, for example, Coq [6]
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Because these terms are now kinds, we cannot use general recursion in defining their interpretation.

Therefore, we use special primitive recursion (and catamorphism) constructs provided by the type language

to define these interpretations:7

10 fun typEval (t:Typ) → *1 =

11 cata t:Typ of

12 NatT→ nat

13 | ( ArrT t 1 t 2) → (t 1→ t 2)

15 fun envEval (e:Env) : *1 =

16 cata e:Env of

17 EmptyE→ unit

18 ExtE et t → (et,t)

Judgments, however, remain a type, of kind*1 . The reason for this is that typing judgments are usedat

runtimeby the interpreter. It is important to note, however, that now judgments are a type indexed by other

types, not a dependent family indexed by values.

For the most part, the definition of judgments and the interpretation function do not change. We need to

change judgments in the case of natural numbers by augmenting them with a representation for the value

of that number. The constructorJN now becomes

19 JN : (e1 : Env) → (n : Nat) → (R n) → J(e1,EI n,NatT)

and the definition ofeval is changed accordingly. First, we define an auxiliary function mknat which

converts aR(n) for someNat n into the typenat which corresponds to the type to which object-language

integer expressions are mapped. This function is then used to construct an appropriate value for theJN case:

20 fun mknat (n : Nat) (rn : R(n)) : nat =

21 tycase n by rn of

22 Z→ [n=zero](rep zero)

23 | S n2→

24 case (mknat n2 (rep n2)) of

25 [n2’:Nat]rn2’ → [n=(S n2’)](rep(S) rn2’)

27 fun eval (e : Env) (rho: envEval e) (s : Exp) (t : Typ)

28 (j : J(e,s,t)) : (typEval t) =

7These constructs are similar to primitive recursive schemata that the Coq theorem prover derives for inductively defined type
families – this technique can be readily reused in Meta-D. Alternatively, the functions can be defined using recursion, and a termination
check (as, for example, in Alfa [52]) conducted before the functions are admitted by the system. The latter is currently the case,
although our implementation of the termination check is, atthis time, based on a rather simple syntactic criterion.
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29 case j of

30 JN e1 n1 rn1 →mknat n1 rn1

31 . . . . . . . . .

Note that even though modifiedeval uses a helper function (mknat ) to convert a representation of a

natural type to a natural number, in practice, we see no fundamental reason to distinguish the two. Iden-

tifying them, however, requires the addition of some special support for syntactic sugar for this particular

representation type.

The remainder of the functioneval , together with other parts of the implementation using representation

types is given in Figure 2.8. It may be surprising to note thatother than the changes mentioned above, there

are no further modification to the text of the programs that needs to be made to the ones presented in the

pure non-representation type setting.

2.6.3 typeCheck with Representation Types

The full definition oftypeCheck is given at the bottom of Figure 2.8.

Let us first examine the type signature of the new version oftypeCheck .

1 fun typeCheck (e : Env) (re: R(e))

2 (s : Exp) (rs: R(s)) : ([t : Typ] (R(t),J(e,s,t))) = . . .

Three things are worth noting:

1. The function still returns a sum result consisting of an object language type and a proof of the judg-

ment that the argument expression has that type. However, becauseTyp has been promoted to an

inductivekind, the sum returned is more like an existential type than a dependently typed strong sum.

In Meta-D notation, both are written the same way.

2. Note also, that the result, in addition to the proof of the judgment, contains a runtime representa-

tion of the object-language type,R(t) , wheret is the resulting object-language type. This is nec-

essary in order to compare the object-language types returned by different recursive invocations of

typeCheck since thetycase construct requires both at and aR(t) to compare types at runtime.

3. Similarly, the arguments totypeCheck are not onlyEnvs andExps , but their respective represen-

tations. Again, this is necessary because of thetycase construct cannot examine the structure of

the argument expressions or type assignments without theirruntime representation.
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2.7 Conclusion

In this chapter we have shown how a dependently typed programming language can be used to express

a staged interpreter that completely circumvents the need for runtime tagging and untagging operations

associated with universal datatypes. In doing so we have highlighted two key practical issues that arise

when trying to develop staged interpreters in a dependentlytyped language. First, the need for functions

that construct the proofs of typing judgments that the interpretation functionshouldbe defined over. And

second, the need for representation types to avoid polluting the type language with the impure terms of the

computational language.

To demonstrate that staging constructs and dependent typescan be safely combined, in the next chapter

we shall formally develop a multi-stage computational language typed by Shao, Saha, Trifonov, and Pa-

paspyrou’s TL system [116]. This allows us to prove type safety in a fairly straightforward manner, and

without having to duplicate the work done for the TL system.

A practical concern about using dependent types for writinginterpreters is that such systems do not have

decidable typeinference, which some view as a highly-valued feature for any typed language.

In terms of programming, we have first started with aCoq implementation of a tagless interpreter. Next,

we explored a dependently type programming language. We were guided by the idea of designing the

meta-language that would be more accessible to a programmerthan to a logician. We did not find that the

explicit type annotations and new constructs were an excessive burden, and some simple tricks in the im-

plementation of the meta-language could be enough to avoid the need for many such redundant annotations.

However, representation types do seem to complicate our programs somewhat.

In later chapters, we shall explore how much of the style of the tagless interpreter implementation could

be implemented in a more main-stream setting of Haskell.
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inductive nat : *1 = zero : nat | succ : (nat → nat)
inductive Nat : *2 = Z : Nat | S : (Nat →Nat)

inductive Typ : *2 = ArrowT : Typ →Typ →Typ | NatT : Typ

inductive Exp : *2 = EI : Nat →Exp | EV : Nat →Exp
| EL : Typ →Exp →Exp | EA : Exp →Exp →Exp

inductive Env : *2 = EmptyE : Env | ExtE : Env →Typ →Env

inductive J : (Env, Exp, Typ) → *1 =
JN :(e1 : Env) → (n:Nat) → (rn : R n) → J(e1,EI n,NatT)

| JV :(e1 : Env) → (t1:Typ) → J(ExtE e1 t1,EV Z,t1)
| JW :(e1 : Env) → (t1 : Typ) → (t2 : Typ) → (i : Nat) →

J(e1,EV i,t1) → J(ExtE e1 t2,EV (S i), t1)
| JL :(e1 : Env) → (t1 : Typ) → (t2 : Typ) → (s2 : Exp) →

J(ExtE e1 t1,s2,t2) → J(e1,EL t1 s2,ArrowT t1 t2)
| JA :(e : Env) → (s1 : Exp) → (s2 : Exp) → (t1 : Typ) → (t2 : Typ) →

J(e,s1,ArrowT t1 t2) → J(e,s2,t1) → J(e,EA s1 s2,t2)

val typEval : Typ → *1 =
cata Typ nat (fn c : *1 → fn d : *1 → (c →d))

val envEval : Env → *1 =
cata Env unit (fn r : *1 → fn t : *1 → (r,t))

fun cast (n : Nat) (rn : R(n)) : nat = tycase n by rn of Z→ zero
| S n2 → succ (cast n2 (rep n2))

fun eval (e : Env) (rho: envEval e) (s : Exp) (t : Typ) (j : J(e,s,t)) : (typEval t) =
case j of
JN e1 n1 rn1 → cast n1 rn1

| JV e1 t1 → #2(rho)
| JW e1 t1 t2 i j1 → eval e1 (#1(rho)) (EV i) t1 j1
| JL ee1 et1 et2 es2 ej1 → fn v:(typEval et1) → (eval (ExtE ee1 et1) (rho,v) es2 et2 ej1)
| JA e s1 s2 t1 t2 j1 j2 → (eval e rho s1 (ArrowT t1 t2) j1) (eval e rho s2 t1 j2)

fun typeCheck (e : Env) (re: R(e)) (s : Exp) (rs: R(s)) : ([t : Typ] ( R(t),J(e,s,t))) =
tycase s by rs of

EI n → [t = NatT] (NatT’,(JN e n (rep n)))
| EV n →

(tycase n by (rep n) of Z→ (tycase e by re of ExtE ee t2 → [t = t2](rep t2, JV ee t2))
| S n → (tycase e by re of ExtE (e2) (t2) →

((fn x : ([t:Typ] (R(t), J(e2,EV n,t))) →
case x of [rx : Typ]j2 → ([t = rx]

(#1 j2, JW e2 rx t2 n (#2 j2)))
(typeCheck e2 (rep e2) (EV n) (rep (EV n)))))))

| EL targ s2 →
((fn x : ([t : Typ](R(t),(J(ExtE e targ,s2,t)))) =>

case x of [t : Typ] j2 →
[t = ArrowT targ t] (rep (ArrowT targ (#1 t))), (JL e targ t s2 (#2 j2)) )

(typeCheck (ExtE e targ) (rep (ExtE e targ)) s2 (rep s2)))
| EA s1 s2 →

((fn x1 : [t1 : Typ](R(t1),(J(e,s1,t1))) → (fn x2 : [t2 : Typ](R(t2),(J(e,s2,t2))) →
case x1 of [t1 : Typ]j1 → case x2 of [t2 : Typ]j2 →

(tycase t1 by (#1 (j1)) of
ArrowT tdom tcod →

[t = tcod] (rep tcod, (JA e s1 s2 tdom tcod j1
(cast [assert t2=tdom,J(e,s,tdom),j2]))) end)))

(typeCheck e (rep e) s1 (rep s1)) (typeCheck e (rep e) s2 (rep s2)))

Figure 2.8: Tagless interpreter with representation typesin MetaD



Chapter 3

Staging and Dependent Types: Technical

Results

3.1 Introduction

This chapter1 is intended as a technical prolegomenon to the exploration of meta-theoretic properties of

the meta-language MetaD used in the previous chapter. In particular, we are concerned with type safety

properties meta-languages such as the language Meta-D. Theresult we report here is type safety for a

formalized core subset of Meta-D. This result shows that multi-stage programming constructs can be safely

used, even when integrated with a sophisticated dependent type system such as that of TL [116].

Let us first explain what is meant by “a formalized core subsetof Meta-D.” Formalizing a rather large

programming language in which our examples in Chapter 2 havebeen written seems somewhat impractical:

many details would overwhelm our ability to (a) manipulate the formal constructs effectively; and (b) clearly

demonstrate the most essential features that we are trying to study. Thus, we shall cut down the formalism

to its bare essentials, illustrating the following points:

1. The meta-language we present includes singleton (representation) types. Instead of general inductive

family definitions, the language has a couple of “built-in” singleton types such as natural numbers

and booleans. Later, we shall expound on how the formal treatment can be extended to more complex

data-types.

2. The meta-language is designed to supportstagingwith code-brackets and escape. With this we intend

to show that staging can safely interact with other featuresunder consideration.

3. We shall formalize theassert/cast expressions used in Chapter 2.6 and show that they, too, can

be integrated into a meta-language in a type-safe way.

1This chapter is based on previously published material [102, 103].
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Another interesting feature of the presentation is the use of the TL [116] framework in our formal devel-

opment. Essentially, the idea is to obtain a powerful type system for the programming language by simply

reusing a general theoretical framework for such languagesdeveloped by Shaoet al as a part of the FLINT

project. This allows us to reuse many of their technical results without having to prove them from scratch.

3.2 The LanguageλH©

In this section we will define and discuss the languageλH©
2 which is a formalization of the ideas described

above. First, we review some of the properties and definitionof the TL framework which is used to define

λH©. Second, we define the syntax and static semantics of the language. Third, we define a small-step

semantics ofλH©, and, finally, prove the type safety ofλH©.

3.2.1 Review: TL

TL is a general framework intended for designing sophisticated typed intermediate languages for compil-

ers [116]. The basic architecture of the system is as follows:

1. Different computational languagescan be defined. These are typed programming languages or

calculi intended for writing executable programs. As such,they can have effects such as non-

termination, state and so on. However, the types for these computational languages are provided

by the commontype languageTL. Several computational languages are presented by Shaoet al. In

this chapter we implement our own computational language with the features enumerated above.

2. The type language TL is a typed specification language in the spirit of the Calculus of Inductive

Constructions. This language supports dependent types, higher-order kinds and inductive families. It

is intended for two purposes:

(a) To describe the behaviors of computational/runtimeprograms in a pure, logical way, to represent

logical properties of these programs and encode the proofs of these properties in a type-theoretic

way.

(b) A set of the computational language types is defined as an inductive kind in TL. Many different

computational languages share TL as their type/specification language. The advantages of this

are again twofold:

2A brief note on the nameλH©: λH© (pronunced “lambda H-circle”) is derived from the name of the calculusλH , of uncertain
provenance defined by Shaoet al. [116] The circle has been appended to the name to indicate the addition of staging constructs, similar
to Davies’ naming of the calculusλ©[29]).
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i. Many computational languages can be put together into a single meta-theoretical frame-

work, where translation between them can be expressed and studied. In particular trans-

formations from one language into another can be written in away that, in some clearly

defined sense, preserves (or transforms) types between them[116].

ii. TL promotes reuse in defining and proving properties about computational language, since

meta-theoretical properties of TL are established once andfor all. Such properties include

“subject reduction, strong normalization, Church-Rosser(and confluence), and consistency

of the underlying logic” [116].

The definitions and basic properties of TL that we reuse here are available in the Shaoet al technical

report [115]. Using the TL framework, we can arrive at an advantageous division of labor. In this chapter,

we formally define and prove properties of a new computational language (1), while most theoretical work

for the type language (2) can be simply reused from existing literature.

3.2.2 The languageλH©

We follow the same approach used by the developers of TL, and build a computation languageλH© that

uses TL as its type language. Integrating our formalizationinto the TL framework gives us significant

practical advantages in formal development ofλH©:

1. Important meta-theoretic properties of the type language we use, TL, have already been proved [116].

Since we do not change anything about the type language itself, all these results (e.g., the Church-

Rosser property of the type language, decidable equality ontype terms) are easily reused in our

proofs.

2. λH© is based on the computational languageλH [116]. We have tried to make the difference between

these two languages as small as possible (essentially, justthe addition of staging constructs). As a

result, the proof of type safety ofλH© is very similar to the type safety proof forλH . Again, we

were able to reuse certain lemmata and techniques developedby Shao and others forλH in our own

proof.

The Syntax and Static Semantics ofλH©

Figure 3.1 definesλH© computational types, and is the first step needed to integrate λH© into the TL

framework. The set of types for the computational language is simply the inductive TLkindΩ©, which is

comprised of the following:
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inductive Nat : Kind ::= 0, 1, 2, . . .
inductive Bool : Kind ::= true | false
inductive Ω© : Kind ::= snat : Nat→ Ω©

| sbool : Bool→ Ω©

| _ : Ω© → Ω© → Ω©

| tup : Nat→ (Nat→ Ω©)→ Ω©

| ∀k : Πk : Kind.(k → Ω©)→ Ω©

| ∃k : Πk : Kind.(k → Ω©)→ Ω©

| ∀KS : Πk : KScheme.(k → Ω©)→ Ω©

| ∃KS : Πk : KScheme.(k → Ω©)→ Ω©

| © : Ω© → Ω©

| EQ : Nat→ Nat→ Ω©

Natural number operators

⊕ : Nat→ Nat→ Nat
⊕ ∈ {+,−,×, . . .}
⊚ : Nat→ Nat→ Bool
⊚ ∈ {≤,≥, =, . . .}

Figure 3.1: The TL definition of the types ofλH©

1. Singleton typessbool andsint. These types illustrate the central concept in the type system of λH©.

They take an argument of the TL inductive kindNat (or Bool) a λH© type (of the inductive kind

Ω©) that classifiesindividual natural number (or boolean) valuesin the computational language.

We shall write a hat̂· over natural number literals in the computational languagewhere necessary to

disambiguate between them and TL natural numbers of kindNat. For example, an integer constant

ˆ100 in the computational language has the type(snat 100). Similarly, theλH© expression̂1+̂1̂ has

the type(snat 1 + 1) which is equal (in TL) to the type(snat 2).

2. Arrow types. These are simply the types of functions inλH©. For example, the computational-

language addition operator has the following arrow type foranym, n : Nat:

+̂ : (snat m) _ (snat n) _ (snat (m + n))

3. Tuple types.Tuple types are represented by two pieces of information: first, the natural number

argument representing the size of the tuple, and, second, a function that, given a natural numberi,

returns theλH© type of thei-th component of the tuple. For example, the pair typeA×B would be

represented by

(tup 2 (λn.case n of 0→ A | 1→ B | → ∀α.α))

.
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4. Universal and existential types.Universal and existential types are essential inλH©. They can

quantify over TL inductive kinds, such asnat, including the kindΩ© itself.

We use the syntactic following syntactic sugar for writing universals and existentials , omitting the

sorts where it is clear from the context:

∀s X : A. B ≡ ∀s A (λX : A. B)

∃s X : A.B ≡ ∃s A (λX : A.B)

A brief note on terminology: the sortKind is a (in TL terminology)kind schema, which classifies

kinds. The sortKScheme is a singleton sort that classifies kind schemas. The reason for this termi-

nology is that in TL all levels are lifted up by one: types playthe role of programs/proofs, kinds play

the role of types/propositions, and kind schemas play the role of kinds.

The universal quantifier allows us to form types that are polymorphic insingleton values, such as

the type(∀X : Nat. (snat X) → (snat X)), which is the type of the identity function over natural

number values inλH©. It also allows us to use a standard notion of polymorphism. For example, the

type(∀X : Ω©.X → X) is the type of the polymorphic identity function inλH©.

Existential quantifiers are very important as well. Recalling that inλH© each natural number has a

different type, we can use existential types to represent the more usual type ofall natural numbers.

For example, the following definition is such a type of all natural numbers:

CompNat : Ω© ≡ ∃n : Nat. snat n

. Similarly, we can “lift” the addition operation to work on theCompNat type as follows:

plus : CompNat _ CompNat _ CompNat

plus = λx : CompNat. λy : CompNat.

open x as M, m in open y as N, n in ([r = M + N, m+̂n : (snat r)])

The functionplus works by first opening its arguments, adding them, and packing them up into a

new existential package. Note that two addition operationsare used: one at the type level(+) and

one and the computational level(+̂).

5. Code type.Code type is the type of (homogeneous) object program. It is modeled on the circle

modality of Davies [29]. Intuitively the type(©(snat 1)) is the type of computational language

program that, when executed, would yield the result 1.

6. Equality type.We will also add an equality type over natural numbers toΩ©. Intuitively EQ m n

is a type of proofs thatm equalsn. We use these types to type theassert/cast constructs in the

computational language.
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Level-indexed syntax. The syntax of the computational languageλH© is given in Figure 3.2. Instead of

a single inductive set of expressions, we give a family of sets of expressions. This family is indexed by a

natural number representing thelevelof the expression. A set of values is defined similarly. This technique

of presenting syntax of staged language, calledlevel-indexed families[29, 128] has become a standard tool

for defining reduction (and small-step) semantics of stagedlanguages. Intuitively, the level-indexed families

are designed to prevent certain unsafe operations. The family E0 is defined to exclude top-level escapes,

for example. Thus, the reductions such asβ are restricted only toE0 expressions; code operations such as

escapescan be performed only onE1 expressions. Without these restrictions, the reduction semantics of

staged languages is unsound [129].

The languageλH© contains recursion and staging constructs. It contains twopredefined representation

types: naturals and booleans. Theif construct, as inλH [116], provides for propagating proof information

into branches (analogous to thetycase construct of MetaD); full implementation of inductive datatypes

in the style of MetaD is left for future work. Since arbitrarydependent types are prohibited inλH©, we use

universal and existential quantification to express dependencies of values on types and kinds. For example,

the identity function on naturals is expressed inλH© as follows:

(Λn : Nat. λx : (snatn).x) : ∀n : Nat. (snatn)→ snatn

In λH©, we also formalize theassert/cast construct, which requires extending the language of

computational types with equality judgment types. Similarly, we add the appropriate constructs to the

syntax ofλH©.

Remark 1 (Level-indexed syntactic families) 1. ∀n ∈ N.En ⊆ En+1.

2. ∀n ∈ N.n ≥ 1⇒ V n = En−1.

PROOF. Proof of (1) is constructed easily by induction on the judgment e ∈ En. Similarly for (2).�

Typing Judgments. The typing judgment ofλH© (Figure 3.4) has the form∆; Γ ⊢n e : A. It has two

type assignments

1. ∆ ∈ Sequence (X × N× A) is a type assignment that maps TL type variables to TL expressions.

Also, each mapping carries a natural number indicating thelevelat which the variable is bound. A

level-annotation erasure function (· |n) is used to convertλH© typing assignments∆ into a form

required by the typing judgment of TL[116]. This interface then allows us to reuse the original TL

typing judgment in the definition of the typing judgment forλH©.
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X ≡ type variables of TL
A ≡ type expressions of TL
W ≡ variables ofλH©

exp0 ∈ E0 ::= x | n | tt | ff | f0 | fix x : A.f0 | e0
1 e0

1 | e
0[A] | ([X = A1, e

0 : A2])
| open e0 as X, x in e0 | (e0

0, . . . e
0
n−1) | sel [A](e0

1, e
0
2) | e

0
1 ⊕ e0

2

| if [A1, A2](e
0, X1.e

0
1, X2.e

0
2) | 〈e

1〉
| assert e0

1 : A1 = e0
2 : A2 | cast (e0

1, A, e0
2)

fn ::= ΛX : A.en | λx : A.en

expn+ ∈ En+ ::= x | m | tt | ff | fn+ | fix x : A.fn+1 | en+ en+ | en+ [A]
| ([X = A1, e

n+ : A2]) | open en+ as X, x in en+

| (en+
0 , . . . , en+1

m−1) | sel [A](en+
1 , en+

2 ) | en+
1 ⊕ en+

2 | 〈en++〉 | ˜en

| if [A1, A2](e
n+, X1.e

n+
1 , X2.e

n+
2 )

| assert e+
1 : A1 = e+

2 : A2 | cast (e+
1 , A, e+

2 )
v0 ∈ V 0 ::= n | tt | ff | f0 | fix x : A.f0 | ([X = A1, v

0 : A2]) | (v
0
1 , . . . , v0

m−1) | 〈v
1〉

| assert v0 : A = v0 : B
v1 ∈ V 1 ::= x | n | tt | ff | fv1 | fix x : A.fv1 | v

1 v1 | v1[A] | ([X = A1, v
1 : A2])

| open v1 as X, x in v1 | (v1
0 , . . . , v

1
m−1) | sel [A1](v

1, n1)
| v1 ⊕ v1 | if [A1, A2](v

1, X1.v
1
1 , X2.v

1
2) | 〈v

2〉
vn+2 ∈ V n+2 ::= x | m | tt | ff | fv1 | fix x : A.fv1 | v

n+2 vn+2 | vn+1[A] | ([X = A1, v
n+2 : A2])

| open vn+2 as X, x in vn+2 | (vn+2
0 , . . . , vn+2

m−1) | sel [A](vn+2, nn+2)
| vn+2 ⊕ vn+2 | if [A1, A2](v

n+2, X1.v
n+2
1 , X2.v

n+2
2 ) | 〈vn+3〉 | ˜vn+1

fvn ::= λx : A.vn | ΛX : A.fvn

Figure 3.2: Stratified syntax ofλH©

2. Γ ∈ Sequence (W × N × A) is a type assignment that mapsλH©variables to their types. Again,

each mapping is annotated by the natural number representing the level at which the variable is bound.

Intuitively, a type assignmentΓ is well-formed (written∆ ⊢n Γ) if for each(x, n, A) ∈ Γ, we have

∆|n ⊢ A : Ω©.

The type judgments are indexed by a natural number representing the level at which the typing is per-

formed. When typing an expression surrounded by the code brackets, this number is incremented; similarly,

when typing an escaped expression, the number is decremented.

In what follows we shall examine the syntax ofλH© terms from Figure 3.2. We will introduce each

kind of term, and present its typing rule. First, note that there are two sets of object-level variables used in

Figures 3.2 and 3.4:

1. A setX type variables. This set ranges over TL types. Individual variables are written asX, Y, . . ..

These are basically type variables in the System F and other polymorphicλ-calculi.

2. A setW of λH©variables,x, y, . . . that range overλH© values.

Also, we will use meta-variableA, B, . . . to range over type expressions (i.e., expressions of TL).
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1. Variable expressions:e ::= x | · · · . The typing rule for variables is a rather standard combination

of features ofλH [116] enriched by the MetaML-style level annotations. Thisparticular formulation

supports cross-stage persistence by stating that the declaration levelm of a variable’s use need not

be exactly the same as that of its use,n: a variable declared at an earlier stage can be used at a later

stage. Changing the≤ into = would give a system without cross-stage persistence similar to that of

λ© [29], and would not fundamentally change our results.

∆ ⊢n Γ (x : Am) ∈ Γ m ≤ n

∆; Γ ⊢n x : A
Var

2. Constants:e ::= n | tt | ff | · · · . The standard natural number constants, as well as Boolean constants

are included in the language. Their typing rules are interesting: a Boolean or an integer constant has

asbool (or sint) type directly describing it:

∆ ⊢n Γ m ∈ {0, 1, 2, · · · }

∆; Γ ⊢n m : (snat m)
NatConst

∆ ⊢n Γ

∆; Γ ⊢n tt : (sbool True)
BoolTrue

∆ ⊢n Γ

∆; Γ ⊢n ff : (sbool False)
BoolFalse

3. Function and universal abstractions:

e ::= f | e e | e1 e2 | e [A] | · · ·

f ::= ΛX : A.e | λx : A.e

Functions bindλH©variables, while type abstractions bind TL variables. There are, symmetrically,

two application forms, one for functions, and the other for type abstractions.

Unlike simply typedλ-calculus, these rules have some important side conditions:

• The λ-abstraction rule has a requirement that the explicit typeA1 given to the variable is an

Ω©type. This is done by invoking the typing judgment of TL:∆|n⊢ A1 : Ω©.

• In the typing rule for the type abstraction, the type annotation is required to be of one of the

sortsof TL: ∆|n⊢ B : s. The same condition is imposed by type application as well.

• Note that the type variable environment restriction∆|n is used to convert the type environment

∆ into a form that the typing judgment of TL can accept.

∆|n⊢ A1 : Ω© ∆; Γ, x : An
1 ⊢

n e : A2

∆; Γ ⊢n (λx : A1.e) : A1 _ A2
Abs

∆; Γ ⊢n e1 : A1 _ A2

∆; Γ ⊢n e2 : A1

∆; Γ ⊢n e1 e2 : A2
App
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∆|n⊢ B : s

∆, X : Bn; Γ ⊢n f : A

(ΛX : B. f) : ∀sX : B. A
TAbs

∆|n⊢ A : B

∆, Γ ⊢n e : ∀sX : B.A2

∆; Γ ⊢n e[A] : A2[X := A]
TApp

4. Existential expressions. Existential types are createdusing a([X = A1, e : A2]) expressions with

create an object of type∃X.A2. The corresponding elimination construct isopen e1 as X, x in e2

which deconstructs existential objects.

e ::= ([X = A1, e : A2]) | open e1 as X, x in e2 | · · ·

Typing rules for existential types are given below. Note that the same side conditions apply as for

universal quantification.

∆|n⊢ A1 : B

∆|n⊢ B : s

∆; Γ ⊢n e : A[X := A1]

∆; Γ ⊢n ([X = A1, e : A]) : ∃sX : B.A
Pack

∆, Γ ⊢n e : ∃sX
′ : B.A1

∆|n⊢ A2 : Ω©

∆, X : Bn; Γ, x : An
1 [X ′ := X ] ⊢n e2 : A2

∆; Γ ⊢n (open e1 as X, x in e2) : A2
Unpack

5. Fixpoint definitions

e ::= fix x : A.f | · · ·

The fixpoint construct allows for recursive definitions. Thebody offix is syntactically restricted to

function or type abstraction, since the language is intended to be call-by-value.

∆|n⊢ A : Ω©

∆; Γ, x : An ⊢n f : A

∆; Γ ⊢n (fix x : A.f) : A
Fix

6. Tuples. The tuple formation expression is the fairly standard(e0, . . . , en).

e ::= (e0, . . . , en) | sel [A](e1, e2) | · · ·

0 ≤ i < m.∆; Γ ⊢n ei : Ai

∆; Γ ⊢n (e0, . . . , em−1) : tup m (nth [A0, . . . , Am−1])
Tuple

The elimination construct is a little less standard. It takes three arguments:

1. The typeA, which encodes the proof that the index being projected is less than the size of the tuple.
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2. The tuple expression itself.

3. The index of the element of the tuple we are trying to project

∆; Γ ⊢n e1 : (tup A3 B)

∆; Γ ⊢n e2 : snat A2

∆|n⊢ A : LT A2A3

∆; Γ ⊢n sel [A](e1, e2) : (B A2)
Select

4. Arithmetical expressions. Assorted arithmetical, comparison and other primitive operators are

present wholesale as:

e ::= e1 ⊕ e2 | e1 ⊚ e2 | · · · where ⊕ ∈ {+,−, ∗, . . .},⊚ ∈ {≤,≥, =, . . .}

⊕ : Nat→ Nat→ Nat

∆; Γ ⊢n e1 : snat A1

∆; Γ ⊢n e2 : snat A2

∆; Γ ⊢n (e1⊕̂e2) : (snat (A1 ⊕A2))
Arith

⊚ : Nat→ Nat→ Bool

∆; Γ ⊢n e1 : snat A1

∆; Γ ⊢n e2 : snat A2

∆; Γ ⊢n (e1⊚̂e2) : (sbool (A1 ⊚A2))
Arith2

5. Conditional expressions.

e ::= if [A1, A2](e, X1.e1, X2.e2) | · · ·

The conditionals are again rather less conventional. In addition to the discriminated boolean expres-

sione, it takes two type argumentsA1 andA2, whereA1 is a proposition over booleans at type level.

The second one is the proof ofA1 A2. In each of the branches of the conditional a type variable is

used to which the proofA1 true (resp.A1 false) is bound and thus available in the body of branch.

∆|n⊢ B : Bool→ Kind ∆|n⊢ A : (B A3)

∆|n⊢ A2 : Ω© ∆; Γ ⊢n e : (sbool A3)

∆, X1 : (B true)n; Γ ⊢n e1 : A2 ∆, X2 : (B false)n; Γ ⊢n e2 : A2

∆; Γ ⊢n (if [B, A](e, X1.e1, X2.e2)) : A2
Cond

6. Explicit staging constructs. Brackets create a piece of code, while escapes splice in a piece of code

into a larger code context:

e ::= 〈e〉 | ˜e | · · ·

∆; Γ ⊢n+1 e : A

∆; Γ ⊢n 〈e〉 :©A
Bracket

∆; Γ ⊢n e :©A

∆; Γ ⊢n+1 ˜e : A
Escape
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7. Finally there are assert/cast constructs that are used toconstruct/discharge equality proofs.

e ::= assert e1 : A = e2 : B | cast (e1, B, e2) | · · ·

∆; Γ ⊢n e1 : snat A1

∆; Γ ⊢n e2 : snat A2

∆; Γ ⊢n assert e1 : A1 = e2 : A2 : (ID A1 A2)
Asrt

∆; Γ ⊢n e : (ID A B)

∆; Γ ⊢n e2 : (snat A)

∆; Γ ⊢n cast (e1, B, e2) : (snat B)
Cast

〈〉|n = 〈〉

∆, X : Am|n =

{

∆|n, X : A m = n

∆|n otherwise

〈〉+ = 〈〉
(Γ, x : An)+ = Γ+, x : An+1

〈〉+ = 〈〉
(∆, X : An)+ = ∆+, X : An+1

Figure 3.3: Typing restriction and type assignment promotion

3.3 Semantics

The semantics we shall consider here is the small step semantics (Definition 2 and Figure 3.5). The small

step semantics depends on the notion of reductions (Definition 1) which relates valid redexes to their re-

spective contractums. The small step semantics is expressed as a level-indexed family of relations between

λH© terms (Definition 2) i.e., it describes the single-step call-by-value evaluation strategy, at a particular

level, with respect to the notions of reduction.

Definition 1 (Reductions) The notions of reduction inλH© are expressed by the relation→ defined in

Figure 3.3.

Definition 2 (Small-step semantics)The small step semantics ofλH© is defined in Figure 3.5 as a rela-

tion
n
7−→ ⊂ En × En. The rule

e0
1 → e0

2

e0
1

0
7−→ e0

2

is intended to omit the reductioñ〈v1〉 → v1, since the

levels are not correct for the redex. Rather, a separate ruleis added to
n
7−→.

In terms of levels, the reduction relations can be divided into three groups:
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∆ ⊢n Γ (x : Am) ∈ Γ m ≤ n

∆;Γ ⊢n x : A

∆ ⊢n Γ OK

∆;Γ ⊢n m : snat m

∆ ⊢n Γ OK

∆;Γ ⊢n tt : sbool True

∆ ⊢n Γ OK

∆, Γ ⊢n ff : sbool False

∆|n⊢ A : Ω©

∆;Γ, x : An ⊢n f : A

∆;Γ ⊢n (fix x : A.f) : A

∆|n⊢ A1 : Ω© ∆; Γ, x : An
1 ⊢n e : A2

∆;Γ ⊢n (λx : A1.e) : A1 _ A2

∆; Γ ⊢n e1 : A1 _ A2

∆; Γ ⊢n e2 : A1

∆;Γ ⊢n e1 e2 : A2

∆|n⊢ B : s

∆, X : Bn; Γ ⊢n f : A

∆;Γ ⊢n (ΛX : B.f) : ∀sX : B.A

∆|n⊢ A : B

∆, Γ ⊢n e : ∀sX : B.A2

∆; Γ ⊢n e[A] : A2[X := A]

∆; Γ ⊢n+1 e : A

∆;Γ ⊢n 〈e〉 : ©A

∆;Γ ⊢n e : ©A

∆;Γ ⊢n+1 ˜e : A

∆; Γ ⊢n e1 : snat A1

∆; Γ ⊢n e2 : snat A2

∆;Γ ⊢n e1 ⊕ e2 : snat (A1⊕̂A2)

∆|n⊢ A : B

∆|n⊢ B : s

∆;Γ ⊢n e : A[X := A1]

∆; Γ ⊢n ([X = A1, e : A]) : ∃sX : B.A

∆, Γ ⊢n e : ∃sX
′ : B.A1

∆|n⊢ A2 : Ω©

∆, X : B; Γ, x : A1[X
′ := X] ⊢n e2 : A2

∆;Γ ⊢n open e1 as X, x in e2 : A2

X 6∈ ∆

∆; Γ ⊢n e1 : tup A3 B

∆; Γ ⊢n e2 : snat A2

∆|n⊢ A : LT A2 A3

∆;Γ ⊢n sel [A](e1, e2) : B A2

∆|n⊢ B : Bool → Kind ∆;Γ ⊢n e : sbool A3

∆|n⊢ A : B A3 ∆, X1 : B true; Γ ⊢ e1 : A2

∆|n⊢ A2 : Ω© ∆, X2 : B false; Γ ⊢ e2 : A2

∆;Γ ⊢n if [B, A](e, X1.e1, X2.e2) : A2

0 ≤ i < m. ∆, Γ ⊢n ei : Ai

∆;Γ ⊢n (e0, . . . , em−1) : tup m̂ (nth [A0, . . . , Am−1])

∆; Γ ⊢n e : A1 A1 = A2 ∆|n⊢ A2 : Ω©

∆; Γ ⊢n e : A2

∆;Γ ⊢n e1 : snatA ∆;Γ ⊢n e2 : snatB

∆;Γ ⊢n assert e1 : A = e2 : B : ID A B

∆;Γ ⊢n e1 : ID A B ∆;Γ ⊢n e2 : snatA

∆; Γ ⊢n cast (e1, B, e2) : snatB

Figure 3.4: Type system ofλH©

1. Most active reduction steps, such as beta and delta reductions, occur at level 0 (
0
7−→). The rule for

bracketed expressions forces the reduction of the expression inside the brackets to be reduced at a

higher level:
e1

n+1
7−→ e2

〈e1〉
n
7−→ 〈e2〉

.

2. At level 1 (
1
7−→), escapes are performed:

˜v1 1
7−→ v1

.

3. At level n ≥ 2 expressions are simply rebuilt. Escaped expressions are reduced at a lower level,

e1
n+1
7−→ e2

˜en+1 n+2
7−→ ˜e2

.

Definition 3 (Termination) Let e ∈ En be an expression.

1. Termination:e ⇓n iff ∃v ∈ V n. e
n
7−→ v

2. Non-termination:e ⇑n iff ∀e′.e
n
7−→ e′ ⇒ ∃e′′.e′

n
7−→ e′′.
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e0
1 → e0

2

e0
1

0
7−→ e0

2
˜〈v1〉

1
7−→ v1

en+1

1

n+1
7−→ en+1

2

λx.en+1

1

n+
7−→ λx.en+1

2

en

1

n
7−→ en

3

en

1
en

2

n
7−→ en

3
en

2

en

1

n
7−→ en

2

vn e1
n
7−→ vn en

2

en

1

n
7−→ en

2

en

1
[A]

n
7−→ en

2
[A]

fn+1 n+1
7−→ fn+

2

fix x : A.fn+1

1

n+1
7−→ fix x : A.fn+1

2

en

1

n
7−→ en

2

([X = A1, en

1
: A2])

n
7−→ ([X = A1, en

2
: A2])

en+1

1

n+1
7−→ en+1

2

〈en+1〉
n
7−→ 〈en+1

2
〉

en+1

1

n+1
7−→ en+1

2

˜en+1

1

n+2
7−→ ˜en+1

2

en

1

n
7−→ en

3

open en

1
as X, x in en

2

n
7−→ open en

3
as X, x in en

2

en+1

2

n+1
7−→ en+1

3

open vn+1

1
as X, x in en+1

2

n+1
7−→ open vn+1

3
as X, x in en+1

3

en n
7−→ en

3

if [B, A](en, X1.en

1
, X2.en

1
)

n
7−→ if [B, A](en

3
, X1.en

1
, X2.en

2
)

en+1

1

n+1
7−→ en+1

3

if [B, A](vn+1, X1.en+1

1
, X2.en+1

2
)

n+1
7−→ if [B, A](vn+1, X1.en+1

3
, X2.en+1

2
)

en+1

2

n+1
7−→ en+1

3

if [B, A](vn+1, X1.vn+1

1
, X2.en+1

2
)

n+1
7−→ if [B, A](vn+1, X1.vn+1

1
, X2.en+1

3
)

en

1

n
7−→ en

2

sel [A](en

1
, en

2
)

n
7−→ sel [A](en

3
, en

2
)

en

1

n
7−→ en

2

sel [A](vn, en

1
)

n
7−→ sel [A](vn, en

2
)

fn+1

1

n+1
7−→ fn+1

2

ΛX : B.fn+1

1

n+1
7−→ ΛX : B.fn+1

2

en n
7−→ e′n

(vn

0
, . . . , vn

i−1
, en, . . . , en

m
)

n
7−→ (vn

0
, . . . , vn

i−1
, e′n, . . . , en

m
)

en

1

n
7−→ e′n

1

assert en

1
: A = en

2
: B

n
7−→ assert e′n

1
: A = en

2
: B

en

2

n
7−→ e′n

2

assert vn

1
: A = en

2
: B

n
7−→ assert vn

1
: A = e′n

2
: B

en

1

n
7−→ e′n

1

cast (en

1
, B, e2)

n
7−→ cast (e′n

1
, B, e2)

Figure 3.5: Small step semantics ofλH©

A Note on assert/cast The constructassert e1 : A = e2 : B introduces a term of equality type

ID A B provided thate1 ande2 areA andB snats, respectively. The semantics ofassert is perhaps

the most difficult one to understand: there is only one form ofassert value,assert v : A = v : B,

i.e., only that where its argument values are equal. Otherwise, if the two values are not equal, the assert

expression reduces to the non-terminating expressionΩID A B . 3 This is done in order to preserve the

progress property, i.e., even if the asserted values are notequal, the system will not get stuck: rather failure

of assertion is modeled by non-termination as embodied by theΩ term. (This should not be confused with

the name ofλH© typesΩ©.)

Similarly, the semantics ofcast (e1, B, e2) must first evaluate its first argumente1 (which is presumed

to be anassert ). Only if a value is obtained (i.e., assertion has not failed), the reduction rule simply

eliminates the cast and proceeds toe2.

3Incidentally, this is why the types must be carried with assert, in order to instantiate theΩ expression to the appropriate type.
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(λx : A.e0) v0 → e0[x := v0]
(ΛX : B.f0)[A] → f0[X := A]
sel [A1]((v

0
0 , . . . , v0

n), m) → vm ifm < n
open ([X1 = A1, v

0 : A2]) as X, x in e0 → e0[X := A1][x := v0]
(fix x : A.f0) v0 → f0[x := fix x : A.f0] v0

(fix x : A.f0)[A2] → f0[x := fix x : A.f0] [A2]
m⊕ n → m⊕n
if [B, A](tt, X1.e1, X2.e2) → e1[X1 := A]
if [B, A](ff, X1.e1, X2.e2) → e2[X2 := A]
˜〈v1〉 → v1

assert v0
1 : A = v0

2 : B → ΩID A B ifv0
1 6= v0

2

cast (v0, B, e0) → e0

ΩA ≡ (fix f : ()→ A.λy : ().f y) ()

Figure 3.6: Reductions ofλH©

3.4 Properties ofλH©

In this section we will sketch out and develop the proof of themain technical result we report here, the type

safety ofΩ© (Theorem 1). For this proof, we adapt a standard syntactic techniques of Wright and Felleisen

[145].

Theorem 1 (Type safety) If ∆; Γ+ ⊢n en : A thene
n
7−→

∗
vn, and∆, Γ+ ⊢n v : A, or e ⇑.

PROOF. First, we establish the subject reduction property of the reductions ofλH© (Lemma 5). This can

easily be generalized to the subject-reduction of the small-step reduction relation. Secondly, we establish

the progress property of the small-step reduction relation(Lemma 1). Type safety property follows quite

easily from these [145].�

In proofs of critical lemmas, we shall need a property of TL (Remark 2) typing judgments observed by

Shao&al. [115].4

Remark 2 (Judgment normal forms [116]) Due to transitivity of conversion, any derivation of∆; Γ ⊢n

e : A can be converted into a normal form such that

1. The root node of the derivation is a CONV rule.

2. Its first derivation ends with a rule other than CONV.

3. All of whose term derivations are in the normal form.

4We omit the proof (by transitivity of=βηι of TL and induction on the structure of typing judgments).
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Lemma 1 (Progress)If ∆; Γ+ ⊢n en : A, thenen ∈ V n or ∃e′.e 7−→ e′.

PROOF. Proof is by structural induction on the judgmente ∈ En, and then by examination of cases on the

typing judgment∆; Γ+ ⊢n en : A. We show some of the relevant cases.

1. Variable case,en = x. There are two cases onn:

(a) Casen = 0. If n = 0, then¬(∆; Γ+ ⊢0 x : A), since the levels of all variables inΓ+ are

greater than 0.

(b) Casen > 0. Then, by definition of∈ V n, x ∈ V n for all n > 0.

2. Constant case,e ∈ m, tt, ff. This follows trivially, by definition of∈ V n, since all the constants are

already inV n, for all n.

3. Function abstraction case,e = λx : A.e. Let us consider the normal form for the derivation

∆; Γ+ ⊢n (λx : A.e) : (A _ A′). The derivation of∆; Γ+ ⊢n λx : A.en : A′ _ A2 has a

subderivation∆; Γ+, x : An+1
1 ⊢n en : A3,whereA3 = A2. By the inductive hypothesis there are

again two possibilities:

• en ∈ V n. Then, easilyλx : A1.e
n ∈ V n.

• ∃e′.en n
7−→ e′. Then, by definition of

n
7−→, ∃e′′ = λx : A1.e

′ ande
n
7−→ e′′.

4. Fix case,e = fix x : A.fn.

In the premise of the root of the derivation∆; Γ+ ⊢n (fix x : A.fn) : A must have been derived by

the Fix rule, with the hypothesis∆; Γ+, x : An+1 ⊢n fn : A2 (whereA2 = A). We can apply the

inductive hypothesis to this sub-derivation and have two possibilities:

(a) fn ∈ V n, from which it immediately follows by definition ofV n thatfix x : A.fn ∈ V n

(b) ∃e′.fn.fn n
7−→ e′, from which it follows by definition of

n
7−→ thatfix x : A.fn n

7−→ fix x : A.fn.

5. Code-bracket case,e = 〈en+1〉. Then an antecedent of∆; Γ+ ⊢n 〈en+1〉 : ©A must have been

∆; Γ+ ⊢n+1 en+1 : A1 (whereA1 = A). We apply the inductive hypothesis, and examine two cases

(a) en ∈ V n, then〈en〉 ∈ V n by definition ofV n.

(b) ∃e′.en n+1
7−→ e′ Then, by definition of

·
7−→, 〈en+1〉

n
7−→ 〈e′′〉.

6. Escape at level 1,e1 = ˜e0. The type derivation looks as follows(in normal form):

D

∆; Γ+ ⊢0 e0 :©A1
-

∆; Γ+ ⊢1 ˜e0 : A1
Esc A1 = A

∆; Γ+ ⊢1 ˜e0 : A
CNV
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The induction hypothesis applies to the result of the conclusion of the subderivationD. There are

two possibilities:

(a) e0 ∈ V 0 It is easily shown (by examination of cases and the type judgment rules) that the only

value at level 0 that could have type©A1 is of the form〈v1〉. Then, by definition of∈ V 1,

˜〈v1〉 ∈ V 1.

(b) ∃e′.e0 0
7−→ e′. Then, by definition of

1
7−→, ˜e0 1

7−→ ˜e′.

7. Escape at higher level case,en+2 = ˜en+1.

D

∆; Γ+ ⊢n+1 e :©A1
CNV

∆; Γ+ ⊢n+2 ˜e : A1 A1 = A
Esc

∆; Γ+ ⊢n+2 ˜e : A
CNV

We can apply the induction hypothesis to∆; Γ+ ⊢n+1 e :©A1. There are two possibilities now,

(a) en+1 ∈ V n+1. Then, by definition ofV n+2, ˜en+1 ∈ V n+2

(b) ∃e′.en+1 n+1
7−→ e′. Then, by definition of7−→, ˜en+1 n+2

7−→ ˜e′.

8. The assert case,en = assert en
1 : A = en

2 : B. The typing derivation can be put into following

normal form

D1

∆; Γ+ ⊢n en
1 : A′

CNV
D2

∆; Γ+ ⊢n en
2 : B′

CNV

∆; Γ+ ⊢n (assert en
1 : A = en

2 : B) : (ID A′ B′) A = A′ ∧B = B′
ASSRT

∆; Γ+ ⊢n (assert en
1 : A = en

2 : B) : (ID A B)
CNV

Now, we can apply the induction hypothesis to subjudgments
D1

∆; Γ+ ⊢n en
1 : A′

CNV and

D2

∆; Γ+ ⊢n en
2 : B′

CNV to obtainen
1 ∈ V n ∨ ∃e′1.e

n
1

n
7−→ e′1 anden

2 ∈ V n ∨ ∃e′2. 7−→ en
2

n
7−→ e′2.

We examine the cases that arise one by one.

(a) Casee1 ∈ V n anden
2 ∈ V n. If n > 0, then triviallyassert e1 : A = e2 : B ∈ V n. Otherwise,

if n = 0, there are two possibilities. Firste1 = e2 in which caseassert e1 : A = e2 : B ∈ V 0

by definition. If they are not equal, however, there existse′′ = ΩID A B to whichassert e1 :

A = e2 : B reduces.

(b) Casee1 ∈ V n and∃e′2.e2
n
7−→ e′2. Then by definition of

n
7−→, ∃e′′ = assert e1 : A = e′2 : B

such thatassert e1 : A = e2 : B
n
7−→ e′′.

(c) Case∃e′1.e1
n
7−→ e′1 ande2 ∈ V n. Then, as in previous case∃e′′ = assert e′1 : A = e2 : B

such thatassert e1 : A = e2 : B
n
7−→ e′′.
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(d) Case∃e′1.e
n
1

n
7−→ e′1 and∃e′2. 7−→ en

2
n
7−→ e′2. Then lete′′ beassert e′1 : A = e2 : B and by

definition of
n
7−→, assert e1 : A = e2 : B

n
7−→ e′′.

9. Cast case,en = cast (en
1 , B, en

2 ). This case is more interesting. The typing judgment foren can be

put into the following normal form:

D1

∆; Γ+ ⊢n e1 : ID A B′
CNV

D2

∆; Γ+ ⊢n en
2 : snat A′

CNV

∆; Γ+ ⊢n (cast (en
1 , B, en

2 )) : (snat B′) B = B′
CAST

∆; Γ+ ⊢n (cast (en
1 , B, en

2 )) : (snat B)
CNV

We can apply the induction hypothesis to subderivations
D1

∆; Γ+ ⊢n e1 : ID A′ B′
and

D2

∆; Γ+ ⊢n en
2 : snat A′

. We examine the cases that arise.

(a) Casee1 ∈ V n ande2 ∈ V n. First, if n > 0, then triviallycast (e1, B, e2) ∈ V n. Otherwise, if

n = 0, then∃e′ = e2 such that by definition of reductioncast (e1, B, e2)
0
7−→ e′.

(b) Casee1 ∈ V n and∃e′.e2
n
7−→ e′. Then, same as above by definition of the reduction relation.

(c) Case∃e′1.e1
n
7−→ e′1 ande2 ∈ V n. Then∃e′′ = cast (e′1, B, e2) such thatcast (e1, B, e2)

n
7−→

e′′ by definition of
n
7−→.

(d) Case∃e′1.e1
n
7−→ e′1 and∃e′2.e2

n
7−→ e′2. Similar as above case.

�

Lemma 2 (Level Increment) If ∆; Γ ⊢n e : A, then∆; Γ+ ⊢n+1 e : A.

PROOF. Proof of Lemma 3.4 is by induction on height of type derivations of∆; Γ ⊢n e : A. �

Lemma 3 (Substitution 1) If ∆; Γ, x : Am, Γ′ ⊢n e : B and∆; Γ, Γ′ ⊢m e2 : A, then∆; Γ, Γ′ ⊢n e[x :=

e2] : B.

Lemma 4 (Substitution 2) If ∆, X : Bn; Γ ⊢n e : A1 and∆|n⊢
n A2 : B, then∆; Γ[X := A2] ⊢

n e :

A1[X := A2].

PROOF. Proof of Lemma 3 is by induction on the type derivation. Also,Lemma 3.4 is used to prove the

base case.

Similarly, Lemma 4 is by induction on type derivations.�



73

Lemma 5 (Subject Reduction)∀n. if ∆, Γ+ ⊢n e : A ande→ e′, then∆, Γ+ ⊢n e′ : A.

PROOF. Proof is by examination of cases of possible reductionse→ e′.

1. Beta reduction,(λx : A.e0) v0 → e0[x := v0].

Consider the normal form of the typing judgment for the redex:

D1

∆, Γ ⊢0 (λx : A.e0) : A _ A1

D2

∆, Γ ⊢0 v0 : A

∆, Γ ⊢0 (λx : A.e0) v0 : A1 A1 = A2
App

∆, Γ ⊢0 (λx : A.e0) v0 : A2
CNV

Applying substitution lemma 1, we have
∆, Γ ⊢0 e0[x := v0] : A1 A1 = A2

∆, Γ ⊢0 e0[x := v0] : A2
CNV .

2. (ΛX : A.f0)[A2] → f0[X := A2] The derivation for the redex can be put into following normal

form:

D1

∆, X : A; Γ ⊢0 f0 : B2

∆, Γ ⊢o (ΛsX : A.f0) : ∀sX : A.B2

D2

∆,Γ ⊢n A2 : A

∆; Γ ⊢0 (ΛX : A.f0)[A2] : B2[X := A2]
TyApp

∆; Γ ⊢0 (ΛX : A.f0)[A2] : B[X := A2]
CONV

Applying the substitution lemma (Lemma 4) we obtain∆, Γ[X := A] ⊢n f0[X := A] : B2[X :=

A]. But then,∆, Γ[X := A] ⊢n f0[X := A] : B[X := A], sinceB = B2.

Since∆, Γ ⊢0 (ΛsX : A.f0) : ∀sX : A.B2, then andΓ is well formed, then we must conclude

thatX 6∈ FV (Γ), and so the substitutionΓ[X := A] = Γ. Then, from this we easily conclude that

∆; Γ ⊢ f [X := A] : B[X := A].

3. sel [A]((v0
0 , . . . , v0

n), m)→ vm, if m < n

The proof of this case is essentially unchanged from the proof in [116]. The type derivation of the

redex can be put into the following normal form:
D

∀i < m. ⊢ vi : A′′i i

∆; Γ+ ⊢ v : tup n A′′1
∆; Γ+ ⊢ (v) : tupA2 A′′

E

∆; Γ+ ⊢ mn : snat m

∆; Γ+ ⊢n m : snat A1

F

∆; Γ+ ⊢n A′ : LT A1 A2

∆; Γ+ ⊢n sel[A′]((v0, . . . , vn), m) : A′′A1 A′′A1 = A

∆; Γ+ ⊢n sel[A′]((v0, . . . vn), m) : A

Here,A =βηι A′′ A1,A′′1 = A′′, andA1 = m. By examining the reduction, we havem < n. The

redex reduces to the valuevm. A′′1 m = A, and∆; Γ+ ⊢n Dm : A′′1 m, we obtain∆; Γ+ ⊢n vm : A.

4. open ([Y = A1, v
0 : A2]) as X, x in e0 → e0[X := A1][x := v0] (check)

The derivation of the redex term (taking into considerationconversion and normal form) [e.p. too

large to fit in here]: IF,∆; Γ ⊢0 open ([Y = A1, v
0 : A2]) as X, x in e0 : C, then
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• 4: ∆; Γ ⊢0 v0 : A2[Y := A1]

• 4: ∆, X : B0; Γ, x : A2[Y := X ] ⊢0 e0 : C

• 4: ∆|0⊢ C : Ω©

Applying the substitution lemma for types to 4, we obtain:

∆; (Γ, x : A2[Y := X ])[X := A1] ⊢
0 e0[X := A1] : C[X := A1]

Since∆|0⊢ C : Ω©, it can be easily shown thatX 6∈ FV (C). Thus the above expression can be

simplified to (by definition of substitution):

∆; (Γ, x : A2[Y := X ])[X := A1] ⊢
0 e0[X := A1] : C

= ∆; Γ[X := A1], x : A2[X := A1] ⊢
0 e0[X := A1] : C

= ∆; Γ, x : A2[X := A1] ⊢
0 e[X := A1] : C

Now, we apply the substitution lemma for terms (using the fact of 4) to obtain the typing from the

contractum:

∆; Γ ⊢0 e[X := A1][x := v0] : C

5. (fix x : A.f0) v0 → f0[x := fixx : A.f0] v0 By substitution lemma for terms.

6. (fix x : A.f0)[A2]→ f0[x := fix x : A.f0] [A2] By substitution lemma for types.

7. m⊕ n→ m⊕n

D

∆; Γ ⊢0 i⊕ j : snat i⊕̂j

By the adequacy of TL representation of arithmetic ([116],Lemma 1) it easily follows∆; Γ ⊢0 i⊕j :

snat i⊕̂j.

8. if [B, A](tt, X1.e
0
1, X2.e

0
1)→ e0

1[X1 := A] (proven in the paper[115]. same proof)

9. if [B, A](ff, X1.e
0
1, X2.e

0
1)→ e0

2[X2 := A] (proven in the paper[115]. same proof)

10. ˜〈v1〉 → v1 The type derivation for the redex̃〈v1〉 can be put into the following normal form:

D

∆;Γ ⊢1 v1 : A3

∆;Γ ⊢0 〈v1〉 : ©A3

Br A2 = A3

∆; Γ ⊢0 〈v1〉 : ©A2

CNV

∆; Γ ⊢1 es〈v1〉 : A2

Esc A2 = A

∆;Γ ⊢1 ˜〈v1〉 : A
CNV
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Immediately, from the conclusion of subderivationD it follows that

D

∆; Γ ⊢n v1 : A3

CNV A3 = A2

∆; Γ ⊢n v1 : A2

CNV A2 = A

∆; Γ ⊢1 v1 : A
CNV

11. Reductionassert v0
1 : A = v0

2 : B → ΩID A B if v1 6= v2. Immediately, we can construct a

derivation ofID A B for ΩID A B as follows:

· · ·

∆; Γ ⊢ (fix f : ()→ ID A B.λy : ().f y) : ()→ ID A B
FIX

∆; Γ ⊢ () : ()

∆; Γ ⊢ (fix f : ()→ ID A B.λy : ().f y) ()
APP

12. The case of the reductioncast (v0, B, e0)→ e0 is the most interesting one. The normal form of the

derivation for the subject term is as follows:

D1

∆; Γ ⊢0 e1 : ID A B

D2

∆; Γ ⊢0 e2 : snat A

∆; Γ ⊢0 cast (v, B, e) : (snat B)
CNV

We must show that∆; Γ ⊢0 e : snatB. At first, this would seem very difficult because we have no

proof thatA reduces toB. However, sincev is a value of typeID A B, its first argument must have

been of typesnatB.

Now, by adequacy on equality of values, we know that∀v1 : snat A. ∀v2 : snat B. v1 = v2 ⇒

A =βηι B. Then it is possible to use CNV to construct the derivation∆; Γ ⊢0 e : snat B.

�

Lemma 6 (Subject reduction(
·
7−→)) ∀n ∈ N. ∆, Γ+ ⊢n e : A ande

n
7−→ e′, then∆; Γ+ ⊢n e′ : A.

PROOF. Proof follows easily from Lemma 5 and induction on the heightof derivations of
n
7−→. �

3.5 Conclusion

In this section we have presented a calculus that combines type theoretic features such as singleton types

and equality assertions with staging. While this language is not identical with Meta-D, we conjecture that

its extension to full Meta-D features is possible (though quite tedious in practice). However, having proved

type safety of such a language we have, in principle, showed that it is plausible to combine a form of

dependent typing and staging in a programming language.
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Furthermore, we believe that the route we took in our examination ofλH© could have important practical

benefits. Namely, sinceλH© is defined as one of the computational languages in the FLINT framework, it

should, in principle, be possible to use any future FLINT implementation to provide a general infrastructure

for the implementation of programming languages with features similar toλH©. We have not experimented

with addingλH© to the FLINT compiler, but we consider it an interesting direction for future work.
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Chapter 4

Equality Proofs

4.1 Introduction

In Chapter 2 we have explored the practice of heterogeneous meta-programming with dependent types.

In this chapter we shall develop the ideas presented earlierin a different setting: we will show that a

heterogeneous meta-programming framework can be implemented in a functional language with higher-

rank polymorphism. The meta-language under considerationis strikingly similar to current dialects of

Haskell, but with a few key extensions.

Outline of this chapter. This chapter is organized as follows. First, we describe a technique for imple-

menting equality proofs between types in Haskell-like languages (Section 4.2). Then we illustrate how

equality proofs can be used to encodedomain values, and predicates in Haskell’s type system. We develop

an example that defines arithmetic operators on natural number domain values, and encodes a couple of

interesting predicates over over natural numbers (Section4.3).

4.2 Type Equality

One can view a language such as Haskell from the perspective of the Curry-Howard [60, 45] isomorphism:

types are proposition in a logical language (where types areformulas); programs that inhabit particular

types are proofs of the propositions that correspond to their types. For example, the functionλx : Int. x is

the proof of the rather simple, tautological propositionInt→ Int. Of course, since Haskell allows us to write

non-terminating programs, every type is inhabited by the non-terminating computation. This means that

the Haskell types, viewed as a logical system, is unsound; thus, when encoding a proposition as a Haskell

type we should keep in mind that in order to preserve soundness, we must ensure that no non-termination

is introduced.

78
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In this section, we focus on one such kind of proposition, that of equality between types. The first key idea

of this approach is to encode equality between types as a Haskell type constructor. Figure 4.1 implements

an encoding of such an equality. Thus, in Haskell, we can define a type constructorEqual :* → * → * ,

which states that two types are equal

data Equal a b = Equal ( ∀ϕ. ( ϕ a) → ( ϕ b))

cast :: Equal a b → ( ϕ a) → ( ϕ b)

cast (Equal f) = f

This rather elegant trick of encoding the equality between typesa and b as a polymorphic function

∀ϕ.(ϕ a) → (ϕ b) has been proposed by Baars and Swierstra [4], and described earlier in a somewhat

different setting by Weirich [143]. The logical intuition behind this definition (also known as Leibniz

equality [96]) is that two types/propositions are equal if,and only if, they are interchangeable in any context.

This context is represented by the arbitrary Haskell type-constructorϕ. Another explanation, elaborated

in [4], is that sinceϕ is universally quantified, the function with typeϕ a → ϕ b cannot assume anything

about the structure ofϕ, and so the only terminating function with typeϕ a→ ϕ b is the identity function.

Given a proof of(Equal a b) , we can easily construct functionsa2b::Equal a b → a→ b and

b2a::Equal a b → b→ a which allow us to “cast” between the two types. These castingoperations

act as elimination constructs on equality types. In addition to casting, we define a number of equality proof

combinators that allow us to build new equality proofs from already existing ones.

The general overview with type signatures of these combinators is given Figure 4.1. One can see these

combinators as operations on an abstract data-type: more complex equality proofs can be derived from

simpler ones algebraically through the use of these combinators.

4.2.1 Proof examples

We now give a small example of how equality combinators can beused in constructing new proofs of

equality out of old ones. A simple theorem that can be derivedabout equality can be stated as follows:For

anya, b andc, if a = b then ifa = c, thenb = c.

We can show the proof in natural deduction style. The leaves of the tree are discharged assumptionsp1

andp2. Using symmetry (for historical reasons calledSym), and then transitivity on the two premises of

the root, we deriveEqual b c.

[p1 : Equal a b]

Equal b a
(Sym) [p2 : Equal a c]

Equal b c
(Trans)
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The same proof can be illustrated by a diagram below. The dotted lines (e.g.,a
p1

+3 b ) represent

the premises, wherep1 :: Equal a b. Equality lines (b
e +3 c ) represent derived equalities, where

e :: Equal b c.

a
p1

+3 b

sym p1<>p2
�#

>>
>>

>>
>

>>
>>

>>
>

sym p1 +3 a

p2

��
c

How do we prove this theorem in Haskell? As we view Haskell types as propositions, we will first state

the above theorem formally as a Haskell type. Under this scheme, the equalitya = b becomes the type

(Equal a b) . Implication is simply the Haskell arrow type.

Equals a b →Equals a c →Equals b c

Proving this theorem now becomes simply constructing a (terminating) Haskell function that has the

above type. We shall call the functiontheorem0 , and give its definition below:

theorem0 :: Equals a b →Equals a c →Equals b c

theorem0 p1 p2 = sym p1 <> p2

We now show another proposition and its proof. The proposition is: If a = b andc = d, then(a→ c) =

(b→ d).

In programming, as we will see, the proofs are most frequently used tocastbetween types that can be

proved equal. Consider the following example. Suppose thatwe have a functionf1 of typea→ c , but we

need a function of typeb→ d. Fortunately, we can prove that typea equalsb andc equalsd.

This leads us to state another theorem:

Equal a b →Equal c d → (a → c) → (b → d)

The proof of this proposition is the functiontheorem1 which is defined as follows:

theorem1 :: Equal a b →Equal c d → (a → c) → (b → d)

theorem1 p1 p2 f = a2b (subTab p1 p2) f

-- p1 :: Equal a b

-- p2 :: Equal c d

-- subTab p1 p2 :: Equal (a → c) (b → d)

-- a2b (subTab p1 p2) :: (a → c) → (b → d)

We start the proof with two premises:
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p1 :: Equal a b

p2 :: Equal c d

Then, we use the combinator (see Figure 4.1)

subTab :: Equal a b →Equal c d →Equal (f a c) (f b d)

with the premises to obtain the equality proofEqual (a → c) (b → d) . The casting operatora2b is

then used with this combinator to obtain(a → c) → (b → d) .

4.2.2 Implementing Equality Proof Combinators

In Figure 4.1 we show a number of functions that manipulate proofs of type equalities. They can roughly

be divided into three groups:

1. Proof construction combinators. The types of these combinators correspond to standard properties of

equality: reflexivity, symmetry, transitivity and congruence.

2. Casting operators. These functions act as elimination rules for equality. The majority of these op-

erators use the proof that typesa andb are equal to cast from the typeF[a] to F[b] , whereF is

some type context. In the Calculus of Constructions (and similar type theories) this contextF can

be described as a functionF : *->* , and equality elimination can be given a single type such as

(f:* → *) → (Equal a b) → (f a) → (f b) . In Haskell, however, we are not allowed to

write such arbitrary functions over types, and have to implement a separate combinator for every

possible contextF[-] .

3. Axioms. The axioms allow us to manipulate proofs of equalities of compound types (e.g., pairs) to

derive proofs of equalities their constituent parts.

Proof construction

Here, we describe the implementation for each of the combinators that are used to construct equality proofs.

We will give definitions of the combinators whose types are listed in Figure 4.1 and comment on the

implementation of each one of them. The set of proofs presented below is not complete, even though it

seems to be sufficient in practice. New theorems may need to bederived either algebraically by using the

existing set of combinators, or, if that proves difficult, byapplying the techniques for implementing proof

combinators outlined below.

• The simplest of the proof combinators is the reflexivity proof refl .
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1 data Equal a b = Equal ( ∀ϕ. ( ϕ a) → ( ϕ b))
2 cast :: (Equal a b) → t a → t b
3 cast (Equal f) = f
4

5 -- Algebra for constructing proofs
6 -- Reflexivity
7 refl :: Equal a a
8 -- Transitivity
9 trans :: Equal a b →Equal b c →Equal a c

10 -- Symmetry
11 sym :: Equal a b →Equal b a
12 -- Congruence
13 subTa :: Equal a b →Equal (f a) (f b)
14 subTab :: Equal a b →Equal c d →Equal (f a c) (f b d)
15

16 -- Casting functions
17 b2a :: Equal a b → b→ a
18 a2b :: Equal a b → a→ b
19 castTa :: Equal a b → c a → c b
20 castTa_ :: Equal a b → c a d → c b d
21 castTab :: Equal a1 a2 →Equal b1 b2 → f a1 b1 → f a2 b2
22 castTa__ :: Equal a b → c a d e → c b d e
23 -- Equality Axioms
24 pairParts :: Equal (a,b) (c,d) → (Equal a c,Equal b d)

Figure 4.1: Representing type equality in Haskell

1 -- reflexivity

2 refl :: Equal a a

3 refl = Equal id

Although this proof seems trivial, it is often quite useful in programming with equality proofs, as

many combinators are derived by manipulatingrefl (see below).

• Transitivity of equality is implemented by the combinatortrans .

-- transitivity

trans :: Equal a b →Equal b c →Equal a c

trans x y = Equal (cast y . cast x)

infixl <>

x <> y = trans x y

The function trans takes two equality proofs,x::Equal a b andy::Equal b c , and applies

cast to them. This results in two functions,
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cast x :: ∀ϕ. ϕ a→ϕ b

cast y :: ∀ϕ. ϕ b→ϕ c

One should note that both of these functions, by definition ofEqual , must be identity functions

(instantiated at their particular types), since they are polymorphic in ϕ. The composition of these

functions yields another function which is polymorphic in type constructorϕ (and therefore must be

an identity function):

cast y . cast x :: ∀ϕ. ϕ a→ϕ c

This function can then be wrapped inEqual obtaining a proof object of typeEqual a c .

We shall often write the transitivity combinator as in infix operator (<>), taking two equality

proofsp1 :: Equal a b , andp2 :: Equal b c , and producing a proof ofEqual a c :

a

p1<>p2

"*
p1

+3 b p2

+3 c .

• Symmetry is implemented by the combinatorsym. This combinator has the simple definition we

give below, following the development of [4]:

newtype Flip f a b = Flip {unFlip :: f b a }

sym :: Equal a b →Equal b a

sym p = unFlip (cast p ( Flip refl))

The functionsym implements the proof that equality is symmetric: given a proof thatEqual a b ,

it constructs the proof thatEqual b a . To implementsym, we use an auxiliary data-typeFlip . In

functionsym, we first start with the proofrefl (that equality is reflexive) which has type(Equal

a a) . We then apply the constructorFlip to refl to get a value of type((Flip Equal

a) a) . Recall that the expression(cast p) has the type∀ϕ.ϕ a → ϕ b. In particular,ϕ can

be instantiated to(Flip Equal a) . Thus, whencast p is applied to(Flip refl) , we get

a value of type((Flip Equal a) b) . Finally, we applyunFlip to it to obtain a proof of

Equal b a . We can illustrate this diagrammatically:

p : Equal a b

sym p

''

Equal a a
Flip

// (Flip Equal a) a

cast p

��
Equal b a (Flip Equal a) b

unFlip
oo
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Resorting to this auxiliary data-type (Flip ) definition is necessary, because Haskell’s type system

cannot correctly infer the appropriate instantiation of the higher-order type constructorϕ.

• The combinatorsubTa::Equal a b →Equal (f a) (f b) (Figure 4.1, line13) constructs

a proof that equality is congruent with respect to application (unary) Haskell type constructors.

newtype C f a x = C {unC :: Equal (f a) (f x) }

subTa :: Equal a b -> Equal (f a) (f b)

subTa p = unC (cast p (C refl))

We start with the premisep::Equal a b . Next, we apply the constructorC to a reflexivity proof

refl , resulting in a value of type(C f a) a . The expressioncast p is applied to this value,

obtaining(C f a ) b . Finally, unC projects a proof of typeEqual (f a) (f b) from this

value. Diagrammatically, this looks as follows:

p : Equal a b

subTa p

((

Equal a a
C // (C f a) a

cast p

��
Equal (fa) (fb) (C f a) b

unC
oo

• The functionsubTab is an instance of congruence of type equality, generalized to binary type con-

structors.

newtype C2 f a b x y = C2 { unC2 :: Equal (f a b) (f x y) }

subTab :: Equal a b -> Equal c d -> Equal (f a c) (f b d)

subTab p1 p2 = unC2 (castTab p1 p2 (C2 refl))

It relies on the functioncastTab:: Equal a b →Equal c d → (f a c) → (f b d)

(Figure 4.1, line 21) whose definition will be given below. First we obtain an expression

of type (C2 f a b) a b by applying the constructorC2 to refl . Then, we apply the

function castTab p1 p2 to C2 refl . The result has the type(C2 f a b) c d . Fi-

nally, projecting from C2 by applying unC2 produces a proof of the desired proposition

Equal (f a b) (f b d) .
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It is worth noting thatsubTab andsubTa are very similar. InsubTab , the auxiliary data-typeC2

plays the same role as the auxiliary data-typeC in subTa . In fact, their definitions are also similar,

except thatC2 works on a binary type constructorf .

Similarly, subTa uses cast :: Equal a b → f a → f b , while the definition of

subTab usescastTab , which is merely a generalization ofcast to a binary type constructor

f .

p1 : Equal a b

p2 : Equal c d
subTab p1 p2

''

Equal a a
C2 // (C2 f a c) a c

castTab p1 p2

��
Equal (f a c) (f b d) (C2 f a c) b d

unC
oo

Casting operations

Casting operators are elimination rules for equality proofsEqual .

• The simplest of these,a2b and b2a take proof of typeEqual a b and return a function that

converts froma to b (and back, respectively).

newtype Id x = Id { unId :: x }

a2b :: Equal a b → a→ b

a2b p x = unId (cast p (Id x))

b2a :: Equal a b → b→ a

b2a = a2b . sym

The construction ofa2b follows a familiar pattern. First, we inject the argumentx of type a into

the auxiliary (identity) type constructorId . Then, we applycast p to obtainId b . Finally, we

project usingunId to obtain ab object. To defineb2a we simply invert the proof object and apply

a2b .

a

a2b p

��
�

�

�
Id // Id a

cast p

��
b Id b

unId
oo

Equal a b
sym

//

b2a p

&&N
N

N
N

N
N

Equal b a

a2b

��
b −→ a
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• The functioncastTa_ is a form of casting-congruence.

castTa_ :: Equal a b → c a d → c b d

castTa_ p x = unFlip (cast p) (Flip x)

Starting with a proofp:Equal a b and a valuex of type f a y , we first applyFlip to x ,

obtaining a value of type(Flip f y) a . Then, we applycast p , obtaining(Flip f y) b .

Finally, we applyunFlip to getf y b .

f a y
Flip

//

castTa p

��
�

�

�
(Flip f y) a

cast p

��
f b y (Flip f y) b

unFlip
oo

• The functioncastTab is simply the composition of functionscastTa_ andcast .

castTab :: Equal a1 a2 -> Equal b1 b2 -> f a1 b1 -> f a2 b2

castTab p1 p2 = castTa_ p1 . cast p2

Starting with an argument of typef a1 b1 , castTa_ p1 transforms it intof a2 b1 . Then,

cast p2 finally returnsf a2 b2 : f a1 b1
castTa p1// (f a2) b1

cast p2 // (f a2) b2
.

• The functioncastTa__ further generalizes casting to ternary type constructors.

newtype Flip3 f a b c = Flip3 {unFlip3 :: f b c a }

castTa__ :: Equal a b -> c a x y -> c b x y

castTa__ p x = unFlip3 (castTa_ p (Flip3 x))

A Note On Strategies for Implementing Equality Operations

From the previous examples, we can observe a more general pattern of programming with equality proofs

and deriving equality combinators. Usually, one starts with some equality proofp of typeEqual a b ,

and the goal is to produce a function that transforms some other type (R[a] ) to typeR[b] .1

For example, if we have a typeInt →Bool and an equality typeEqual c Bool , one should be

able to derive the typeInt → c from it. Haskell’s type checker, however, is not designed tomake this

conclusion automatically. Instead, the programmer must devise a type constructorR, so that applyingR

to Bool produces the type(Int →Bool) and applyingR to c to produce(Int → c) . Then, casting

1The can be thought of as a typeRcontext with one hole.
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operations on (i.e.,castTa ) that type constructor allow the programmer to deriveR c, from R Bool ,

which is the same asInt → c .

More generally, the implementation of many equality combinators usually proceeds as follows: the first

step is to take apart the proofp using thecast combinator to obtain a functionf of type∀ϕ. ϕ a→ ϕ b.

Note that the polymorphic variableϕ can then be instantiated to any unary type constructor. The next step

is to define an auxiliary(n + 1)-ary type constructorT.

data T t_1 ... t_n x = T (R x)

unT :: T t_1...t_n x -> R x

The type constructorT is a function of the contextR in which we want to substituteb for a. Then, a value

of type(T t1 . . . tn) a is created. When the functionf is applied to this value,ϕ becomes instantiated to

T t1 . . . tn, and the result is of type(T t1 . . . tn) b. Finally, the functionunT is used to project the desired

final result in whicha has been replaced byb. We can show this pattern diagrammatically:

p : Equal a b R a

?

��
�

�

�

T// (T t1 . . . tn) a

cast p

��
R b (T t1 . . . tn) b

unT
oo

Axioms

A number of “equality axioms” are also postulated. The axiommost commonly used in the examples that

follow is pairParts :

pairParts :: Equal (a,b) (c,d) → (Equal a c, Equal b d)

pairParts = -- primitive

These axioms specify how Haskell type constructors (e.g., products, sums, and so on) behave with respect

to equality. ThepairParts axiom allows us to conclude that if two products are equal, then so are their

constituent parts.

It has been argued that axioms such aspairParts cannot be defined in Haskell itself [19]. In our

framework, they are introduced as primitive constants. We conjecture that this does not compromise the

consistency of the overall Haskell type system, but we can offer no proof at this time. In practical terms,

one possible implementation2 of pairParts would be

2HereunsafeCast is the function with the typea → b. Strictly speaking, this function should not exist in standard Haskell, but
it can be written in most Haskell implementations using a well-known “unsafe IO reference trick.”
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pairParts :: Equal (a,b) (c,d) → (Equal a c, Equal b d)

pairParts (Equal f) = (Equal (unsafeCast f), Equal (unsafeC ast f))

4.3 Proofs and Runtime Representations in Haskell

How do we use equality proofs? In this section, we will illustrate this by developing a small implementation

of operations on natural numbers. Natural numbers are defined inductively as the least set closed under the

rules:

z ∈ N

n ∈ N

s n ∈ N

The type of natural numbers in a functional language can be thought of as a logical proposition. This

type is inhabited by an infinite number of distinct proofs, each of which can be identified with a particular

natural number. For example, the Haskell data-typeNat is such a type:

data Nat = Zero | Succ Nat

Note that each expressions of typeNat is an equally valid proof of this proposition. For example,

Zero : Nat , but alsoSucc Zero : Nat .

As we have seen, individual natural numbers cannot be distinguished from one another at the level of

types. There are, however, interesting properties of individual natural numbers that can be useful in types.

For example, we might want to know that the type of an array indexing function takes an index which is

provably less than the size of the array. If this property canbe specified and proved statically in the type

system, then we can dispense with runtime array bounds checking without compromising safety of the

program.

To make assertions about particular natural numbers in types, e.g., asserting their equality, we need first

to represent natural numbersat the level of types, where each natural number corresponds to some type.

Thus, we define the following two data-types

data Z = Z

newtype S x = S x

The typeZ has one constructor, also namedZ, and represents the natural number zero. The successor

operation is represent by the type constructorS : * → * . The intended meaning is that the expression

S (S Z) : S (S Z) represents the natural number2 at the type level.

One should note at this point, that the two typesZ andS are not by themselves enough to encode natural

numbers at type level. In fact, we could refer to them aspre-numbers: one could apply type constructorS
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to any Haskell type. Thus,S "X":(S String) clearly does not represent a natural number. How can

we enforce the requirement that the naturals are well-formed?

The solution is to use equality types to define a Haskell type constructor corresponding to the inductive

judgmentn ∈ N.

data IsNat n = IsZero (Equal n Z)

| ∀α. IsSucc (IsNat α)

(Equal n (S α))
z ∈ N

n ∈ N

S n ∈ N

The data-typeIsNat:* → * is just such a type constructor: we readIsNat n asn ∈ N. In defining the

data-typeIsNat , we define a data-constructor for every derivation rule of the inductive judgmentn ∈ N.

Thus, inhabitants ofIsNat n act as proofs thatn ∈ N: for every derivation of the judgmentn ∈ N, there

is a value of typeIsNat n 3.

1. The constructorIsZero implements the base case of the proof of the judgmentn ∈ N,
z ∈ N

. It

takes as its single argument a proof that the argument type isequal toZ.

2. The constructorIsSucc is the inductive step
n ∈ N

s n ∈ N
: as its first argument it takes the proof of the

antecedent judgmentIsNat α. Its second argument is the proof thatn equals to the successor of

thisα, whereα is some existentially quantified type representing a natural number.

Smart Constructors. Recall that the type constructorIsNat has one argument, a type representing the

natural numbern, such thatIsNat n means thatn ∈ N. We shall call this type argument theindexof

IsNat .

In the definition of the inductive judgmentn ∈ N, we use pattern matching to specify the shape of the

index. For example, the base case rule forces the index to be zero:
z ∈ N

. In Haskell data-types, however,

we cannot pattern match on the index. Rather, we use equalityproofs as additional premises to force a

particular “shape” on the index type argument.

Hence, Haskell gives the constructorIsZero the typeEqual n Z → IsNat n . WhenIsZero is

applied torefl::Equal a a , the type variablea is unified withZ, obtaining the typing:

IsNat refl :: IsNat Z

This pattern is captured by the valuez and functions whose definition is given below:

3With the usual caveat that such values do not contain non-terminating computations.
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z :: IsNat Z

z = IsZero refl

s :: IsNat n → IsNat (S n)

s n = IsSucc n refl

The functionsz ands are called “smart constructors,” since they correspond to the data constructors of

IsNat , but also do some useful work. Note that the type ofz::IsNat Z corresponds now exactly to the

judgment form
z ∈ N

.

Similarly, the constructorIsSucc has the typeIsNat m →Equal b (S n) → IsNat b . The

smart constructors takes an argument of typeIsNat n . Then, it applies the constructorIsSucc to it,

obtaining

IsSucc n :: Equal b (S n) → IsNat b

Finally, the resulting function is applied torefl . This forces the type variableb to be unified withS n,

obtaining the result of typeS n.

Note the use of existential types in defining constructors. Existential quantification and equality do not

appear in the rule
n ∈ N

s n ∈ N
. However, the type of the smart constructors::IsNat n → IsNat (S n)

again directly corresponds to the judgment
n ∈ N

s n ∈ N
.

Runtime values. Another thing to note is that there is a one-to-one correspondence between natural num-

bers (at the value level) and elements of the data-typeIsNat . The isomorphism is easily constructed by in-

duction over natural numbers and judgments ofn ∈ N. For example, the expressions z : IsNat (S Z)

is the only (if we ignore the bottom element in Haskell semantics) element of the typeIsNat (S Z) .

This property is quite useful, since it implies that we can use the values of type IsNat n to represent indi-

vidual natural numbers asruntime values, as well as proofs that a particular typen is a representation of a

natural number.

The IsNat type also bears a strong resemblance to the notion ofsingleton types[116, 58]. In the

FLINT [114, 116] compiler framework, a data-type for natural numbers (for example) is representedat the

level of kinds, as an inductive kindNat . This kind classifies a set oftypes{0,1,2,. . .}. However, there is

also a typesnat : Nat → * , which classifiesruntimenatural numbers . Each runtime natural number

valuen̂ has the typesnat n . The typing rules in such a system might look like:

∆ ⊢ n : Nat

∆, Γ ⊢ n̂ : (snat n)
(Literal)

∆, Γ ⊢ e1 : snat m ∆, Γ ⊢ e2 : snat n

∆, Γ ⊢ e1+̂e2 : (snat(m + n))
(Plus)



91

In our implementation, type constructorsS andZ play the role of natural numbers at the type level; the

type constructorIsNat plays the role ofsnat , values of typesIsNat Z , IsNat (S Z) , and so on,

play the role of runtime naturals. The only difference with FLINT is that there is no way to represent

the inductive kindNat itself – the well-formedness of naturals at the type level must be enforced by the

inductive definition ofIsNat .

Predicates

IsOdd andIsEven are two mutually inductive predicates on natural numbers, defined as the least rela-

tions that satisfy the rules:

IsEven z

IsOdd n

IsEven (s n)

IsEven n

IsOdd (s n)

Here, we will show how those predicates can be encoded using equality types in Haskell.4 First, for

clarification, let us tentatively assign a “type” to these predicates. In a dependently typed system such as

Coq [43, for the same example], predicatesIsOdd andIsEven would be given a type:

IsOdd, IsEven : (n : nat) →Prop

In our Haskell encoding, we collapse this distinction: bothnaturals and propositions are types of kind *.

Thus, we define two type constructorsIsEven andIsEven which have the kind* → * :

data IsEven t = Z_Even (Equal t Z)

| ∀n. S_Even (Odd n) (Equal t (S n))

data IsOdd t = ∀n. S_Odd (Even n) (Equal t (S n))

We also define the corresponding “smart constructors” whichallow us to easily build proofs of these

predicates:

z_even :: Even Z

z_even = Z_Even refl

s_even :: IsOdd n → IsEven (S n)

s_even x = S_Even x refl

4While we shall refer to the language as “Haskell,” it is important to remember that we use more features than available in Haskell
98 [64] (higher rank polymorphism, existential types, and so on). All of these features are available in the most popularHaskell
implementations.
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s_odd :: IsEven n → IsOdd (S n)

s_odd x = S_Odd x refl

The first example we present is the functionoddOrEven . This function proves the property of natural

numbers that∀n ∈ N.IsEven n ∨ IsOdd n.

The disjunction of two propositions is represented using Haskell’sEither data-type:

data Either a b = Left a | Right b

In the implementation below, we will represent the proposition (IsEven n) ∨ (IsOdd n) by auxiliary

data-typeIsOddOrEven::* → * .

This is not strictly necessary, but it enables us to express the desired property of being odd or even as

an application of a unary type constructor. This, in turn, makes the implementation less verbose, since

the equality proof and casting combinators are more concisewhen working with unary constructors. We

examine the functionoddOrEven in more detail:

1 newtype IsOddOrEven n = OE (Either (IsOdd n) (IsEven n))

2

3 l = OE . Left

4 r = OE . Right

5

6 oddOrEven :: IsNat n → IsOddOrEven n

7 oddOrEven ( IsZero p) = castTa (sym p) (r z_even)

8 oddOrEven ( IsSucc n p) =

9 case oddOrEven n of

10 OE ( Left op) → castTa (sym p) (r (s_even op))

11 OE ( Right op→ castTa (sym p) (l (s_odd op))

Line 7 is the base case of this function:

oddOrEven ( IsZero p) = castTa (sym p) (r z_even)

-- p :: Equal n Z

-- r z_even :: IsOddOrEven Z

-- castTa (sym p) (r z_even) :: IsOddOrEven n

If a runtime representation of the natural numberZ is given, then we construct a base case for
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even number: the expression(r z_even) has type(IsOddOrEven Z) ; then, the proof(sym p)

::Equal Z n is then used to cast back to(IsOddOrEven n) .

Similarly, in the inductive step (lines10 and11), first construct a proof recursively, and then, depending on

whether the recursive proof is odd or even, construct the next even or odd proof, respectively.

oddOrEven ( IsSucc n p) =

case oddOrEven n of

OE ( Left op) → castTa (sym p) (r (s_even op))

OE ( Right op) → castTa (sym p) (l (s_odd op))

A similar and important function is one that constructs the proof of equality between two naturals. This

function is an instance of a common pattern in programming with equality proofs: two values whose

types are judgments indexed by typesa and b are compared structurally to possibly obtain a result of

typeEqual a b (hence theMaybe type in the range ofequalNat ). This is, in effect, a runtime check

which allows us to convert between typesa andb.

equalNats :: IsNat a → IsNat b →Maybe (Equal a b)

equalNats ( IsZero p1) ( IsZero p2) = return ( p1 <> (sym p2))

-- p1 :: Equal a Z

-- p2 :: Equal b Z

-- p1 <> (sym p2) :: Equal a b

equalNats ( IsSucc n1 p1) ( IsSucc n2 p2) =

do { p3 <- equalNats n1 n2

; return (p1 <> (subTa p3) <> (sym p2) }

-- p1 :: Equal a (S _1)

-- p2 :: Equal b (S _2)

-- p3 :: Equal _1 _2

-- subTa p3 :: (S _1) (S _2)

-- p1 <> (subTa p3) <> (sym p2) :: Equal a b

equalNats _ _ = Nothing

Example: Arithmetic

As our next example we implement addition of natural numbers. The addition function in the encoding of

natural numbers presented above has the following properties: it takes two arguments, integersn andm,

and returns an integerz, such thatz = n + m. So, what type do we give our function in Haskell?

plus :: IsNat a -> IsNat b -> IsNat (? a b)
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The only valid thing we can give in place of the question mark would be a type function of kind∗ → ∗ →

∗. However, such functions5 are not permitted by type systems of most practical programming languages

including Haskell. Thus, we must encode addition at the typelevel indirectly. First, although we do not

have computation and functions at type level, wecanuse type constructors to simulate relations between

types. Thus, we define addition as an inductive relationPlusRel m n i, wherei = m + n.

PlusRel z m m
∃i ∈ N.

PlusRel n m i

PlusRel (s n) m (s i)

We encode this relation as a ternary Haskell type constructor

1 -- PlusRel :: * → * → * → *

2 data PlusRel m n i =

3 Z_PlusRel (Equal m Z) (Equal n i)

4 | ∀αβ. S_PlusRel (PlusRel β n α) (Equal m (S β)) (Equal i (S α))

5

6 zPlusRel :: PlusRel Z i i

7 zPlusRel = Z_PlusRel refl refl

8

9 sPlusRel :: PlusRel m n i → PlusRel (S m) n (S i)

10 sPlusRel p = S_PlusRel p refl refl

Now, we are ready to define the addition function. There are two steps to creating this function. The first,

intermediate step is the functionpl .

pl :: IsNat m → IsNat n →PlusRel m n z → IsNat z

pl _ n r = p n r where

p :: IsNat n →PlusRel m n z → IsNat z

p n ( RPZ p1 p2) = (cast p2 n)

p n ( RPS r p1 p2 ) = cast (sym p2) (s (p n r))

This function takes three arguments: two natural numbersm andn, and a proof thatm + n = z. It is

defined in terms of the functionp, which is defined inductively on the structure of the proof ofaddition

relationPlusRel m n z : from PlusRel m n z , and the representation ofn, p is able to construct

the proof of the judgmentIsNat z . In computational terms, this is equivalent to constructing the natural

number representing the resulting sum. Of course, this function is not all that useful since it requires the

5As opposed totype constructors.
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proof of the judgmentPlusRel as one of its arguments. It is possible to construct this proof out of m ∈ N

andn ∈ N.

What would the type of such a function look like? One possibility is

constructProof :: IsNat m → IsNat n →PlusRel m n z

However, the type variablez appears only on the positive side of the arrow type above which would

mean that aPlusRel m n z can be constructed forall typesz . This is patently false. The problem is

that of quantification: given any two natural numbersm andn, we can construct the proof that forsomez,

m + n = z. Thus, we need to existentially quantify the type variablez . The type ofconstructProof

would then look like:

constructProof :: IsNat m → IsNat n →∃α.PlusRel m n α

The functionplus defined below (lines5-11) performs the actions ofconstructProof andpl simul-

taneously, yielding a result of type∃α.(PlusRel m n α) × (IsNat α). Slightly complicating the notation

below is the fact that in Haskell existential types can only be used in data-type definitions. Therefore, we de-

fine an auxiliary data-typeExists . This type constructor takes a unary type constructorf and implements

the existential type∃α.f α.

1 -- Exists ϕ ≡ ∃α. ϕ( α)

2 data Exists f = ∀α. Exists (f α)

3 data Pl x y z = Pl (PlusRel x y z) (IsNat z)

4

5 plus :: (IsNat x) → (IsNat y) → (Exists (Pl x y))

6 plus ( IsZero p1) m =

7 Exists ((( Pl (castTa__ (sym p1) (zPlusRel)) m)))

8 plus ( IsSucc n p1) m =

9 case plus n m of

10 Exists ( Pl pj y) →

11 Exists (( Pl (castTa__ (sym p1) (sPlusRel pj)) (s y)))

Example: Putting IsNat into the Num Class

In the IsNat encoding, each natural number has a different (and incompatible) type: the number one has

the typeIsNat (S Z) , the number two has the typeIsNat (S (S Z)) , and so on. Is there a type

that represents the entire set of natural numbers? Naturally, thereis such a type and it is∃α. IsNat α. Thus,

we can finally implement a traditional Haskell addition function by declaring(Exists IsNat) to be an

instance of the classNum.
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instance Num (Exists IsNat) where

(+) (Exists m) (Exists n) =

let Exists ( Pl prf z) = plus m n

in Exists z

Example: Encoding the Ordering Relation

Another interesting relation on natural numbers is ordering. The relationm ≤ n on natural numbers can be

defined by induction onn as the least relation that satisfies the rules

n ≤ n
(LEQ-Refl )

m ≤ n

m ≤ S n
(LEQ-Succ )

.

The implementation in Haskell consists of the data-typeLEQ::* → * → * and the corresponding pair

of smart constructors.

data LEQ m n =

LEQ_Refl (Equal m n)

| ∀α. LEQ_S (LEQ m α) (Equal n (S α))

leq_refl :: LEQ a a

leq_refl = LEQ_Refl refl

leq_s :: LEQ a b -> LEQ a (S b)

leq_s s = LEQ_S s refl

With the Haskell implementation of≤, we can begin to construct interesting proofs.

1 compLEQ :: (IsNat m) → (IsNat n) →Maybe (LEQ m n)

2 compLEQ (IsZero p1) ( IsZero p2) = return ( LEQ_Refl (p1 <> (sym p2)))

3 compLEQ (z@(IsZero p1)) ( IsSucc n’ p2) =

4 do { r ← compLEQ z n’; return ( LEQ_S r p2) }

5 compLEQ (IsSucc m p1) ( IsZero p2) = Nothing

6 compLEQ (IsSucc m p1) ( IsSucc n p2) =

7 do { r ← compLEQ m n; return (castTab (sym p1) (sym p2) (theorem1 r)) }

8

9 newtype Th1 x y = Th1 {unTh1 :: LEQ (S x) (S y) }

10

11 theorem1 :: (LEQ m n) → (LEQ (S m) (S n))

12 theorem1 ( LEQ_Refl p1) = unTh1 (castTa_ (sym p1) ( Th1 leq_refl))
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The functioncompLEQ, presented above, takes two natural number representations (of typesIsNat m

andIsNat n ), and returns the proof thatm ≤ n, if such a proof can be constructed. We will examine this

function more closely to familiarize ourselves with the practice of programming with these encodings. The

construction ofLEQ m nproceeds by induction on the structure of the two numbers.

The base case (line2) assumes that both numbers are zero.

( 2) compLEQ (Zero p1) (Zero p2) = return (LEQ_Refl (p1 <> (sym p2 )))

The proofsp1 and p2 have typesEqual m Z and Equal n Z , respectively. The combined proof

p1 <>(sym p2) has the typeEqual m n . This is exactly what the base case constructor forLEQ

requires, and is used to build the proof thatLEQ m n.

The second case (lines3-4) is the case when the first argument is zero, and the second is someSucc n’ .

( 3) compLEQ (z@(Zero p1)) (Succ n’ p2) =

do { r ← compLEQ z n’; return (LEQ_S r p2) }

This proceeds by constructing the proofcompLEQ z n’ of the typeLEQ Z n’ . Then, the proof

p2 :: Equal n’ (S n) is used to constructLEQ Z n.

The following case always returnsNothing , since no non-zero nat is less than zero.

compLEQ (Succ m p1) (Zero p2) = Nothing

Finally, the inductive step where both numbers are non-zero(lines6-7) is the most interesting one:

( 6) compLEQ (Succ m p1) (Succ n p2) =

do { r ← compLEQ m n

; return (castTab (sym p1) (sym p2) (theorem1 r)) }

-- m :: IsNat _1

-- n :: IsNat _2

-- p1 :: Equal m (S _1)

-- p2 :: Equal n (S _2)

-- sym p2 :: Equal (S _2) n

-- r :: LEQ _1 _2

-- theorem1 r :: LEQ (S _1) (S _2)

The two arguments are taken apart and variablesmandn have typesm :: IsNat _1 andn :: IsNat _2 .

6 There are also two proofs,p1 :: Equal m (S _1) andEqual n (S _2) . The recursive call to

compLEQ s1 s2 produces an inequality proof of typeLEQ _1 _2, and the function

6We use the notation1, and so on to indicate types of Skolem constants in Haskell type checking of existential type eliminations.
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theorem1 :: LEQ m n -> LEQ (S m) (S n)

is used to obtain the proof of typeLEQ (S _1) (S _2) . Finally, proofsmandn are used to cast back

to typeLEQ m n.



Chapter 5

Language Implementation Using Haskell Proofs

In Section 4.3 we have familiarized ourselves with basic techniques of encoding judgments and their proofs

in Haskell, and with programming using these proofs. Next, we introduce our first heterogeneous meta-

programming example utilizing these techniques. This development proceeds in a number of steps: first,

we define an object language; then, we introduce a runtime representation of types of the object lan-

guage(Section 5.1); then we introduce an encoding ofwell-typed termsfor the object language defined

in Section 5.2. The implementation consists of a type of object language typing judgments, an interpreter

that evaluates the proofs of those judgments to meta-language values, and a type-checker that constructs

typing judgment proofs.

5.0.1 The LanguageL1

First, we present is the languageL1. The languageL1 (Figure 5.1) is a small, simply typed functional lan-

guage. We explain the relevant definitions in some more detail before proceeding onto the implementation

of L1.

Syntax ofL1. The syntax ofL1 consists of three inductively defined sets.

τ ∈ T ::= int | τ1 → τ2 | τ1 × τ2

Γ ∈ G ::= 〈〉 | Γ, τ

e ∈ E ::= n | λτ.e | e1 e2 | Var n | e1 ⊕ e2 | (e1, e2) | π{0,1} e

First, there is a set of types,τ , which includes natural numbers (or some other base types),function

spaces (τ1 → τ2), and binary products (τ1 × τ2). Second, there is a set of type assignments,Γ, which are

sequences of types. The typeτ in a type assignment ofΓ at positionn assigns typeτ to the free variable

Var n. Third, there is a set of expressions which contain the usuallambda calculus constructs presented in

Church style (domains of abstractions are explicitly typed). Variable binding is expressed in the positional

99
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style, counting the number of intervening binding sites prior to the binding of the variable itself [13, 14].

Support for integer literals, and arithmetic operators (e1 ⊕ e2) is also included.

Static semantics. The type system ofL1 is also shown in Figure 5.1: the presentation is that of a small

applied simply typedλ-calculus.

Γ ⊢ n : int
(Lit)

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ⊕ e2 : int
(Arith)

Γ ⊢ n : τ

Γ, τ ⊢ Var n : τ
(Var)

Γ, τ ⊢ e : τ ′

Γ ⊢ λτ.e : τ → τ ′
(Abs)

Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′
(App)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2
(Pair)

Γ ⊢ e : τ1 × τ2

Γ ⊢ (π1 e) : τ1
(Pi1)

Γ ⊢ e : τ1 × τ2

Γ ⊢ (π2 e) : τ2
(Pi2)

Γ, τ ⊢ 0 : τ
(VarZ)

Γ ⊢ n : τ

Γ, τ ′ ⊢ (n + 1) : τ
(VarS)

The typing judgment is fairly standard. It is defined by structural induction onL1 expressions. Type

assignments grow when they encounter theλ-abstraction. When a free variableVar n is encountered, an

auxiliary judgmentΓ ⊢ n : τ is used (rulesVarS andVarZ ). This judgment is defined by induction over the

variable index: if the variable index is greater then zero, this judgment weakens the context and decrements

the index until theVarZ rule applies.

Semantics ofL1. The semantics ofL1 presented in Figure 5.1 are given in the denotational style [127, 50].

The semantic functions are set-theoretic maps from syntactic sets to the corresponding semantic sets. There

are three such maps:

1. First, types are mapped into semantic sets. The type of naturals is mapped to the set of natural

numbers. Arrow types are mapped into function spaces, product types into products of underlying

sets.
J•K : τ → Set

JintK = N

Jτ1 → τ2K = (Jτ1K→ Jτ2K)

Jτ1 × τ2K = Jτ1K× Jτ2K
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2. The semantics of type assignments is a “nested” product ofthe types in the assignment:

J•K : Γ→ Set

J〈〉K = 1

JΓ, τK = JΓK × JτK

3. Finally, the semantics ofL1 programs is defined in “categorical style,” by induction over the typing

derivations ofL1. The semantic functionJ•K1 takes a proof of a judgmentΓ ⊢ e : τ and produces

“an arrow,” i.e., a function from the meaning of the type assignments to the meaning of the type of

the expressione. In its variable case, the semantic function relies on the auxiliary family of semantic

functionsLJ•K : (Γ ⊢ n : τ) → (JΓK → JτK) , which for some integern, performs the look-up of

then-the element of the runtime environment:

LJ•K : (Γ ⊢ n : τ)→ (JΓK→ JτK)

LJ0K ( , v) = v

LJn + 1K (ρ, ) = LJnK ρ

The semantic function is defined as follows:

J•K : (Γ ⊢ e : τ)→ (JΓK→ JτK)

JΓ ⊢ Var nK ρ = LJnK ρ

JΓ ⊢ λτ1.e : τ1 → τ2K ρ = (x : Jτ1K) 7→ (JΓ, τ1 ⊢ e : τ2K (ρ, x))

JΓ ⊢ e1 e2 : τK ρ = JΓ ⊢ e1 : τ ′ → τK ρ (JΓ ⊢ e2 : τ ′K ρ)

JΓ ⊢ (e1, e2) : τ1 × τ2K ρ = (JΓ ⊢ e1 : τ1K, JΓ ⊢ e2 : τ2K)

JΓ ⊢ πn e : τnK ρ = πn JΓ ⊢ e : τ1 × τ2K

Basic Properties ofL1. For the sake of completeness of our presentation, we state some basic properties

of the languageL1. These are fairly standard (e.g., [5]), but will be useful injustifying some design choices

in the latter implementation ofL1.

Proposition 2 (Generation lemma forL1) The following implications hold:

1. Γ ⊢ Var n : τ ⇒ Γ ⊢ n : τ

1One should note that the semantic functionJ•K is actually afamily of functions indexed bye,Γ andτ , and as such is given a
dependent type

Πe∈E,Γ∈Γ,τ∈T (Γ ⊢ e : τ) → JΓK → JτK



102

2. Γ ⊢ e1 e2 : τ ⇒ ∃τ ′.Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′

3. Γ ⊢ (λτ1.e) : τ ⇒ ∃τ2.τ = τ1 → τ2 and Γ, τ1 ⊢ e : τ2.

4. Γ ⊢ (e1, e2) : τ ⇒ ∃τ1, τ2.τ = τ1 × τ2 and Γ ⊢ e1 : τ1, Γ ⊢ e2 : τ2

5. Γ ⊢ π1 e : τ ⇒ ∃τ ′.Γ ⊢ e : τ × τ ′

6. Γ ⊢ π1 e : τ ⇒ ∃τ ′.Γ ⊢ e : τ ′ × τ

7. Γ, τ ⊢ 0 : τ

8. Γ, τ ′ ⊢ (n + 1) : τ ⇒ Γ ⊢ n : τ

PROOF. Proof is by induction on the height of derivations, as in [5].�

Proposition 3 (Uniqueness of derivations)For all e ∈ E, τ ∈ T, Γ ∈ Γ, if Γ ⊢ e : τ , then there is only

one derivation tree that is the proof ofΓ ⊢ e : τ .

PROOF. Proof is by induction on the height of derivationΓ ⊢ e : τ and using the generation lemma.�

5.0.2 Implementation ofL1: an Overview

The implementation ofL1 in many ways mirrors the definitions in Section 5.0.1, in so far as it, too,L1

consists of three “artifacts.” One could view the three artifacts assyntax, semanticsandpragmaticsof the

languageL1, respectively:

1. A data-type representing typing judgments ofL1. The inhabitants of this type represent typing deriva-

tions ofL1. This data-type, which we will call (well-typedness)judgments, is similar to the induc-

tively defined types and relations from Section 4.3.

2. An interpreter which defined over proofs of typing judgments of L1. The interpreter is a (total) a

mapping from well-typed judgments to the meanings of types for those judgments, and thus directly

corresponds to the family of semantic functionsJ•K.

3. A type-checking function. This function takes syntactic(not necessarily well-typed)L1 pre-terms and

constructs a proof ofL1 typing judgment or raises an error. This function has no direct correspon-

dence to the semantic definitions given from (Figure 5.1). Rather, it implements a well-formedness

condition onL1 typing derivations that is assumed implicitly by those definitions.
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Syntax Type System

Types τ ::= int | τ1 → τ2 | τ1 × τ2
Assignments Γ ::= 〈〉 | Γ, τ

Expressions e ::= n | λτ.e | e1 e2 | Var n | e1 ⊕ e2

(e1, e2) | π{0,1} e

Γ ⊢ Lit n : int

Γ ⊢ n : τ

Γ ⊢ Var n : τ

Γ, τ ⊢ e : τ ′

Γ ⊢ λτ.e : τ → τ ′

Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′

Γ, τ ⊢ 0 : τ

Γ ⊢ n : τ

Γ, τ ′ ⊢ (n + 1) : τ

SEMANTICS

Assignments Judgments
J〈〉K = ()
JΓ, τK = (JΓK, JτK)

Types
JintK = Int
Jt1 → t2K = Jt1K → Jt2K
J(t1, t2)K = (Jt1K, Jt2K)

J•K : (Γ ⊢ e : τ) → JΓK → JτK
JΓ ⊢ Var n : τK ρ = LJnK ρ

JΓ ⊢ λτ.e : τ → τ ′K ρ = (x : JτK) 7→ (JΓ, τ ⊢ e : τ ′K (ρ, x))
JΓ ⊢ e1 e2 : τ ′K ρ = (JΓ ⊢ e1 : τ → τ ′K ρ)(JΓ ⊢ e2 : τK ρ)
LJ0K ( , v) = v

LJn + 1K (ρ, ) = LJnKV n

Figure 5.1: The languageL1

5.1 Runtime Representations of Object-language Types

As we have seen in Section 4.3, values of interesting domainsfor which we encode properties and predicates

(e.g., natural numbers in the previous section) are encodedastypesin the meta-language. We will call such

types in the meta-languagedomain value types. For example, the typesS, Z, IsNat, PlusRel are

such types (and type constructors). Domain value types are not formally different from any other meta-

language types – the distinction of purely one of conventionand use.

5.1.1 Types

The set ofL1 types is represented by a subset of Haskell types themselves. The semantic functionJ•K : τ →

Setgives the appropriate mapping fromL1 types to the types in the metalanguage, in this case Haskell.The

typeRep t defines which Haskell types are permitted to be used asL1 types: if, for some Haskell typet ,

we have a value of typeRep t , then this is a proof that there exists anL1 typeτ , such thatJτK = t .

We will call this typeruntime type representations:(or reps) a value of data-typeRep t represents type

t (Figure 5.2).

1 data Rep t

2 = Rint (Equal t Int)

3 | Runit (Equal t ())

4 | ∀αβ. Rarr (Rep α) (Rep β) (Equal t ( α→β))

5 | ∀αβ. Rpair(Rep α) (Rep β) (Equal t ( α , β))

6
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7 rint :: Rep Int

8 rint = Rint refl

9

10 runit :: Rep ()

11 runit = Runit refl

12

13 rarr :: Rep a →Rep b→Rep (a →b)

14 rarr r1 r2 = Rarr r1 r2 refl

15

16 rpair :: Rep a →Rep b→Rep (a,b)

17 rpair r1 r2 = Rpair r1 r2 refl

The constructorRint :: Rep t (line 2) contains the proof that the typet is equal to the typeInt .

Similarly, the constructorRarr (line 4) contains representations of the domain and the codomain typesα

andβ together with a proof that typet equals toα→ β. The domain and codomain types are existentially

quantified. The equality proof allows us to cast betweent objects and the function spaceα→ β whenever

we deconstruct the representation itself.

The important feature ofruntime type representations(henceforthReps) is that they can be compared

for equality. The functiontestEq compares to typeReps (of typest1 andt2 ) at runtime and if they are

equal, constructs a proof of that equality. This proof can then be used to cast from values of typet1 to

values of typet2 .

1 testEq :: Rep t1 →Rep t2 →Maybe (Equal t1 t2)

2 testEq ( RUnit p1) ( RUnit p2) = return (p1 <> (sym p2))

3 testEq ( RInt p1) ( RInt p2) = return (p1 <> (sym p2))

4 testEq ( RArr d1 c1 p1) ( RArr d2 c2 p2) =

5 do { p3 <- testEq d1 d2

6 ; p4 <- testEq c1 c2

7 ; return (p1 <> (subTab p3 p4) <> (sym p2)) }

8 testEq ( RPair d1 c1 p1) ( RPair d2 c2 p2) =

9 do { p3 <- testEq d1 d2

10 ; p4 <- testEq c1 c2

11 ; return (p1 <> (subTab p3 p4) <> (sym p2)) }

12 testEq _ _ = Nothing

The base cases are quite simple. For example, the case comparing two representations of unit type

testEq ( RUnit p1) ( RUnit p2) = return (p1 <> (sym p2))

The proof objectp1 has the typeEqual t1 () , and the proof objectp2 has the typeEqual t2 () .

These proofs are easily combined to construct the proofEqual t1 t2 : t1
p1

+3 ()
sym p2

+3 t2 .
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The other cases work by deconstructing the twoReps in parallel, comparing their subparts for equality,

and combining them into proofs of equality between the original Reps. We examine the case forRArr

(lines4-7).

testEq (r1@( RArr d1 c1 p1)) (r2@( RArr d2 c2 p2)) =

do { p3 <- testEq d1 d2

; p4 <- testEq c1 c2

; return (p1 <> (subTab p3 p4) <> (sym p2)) }

We start with proof objectsp1:: Equal t1 ( 1→ 2) andp2:: Equal t2 ( 3→ 4). The first recursive

call to testEq computes the proof objectp3:: Equal 1 3, and the second recursive call computes the

proof objectp4:: Equal 2 4. The proofsp2 andp3 are combined bysubTab to obtain the proof

subTab p3 p4 :: Equal (_1 → _2) (_3 →_4)

The final result is obtained by combining these proofs (usingthe proof combinatorstrans andsym),

which we show graphically:

t1
p1

testEq r1 r2

( 1→ 2)

subTab p3 p4

t2 ( 3→ 4)
sym p2

Type representations are a powerful programming tool. As wehave seen before, domain value types

encode interesting values in the system. Programming languages such as Haskell, however, do not allow

computation to take place at the type level. Runtime comparison of type representations can be used to

simulate this kind of computation. At runtime, a value of type Rep t , can be compared to some other

valueRep t’ . If they are equal, then we know that the domain value typet evaluates tot’ , and can use

the resulting equality proof to cast between the two. If the equality test fails, that means that the domain

value typet would not evaluate tot’ and the expression was not correctly typed in the first place,leaving

the user the ability to gracefully exit the program. This technique has also been used to implement dynamic

typing in a disciplined and type safe manner [4].

To demonstrate the use of the functiontestEq , consider the following small example:

1 increment :: Rep t → t →Maybe Int

2 increment rt i =
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3 do { p <- testEq rt rint -- p:: Equal t Int

4 ; return ((a2b p1 i) + 1) }

The functionincrement expects two arguments: a representation of typet , and a value of typet . If

the representation is an integer,increment increments the integer by one; otherwise, it returnsNothing .

This function relies ontestEq (line 3) to compare the argument representation toRep Int . If the

comparison succeeds, the proofp can then be used to convert at object into an integer and perform the

addition. Otherwise, the monad simply propagates failure.

5.1.2 Expressions

Following the method demonstrated in Section 4.3, we can mapthe remaining syntactic definitions ofL1

into their corresponding Haskell data-types. First, we will define a number of types and type constructors

that correspond to syntactic pre-terms ofL1.

1 newtype ABS t e = ABS (Rep t) e

2 newtype VAR x = VAR x

3 newtype APP e1 e2 = APP e1 e2

4 newtype LIT i = LIT i

We call them “pre-terms” because up to this point there is no way to ensure that these types are combined

in a syntactically correct way. For example, the following expression does not correspond to any validL1

term:

VAR (VAR (LIT String)) :: VAR (VAR (LIT String))

Now, we return from our digression and define an inductive judgmentIsExp::* → * . This judgment

defines what it means to be a well-formed syntactic expression. The intuition is that if we have a value

of type IsExp t , then t is a domain value type representing some syntactic expression e at the type

level. Furthermore, there is again a one-to-one correspondence between values of typeIsExp t and the

expression represented byt .

1 data IsExp t =

2 ∀n. IsVar (IsNat n) (Equal t (VAR n))

3 | ∀e1 e2. IsApp (IsExp e1) (IsExp e2) (Equal t (APP e1 e2))

4 | ∀tdom e.IsAbs (Rep tdom) (IsExp e) (Equal t (ABS tdom e))

5 | ∀n. IsLit n (Equal t (LIT n))
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6

7 isVar :: IsNat n -> IsExp (Var n)

8 isVar n = V n refl

9

10 isApp :: IsExp e1 -> IsExp e2 -> IsExp (APP e1 e2)

11 isApp e1 e2 = IsApp e1 e2 refl

12

13 isAbs :: Rep t -> IsExp e -> IsExp (ABS t e)

14 isAbs t e = IsAbs t e refl

15

16 isLit :: a -> IsExp (LIT a)

17 isLit n = IsLit n refl

The type constructorIsExp plays the same role for expression, as the type constructorIsNat for the

naturals. For example,

1 exp1 :: IsExp (ABS Int (ABS (Int → Int) (APP (VAR Z) (VAR (S Z)))))

2 exp1 = isAbs rint

3 (isAbs (rarr rint rint)

4 (isApp (isVar z) (isVar (s z))))

Well-formed type assignments can also be represented at thelevel of types.

1 data IsGamma gamma =

2 IsEmpty (Equal gamma ())

3 | ∀g t. IsGammaExt (IsGamma gamma) (Rep t) (Equal gamma (g,t))

4

5

6 isEmpty :: IsGamma ()

7 isEmpty = IsEmpty refl

8

9 isGammaExt :: IsGamma g →Rep t → IsGamma (g,t)

10 isGammaExp g r = IsGammaExp g r refl

The purpose of this section has been to demonstrate that morecomplex domain value types (e.g., those

representing expressions, type assignments etc.) can be represented and manipulated in the paradigm we

propose. In what follows, we will not use this particular encoding as it is not needed – it has been presented

here just for completeness’ sake.
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5.2 Judgments: representing well-typed terms

We begin with a few preliminary observations. First, we recall that there is a set of derivations of the

judgmentΓ ⊢ e : τ . This set is defined inductively by the rules in Figure 5.1. Now, we examine the

correspondences between definitions of various sets (Figure 5.1) and the Haskell implementation.

The set of typesτ , is encoded by Haskelltypesthemselves. For example, theL1 type Int → Int is

represented by the Haskell typeInt → Int . Thus, the semantic function in Figure 5.1, (JτK) is then

simply the identity function, since the meanings of terms ofa certain type will be mapped into exactly the

same type again.2 Similarly, type assignments (contexts,Γ) are represented in Haskell using the Haskell

product type. For example the type assignment〈〉, Int, Int → Int is represented by the Haskell nested

product(((),Int),Int → Int) . The underlying semantics of these types, in turn, is provided by the

semantics of the underlying language, namely Haskell. Now,we are ready to present the actual encoding

of type judgments and their proofs.

The judgmentΓ ⊢ e : τ is implemented by a Haskell type constructorExp g t of kind * → * → * .

Each derivation rule from the top of Figure 5.1 is represented by a constructor of theExp data-type. We

can read the typee :: Exp g t as “Under the type assignmentg, there is an expressione that has

typet .” Figure 5.2 summarizes the relevant definitions for the Haskell encoding.

We have shown how the syntactic expressions ofL1 can be encoded at type level as a judgmentIsExp

(Section 5.1.2). Following the pattern described in the natural numbers example (Section 4.3), one might

expect that judgments would be encoded by aternary type constructor of kind* → * → * → * , so that

Γ ⊢ e : τ corresponds toExp g e t .

Instead, in our encoding, we will opt for an encoding of theL1 typing judgment that does not require the

L1 expressions to appear in its type. This is because the the expression part of the judgment is uniquely

determined by the type assignment, the type of the expression, and the structure of the typing derivation

(See Proposition 3).3

How is the set of typing judgments encoded in Haskell? Each constructor ofExp corresponds for a

derivation rule of the static semantics ofL1. We examine each data-constructor ofExp in detail below.

Variables. If we examine the judgments of Figure 5.1 for variable cases,we will notice that the two cases

for variables are defined inductively on the natural number that represents the distance of the variable from

its binding site. To simulate this induction on the bound variable indices, rather than on the structure of

2This is due to the fact that types in Haskell and types inL1 are very similar. For some other language whose types differfrom
Haskell’s, one must find a less trivial mapping into Haskell types.

3Another way of saying this is that the type judgment is syntaxdirected.
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1 data Exp e t
2 = Lit Int (Equal t Int)
3 | V (Var e t)
4 | ∀αβ. Abs (Rep α) (Exp (e, α) β) (Equal t ( α→β))
5 | ∀α. App (Exp e ( α→ t)) (Exp e α)
6 | ∀αβ. Pair (Exp e α) (Exp e β) (Equal t ( α, β))
7 | ∀αβ. Pi1 (Exp e ( α, β)) (Equal t α)
8 | ∀αβ. Pi2 (Exp e ( α, β)) (Equal t β)
9

10 data Var e t
11 = ∀γ. Z (Equal e ( γ,t))
12 | ∀γα. S (Var γ t) (Equal e ( γ, α))
13

14 data Rep t
15 = Rint (Equal t Int)
16 | Runit (Equal t ())
17 | ∀αβ. Rarr (Rep α) (Rep β) (Equal t ( α→β))
18 | ∀αβ. Rpair (Rep α) (Rep β) (Equal t ( α , β))

Figure 5.2: Haskell implementation ofExp.

expressions, we define an auxiliary data-typeVar of kind * → * → * .

data Var e t

= ∀γ. Z (Equal e ( γ,t))

| ∀γα. S (Var γ t) (Equal e ( γ, α))

We show the derivation rule and the definition of the constructor side by side:

γ, t ⊢ 0 : t
| ∀γ. Z (Equal e ( γ,t))

γ ⊢ n : t

γ, α ⊢ (n + 1) : t

| ∀γα. S (Exp γ t)

(Equal e ( γ, α))

Just as in the judgment of Figure 5.1, there are two cases:

1. First, there is the constructorZ. This constructor translates the inductive definition directly: as its

argument it takes a proof that there exists some environmentγ such that the environmentt is equal

to γ extended byt .

2. The second constructor,S takes a proof that(Var γ t) , and as its second argument it takes the

proof that the environmente is equal to the pair(γ, α), where bothγ andα are existentially quanti-

fied.
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The namesS andZ are chosen to show how the proofs of the variable judgment arestructurally the same

as the natural number indices. Finally, the sub-proofs for the variable case are “plugged” into the definition

of Exp e t using the constructorV.

Finally, for theVar data-type we define the two smart constructors:

z :: Var (a,b) b

z = Z refl

s :: (Var e t) → (Var (e,a) t)

s v = S v refl

Abstraction. The typing rule for abstraction is
Γ, α ⊢ e : β

Γ ⊢ λα.e : α→ β
. Translation of this derivation into

Haskell is as follows:

data Exp e t = . . .

( ∀α β. Abs (Rep α) (Exp (e, α) β) (Equal t ( α→β)))

Intuitively, we can create a typing derivation using theAbs rule if there exist some Haskell typesα and

β such that

a. We can provide a representation of the typeα. This part directly corresponds to the requirement that

the syntax of the lambda expression carry the type of the argument variable.

b. We can provide a proof of the judgmentExp (e, α) β. This is equivalent to the proof of the

antecedentΓ, α ⊢ e : β: the abstraction is well-typed if the body of the abstraction is well-typed in

an environment extended with the domain type,(e, α) and has the codomain typeβ.

c. And finally, if we can construct the proof that the argumenttype t is equal to the typeα → β.

Haskell’s system of data-types forces each data constructor function to return aExp e t . This

equality proof argument allows us to work around this restriction, since the proof thatt equalsα→ β

allows us to cast at into the typeα→ β.

The smart constructor for abstraction is defined as follows:

abs :: Rep t1 →Exp (e,t1) t2 →Exp e (t1 → t2)

abs typ body = Abs typ body refl
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Application. The definition of the data constructor for application is given below.

| ∀α. App (Exp e ( α→ t)) (Exp e α)

It takes two arguments: first is the proof of judgment of the function expression – this expression has an

arrow typeα→ t ; the second argument is the proof of the judgment for the argument to which the function

is applied. It’s type must be identical to the typeα of the function domain.

Since this constructor does not contain any equality proofs, there is no need for a smart constructor. For

syntactic uniformity with other smart constructors, a trivial smart constructor is defined for this case:

app :: Exp e (t1 → t2) →Exp e t1 →Exp e t2

app = App

Examples. We show a couple of examples ofL1 typing judgments in Haskell and their proofs. First

thing to note is that the proofs are constructed using the lower-case smart constructors; the use of these

functions forces the Haskell type system to automatically infer the correct shape of the arguments to the

type constructorExp whose value is being constructed. First, we define the valueexample1 .

example1 :: Exp e (Int → (Int → Int) → Int)

example1 = -- λx. λf. f x

abs rint

(abs (rarr rint rint)

(app (V z) (V (s z))))

The definitionexample1 corresponds to the followingL1 type derivation:

♦, Int ⊢ 0 : Int
(VarZ)

♦, Int, Int→ Int ⊢ 1 : Int
(VarS)

♦, Int, Int→ Int ⊢ Var 1 : Int
(Var)

♦, Int, Int→ Int ⊢ 0 : (Int→ Int)
(VarZ)

♦, Int, Int→ Int ⊢ Var 0 : (Int→ Int)
(Var)

♦, Int, Int→ Int ⊢ (Var 0) (Var 1) : Int
(App)

♦, Int ⊢ λInt→ Int. (Var 0) (Var 1) : ((Int→ Int)→ Int)
(Abs)

♦ ⊢ λInt. λInt→ Int. (Var 0) (Var 1) : (Int→ (Int→ Int)→ Int)
(Abs)

Also, note that the following definition,example2 , shows how to write proofs ofExp judgments for

open terms.

example2 :: Exp ((a,b),(Int,b) → c) (Int → c)

example2 = -- λx2. f1 (x0, x2)

abs rint

(app (V (s z)) (pair (V z) (V (s (s z)))))
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Variable indices 1 and 2 are used in the body of the abstraction. This forces the type of the environment

argument toExp to grow to accommodate a correct type assignment for the freevariables. The definition

example2 corresponds to the followingL1 typing derivation:

· · · ((Int × b)→ c) ⊢ 0 : ((Int × b)→ c)
(VarZ)

· · · ((Int × b)→ c), Int ⊢ 1 : ((Int × b)→ c)
(VarS)

♦, b, ((Int× b)→ c), Int ⊢ Var 1 : ((Int× b)→ c)
(Var)

.

.

.
.
.
.
.
.
.

· · · ⊢ Var 0 : Int
(Var)

.

.

.
.
.
.
.
.
.

· · · ⊢ Var 2 : b
(Var)

· · · ⊢ (Var 0, Var 2) : Int× c
(Pair)

♦, b, ((Int× b)→ c), Int ⊢ (Var 1) (Var 0, Var 2) : (Int→ c)
(App)

♦, b, ((Int× b)→ c) ⊢ λInt. (Var 1) (Var 0, Var 2) : (Int→ c)
(Abs)

One should note that type variables that occur in the type ofexample2 arenotpart of the type system of

L1; rather, they are meta-variables. Intuitively, this corresponds to a wholefamily of L1 judgments, where

arbitraryL1 types can be substituted for meta-variablesb andc.

5.2.1 Interpreter

The interpreter function is, in a way, the simplest of all theartifacts of the language implementation in this

style. It is a function of typeExp e t → e→ t , whose definition is shown in Figure 5.3.

In this function the equality proofs that proofs of judgments contain become essential.

( 2) eval ( Lit i p) env = b2a p i

-- p :: Equal t Int

-- i :: Int

-- b2a p i :: t

In line 2, theeval function must return a result of typet , but all we have is the integeri . However, we

also have the proofp :: Equal t Int . Now we can use the functionb2a to obtain(b2a p i)

which has the typet .

The the variable case (line3) simply passes control to the auxiliary functionevalVar .

eval ( V v) env = evalVar v env

evalVar :: (Var e t) → e → t

evalVar ( Z p) env = snd (a2b p env) -- p :: Equal e (_1,t)

evalVar ( S v p) env = evalVar v (fst (a2b p env))

-- env :: e

-- v :: Var _1 t
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-- p :: Equal e (_1,_2)

-- a2b p env :: (_1,_2)

This function performs the appropriate projection from theenvironment: in line11, we first use the proof

objectp :: Equal e ( γ,t) to cast the environmente into type(γ, t ), and then to project the second

element of typet . Line 12 implements the weakening case for variables. Again, the equality proofp is used

to cast the environment to a pair, and pass the sub-environment to the recursive call toevalVar .

The case for application is defined as follows (in line4):

eval ( App f x) env = (eval f env) (eval x env)

-- f :: Exp e (_1 → t)

-- x :: Exp e _1

-- eval f env :: _1 → t

-- eval x env :: _1

-- (eval f env) (eval x env) :: t

First, the function part of the application is evaluated, obtaining a function value of typeα→ t ; next,

the argument is evaluated obtaining a value of typeα. Finally the resulting function is applied, obtaining a

result of typet . It is worth noting that in this case the functioneval is called recursively at two different

instances, namelyExp e ( α→ t) andExp e α, requiring the use ofpolymorphic recursion.

1 eval :: (Exp e t) → e → t
2 eval ( Lit i p) env = b2a p i
3 eval ( V v) env = evalVar v env
4 eval ( App f x) env = (eval f env) (eval x env)
5 eval ( Abs r body p) env = b2a p ( \ x → eval body (env,x))
6 eval ( Pair x y p) env = b2a p (eval x env, eval y env)
7 eval ( Pi1 e p) env = b2a p (fst (eval e env))
8 eval ( Pi2 e p) env = b2a p (snd (eval e env))
9

10 evalVar :: (Var e t) → e → t
11 evalVar ( Z p) env = snd (a2b p env)
12 evalVar ( S v p) env = evalVar v (fst (a2b p env))

Figure 5.3:L1: the interpretereval

Other cases ofeval are similar to the ones already discussed above, and will notbe elaborated in detail.

The general pattern could be summarized as follows. The function eval takes apart a proof of a judgment

(Exp or Var ) to produce a value: the type of the value produced is contained in the type index of the

judgment. The proof of the judgment must contain sufficient equality proofs that can be used to circumvent
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typing problems that arise by casting. The inductive natureof the judgment proofs often requires thateval

be called recursively at different types, so the use of polymorphic recursion is essential.

5.2.2 Type-checker

1 type Name = String
2

3 data E
4 = I Int | A E E | Lam Name T E
5 | Var Name | P E E | P1 E
6 | P2 E
7 data T = ∀α. T (Rep α)
8 tint,tunit :: T
9 tint = T rint

10 tunit = T runit
11 tarr :: T → T → T
12 tarr x y =
13 case (x,y) of ( T a, T b) → T (rarr a b)
14 tpair x y :: T → T → T

Figure 5.4: Syntactic pre-expressions and types

In Section 5.2 we have shown how the data-typeExp e t encodes only well-typedL1 terms.4 In

Section 5.2.1 we have presented an interpreter which maps well-typed L1 terms of typeExp e t into

corresponding values of typet . One part that is missing in this language implementation issome kind

of parsingor type-checkingfunction. Such a function must take as its arguments either strings, or simple

pre-expressions ofL1, and produceExp e t values if the input terms are well-typed (or if they are textual

representations of well-typedL1 terms).

We make a small digression here to make an observation about the syntactic pre-termsE (Figure 5.4).

For increased human readability the pre-expressions do notuse de Bruijn style of variable representation.

Thus the type-checking function converts these terms with variable names to the nameless notation of

Exp judgment proofs. This is easily accomplished by simply keeping a history of binding occurrences

of variables as we descend down the term, then computing its position in the list at variable use sites.

Second, pre-expressionsE carry type annotations on bound variables inλ-abstractions. For this we need

some syntactic representation of types. We resort to a very useful and concise trick: a type of syntactic

representations ofL1 types will simply be the data-typeT, whereT = ∃α.Repα. This way, converting the

4To be precise, values of this data-type encode proof derivations of the typing judgments ofL1, but since for each well-typedL1

expression in a given context there is only one such derivation, we can treat the proofs as standing for their corresponding terms. We
will use the term “well-typed expression” for such a proof where the correspondence is clear from the context.



115

syntactic typesT into Reps is accomplished by simply “unpacking” existential package typeT.

Having defined syntactic pre-terms, we encounter a problem,however, when we try to give a type to the

type-checking function:

tc :: E →Exp ?1 ?2

The problem is that types to be used in place of?1 and?2 are different depending on the values of the

E argument, which means that the functiontc could not return a single type, but rather a whole family of

types. For example, for an input termλx : Int. x it must returnExp e (Int →Int) , while for the input

term4 it must returnExp e Int .

Fortunately, using existential types we can indeed give a type to the functiontc used above. This type

is:

tc :: · · · → Maybe ( ∃αβ. ((Rep β), (Rep α),

(Exp α β)))

One thing to note is that in Haskell we must encode existential types as data-types. This is why we define

the data-typeJ f , which takes a binary type constructorf , and encodes∃αβ. (Rep β)(Rep α)(f α β).

Then,f can be instantiated either withExp to obtain the range type oftc , or with Var to obtain the range

type of lookup (shown later). The full implementation of the functiontc is given in Figure 5.5.

data J f = ∀αβ. J (Rep β) (Rep α) (f α β)

tc :: [Name] → E → T → Maybe (J Exp)

The first argument to the function is a list of variable names,which is used to compute the appropriate

variable indices. The second argument is, of course, the pre-expression for which a judgment will be

constructed. The third argument oftc is the initial type assignment giving types for free variables in the

input expression. Conceptually, this is a list of types corresponding to the types whose indices are listed in

the first argument. However, we will use a single nested pair type to encode this list in order to make our

definitions more compact.

The Maybe type of the codomain represents the possibility that the input may not be well-typed and

therefore noExp can be produced. In addition to an (Exp α β) it is necessary that the function return a

runtime representation of the types of the environment and the result as well, so they too are included in the

type ofJ above.

The typeJ Exp (line 1) is defined as a representation of∃et.(Rep t) (Rep e) (Exp e t) and



116

J Var for ∃et.(Rep t) (Rep e) (Var e t) , since Haskell allows the use existential types only

in data-type definitions.

Now let us examine some of the cases for which the functiontc is defined. The case for literals (line4)

is quite simple: the type environment argument is unpacked and stored as the type representation of the

environment.

( 4) tc vs (I i) (T env) = return (J rint env (lit i))

Type representationrint is used to encode the type of the expression itself. The proofof the typing

judgment itself is (lit i ). These three values are packed up together and returned as aresult of type

J Exp .

Next case is the abstraction (lines8-10).

( 8) tc vs (Lam name t e) gamma =

do { J rcod (Rpair renv rdom p1) j ← tc (name:vs) e (tpair gamma t)

( 10) ; return (J (rarr rdom rcod) renv (lam rdom (castTa_ p1 j))) }

Here we first recursively construct proof for the typing judgment of the body of theλ-abstraction in

the type assignment extended by the domain type. Then, another package is constructed as a proof of

the judgment for the abstraction. In line10 the combinatorcastTa is used to castj , which has the

typeExp _e cod to Exp (env,dom) cod , whererdom :: Rep dom , rcod ::Rep cod and

renv :: Rep env . Such use of casting and other equality combinators is necessary to ensure that

existential variables do not escape the scope of their unpacking.

The case for application (lines11-17) is more complex.

( 11) tc vs (A f a) gamma =

do { J rf env1 f ← tc vs f gamma -- rf :: Rep f

; J ry env2 y ← tc vs a gamma -- ry :: Rep y

; Rarr a b p1 ← return rf

; p2 ← testEq ry a -- p2 :: Equal y a

; p3 ← testEq env2 env1

( 17) ; return (J b env1 (app (castTa p1 f) (castTab p3 p2 y))) }

It usestestEq in a number of places to ensure that the representation of thetypes returned by the recur-

sive calls match. For example, the type of the domain of the function must be equal to the representation of
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the type of the argument. Then, various casting operators use the proofs of equality returned by those tests

to correctly type the resulting judgment. The functiontestEq ensures that if any of these equalities fail,

the entire type-checking function fails as well.

Finally, we show the variable case.

( 5) tc vs (Var str) gamma =

( 6) do { J t e j ← lookup str vs gamma

( 7) ; return (J t e (V j)) }

( 24) lookup :: [Char] → [[Char]] → T → Maybe (J Var)

lookup nm [] env = Nothing

lookup nm (n:ns) (T (Rpair a b p1)) =

if eqStr nm n

then return (J b (rpair a b) z)

else do { J ty rgamma j ← lookup nm ns (T a)

; return(J ty (rpair rgamma b) (s j)) }

( 31) lookup nm ns env = Nothing

As with eval , the variable case (lines5-7) is implemented using an auxiliary function to handle the

induction on variable indices: the functiontc passes control to the functionlookup (lines 24-31). The

function lookup constructs the sub-derivation of typeJ Var , by searching down the list of variable

names and building appropriateVar index. Oncelookup returns, its result is unpacked (line6) and

repackaged as aJ Exp .

5.3 Pattern matching andL
+
1

In this section, we shall extend the languageL1 with sum types and pattern matching. We shall call the

language so obtainedL+
1 . The motivation for this step is twofold:

1. Patterns are an interesting feature of most modern functional programming language. Demonstrating

that patterns can be easily and elegantly integrated into our implementation framework is a further

demonstration of its usefulness and power.

2. Pattern matching introduces the notion offailure into the semantics of the language. Such failure

is one of the simplestcomputational effectsthat can be introduced into a programming language.

Concentrating on such a simple effects will help motivate our further forays into this area.
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1 data J f = ∀αβ. J (Rep β) (Rep α) (f α β)
2

3 tc :: [Name] → E → T → Maybe (J Exp)
4 tc vs (I i) (T env) = return (J rint env (lit i))
5 tc vs (Var str) gamma =
6 do { J t e j ← lookup str vs gamma
7 ; return (J t e (V j)) }
8 tc vs (Lam name t e) gamma =
9 do { J rcod (Rpair renv rdom p1) j ← tc (name:vs) e (tpair gamma t)

10 ; return (J (rarr rdom rcod) renv (lam rdom (castTa_ p1 j))) }
11 tc vs (A f a) gamma =
12 do { J rf env1 f ← tc vs f gamma -- rf :: Rep f
13 ; J ry env2 y ← tc vs a gamma -- ry :: Rep y
14 ; Rarr a b p1 ← return rf
15 ; p2 ← testEq ry a -- p2 :: Equal y a
16 ; p3 ← testEq env2 env1
17 ; return (J b env1 (app (castTa p1 f) (castTab p3 p2 y))) }
18 tc vs (P x y) gamma =
19 do { J rx env1 xexp ← tc vs x gamma -- rf :: Rep f
20 ; J ry env2 yexp ← tc vs y gamma -- ry :: Rep y
21 ; p1 ← testEq env2 env1
22 ; return(J (rpair rx ry) env1 (pair xexp (castTab p1 refl yexp ))) }
23

24 lookup :: [Char] → [[Char]] → T → Maybe (J Var)
25 lookup nm [] env = Nothing
26 lookup nm (n:ns) (T (Rpair a b p1)) =
27 if eqStr nm n
28 then return (J b (rpair a b) z)
29 else do { J ty rgamma j ← lookup nm ns (T a)
30 ; return(J ty (rpair rgamma b) (s j)) }
31 lookup nm ns env = Nothing

Figure 5.5: Typechecking function forL1

5.3.1 Syntax ofL+
1

First, the definition ofL+
1 types is obtained by extendingL1 types with sums:

τ ∈ T ::= · · · | τ1 + τ2

Patterns. We shall first define a notion ofpatternthat will allow us a more succinct and flexible notation

for eliminations of both sums and products, modeled after similar constructs in functional languages such

as Standard ML or Haskell.

The set of patterns is defined as follows:

p ∈ P ::= •τ | Inl p | Inr p | (p1, p2)

Patterns can either be variable bindings (•τ ) which are annotated by the type of the values they bind, the left

or right case of the sum constructor, or pairs of patterns. Inthe text that follows, we shall omit the explicit

type annotations whenever they are discernible from the context.
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Γ ⊢ •τ : τ ⇒ Γ, τ
(Var)

Γ ⊢ p : τ1 ⇒ Γ2

Γ ⊢ Inl p : τ1 + τ2 ⇒ Γ2
(Inl)

Γ ⊢ p : τ2 ⇒ Γ2

Γ ⊢ Inr p : τ1 + τ2 ⇒ Γ2
(Inr)

Γ ⊢ p1 : τ1 ⇒ Γ2 Γ2 ⊢ p2 : τ2 ⇒ Γ3

Γ ⊢ (p1, p2) : τ1 × τ2 ⇒ Γ3
(Pair)

The intuition behind the pattern checking relationΓ1 ⊢ p : τ ⇒ Γ2 is: “under the type assignment

Γ1, the patternp deconstructs an expression of typeτ yielding an extended type assignmentΓ2.” The

positional style for naming variables that we have adopted throughout this chapter means that variables

bound in patterns do not have names. Since more than one variable can be bound in pattern, we must make

a decision as to what numerical indices those variables willbe referred to: we chose that the “furthest”

binding site is the leftmost-bottommost variable.5 The picture in Figure 5.6 illustrates the binding structure

of the termλ(•, •). (Var 1, Var 0), where the curved lines point to the binding site of variables in the body

of an abstraction.

λ•, •

App

ww
ww

ww
ww

w

GG
GG

GG
GG

G

Var 1 Var 0

Γ ⊢ •Int : Int⇒ Γ, Int Γ, Int ⊢ •Int→Int : Int⇒ Γ, Int, Int→ Int
Γ ⊢ (•Int, •Int→Int) : (Int× (Int→ Int))⇒ Γ, Int, (Int→ Int)

Γ ⊢ Inl (•Int, •Int→Int) : (Int× (Int→ Int)) + Int⇒ Γ, Int, (Int→ Int)

Figure 5.6: Binding multiple variables in patterns.

The definition of the pattern checking relation (case for pairs) reflects this – left sub-pattern bindings

precede right sub-pattern bindings in the augmented type assignments. For example, the Figure 5.6 gives

the derivation rules for proofs of the pattern judgment forInl (•Int, •Int→Int).

The next step is to extend theλ-abstractions ofL1 to work with patterns. Note that the patterns inλ-

abstractions do not admit alternatives, and we will delay the discussion of the semantics of pattern matching

failure until later section when we discuss the case expressions. The syntactic form for the newλ-abstraction

is as follows:

e ∈ E ::= · · · | λp.e

The typing rule incorporates the new pattern typing judgments:

Γ ⊢ p : τ1 ⇒ Γ2 Γ2 ⊢ e : τ2

Γ ⊢ λp.e : τ1 → τ2
(Abs)

5Alternatively, we could say that the rightmost-uppermost variable is the one whose index is 0.
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The new-style abstractions include the old-style abstraction virtually unchanged:Γ ⊢ λ•Int.Var 0 : (Int→

Int). However, now we can have more complicated abstractions:Γ ⊢ λ(•Int, •Bool).(Var 0, Var 1) :

(Int× Bool→ Bool × Int).

Sums. There are two new expression forms that are used as introduction constructs for sums, the two

injectionsInl andInr. A case construct is used for sum elimination:

e ∈ E ::= · · · | Inlτ1 τ1
e | Inrτ1 τ2

e | case e of pn → en

One thing to note is that the case expression takes an arbitrary number of matches of patterns that are the

same as the ones introduced forλ-abstractions: they can be incomplete and/or nested to an arbitrary depth.

The typing rules for sum introduction and elimination are given below:

Γ ⊢ e : τ1

Γ ⊢ Inlτ1 τ2
e : (τ1 + τ2)

(Inl)
Γ ⊢ e : τ2

Γ ⊢ Inrτ1 τ2
e : (τ1 + τ2)

(Inr)

Γ ⊢ e1 : τ1 Γ ⊢ pn : τ1 ⇒ Γn Γn ⊢ en : τ2

Γ ⊢ case e1 of pn → em : τ2
(Case)

5.3.2 Semantics ofL1 with Patterns

The semantics of sum types is easy to give in the categorical style we have used in Section 5.0.1. The

meaning of a sum type is the disjoint sum of the meanings of thetwo summands:

Jτ1 + τ2K = Jτ1K + Jτ2K

JΓ ⊢ Inl e : τ1 + τ2K = Inl JΓ ⊢ e : τ1K

JΓ ⊢ Inr e : τ1 + τ2K = Inr JΓ ⊢ e : τ2K

The addition of pattern matching toL1 introduces a notion ofpattern matching failureto the semantics

of L1 programs. The notion of failure may manifest itself in two (related) ways:

1. Global failure. Pattern matching may fail when no pattern can be found to deconstruct a particular

value. This may occur, for example, inλ-expressions (or incompletecase expressions), such as

(λ(Inl •). Var 0) (Inr 10). In case of such a failure, the meaning of the program is undefined.

2. Local failure. Pattern matching may fail as one of a number of alternatives in a case expression.

Local failure may, or may not, be promoted into a global failure: if one of a number pattern matches

in a case expression fails, the control should be passed to other matches, until one of them succeeds.

If there no such succeeding patterns, a global failure should take place.
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The problem posed by introducing effects such as failure into the semantics of programming languages is

that the entire semantic definition must be “overhauled,” inorder to properly propagate the effect of failure

throughout the meaning of the program. We note here that local failure is more benign in this sense then

global failure – it is possible to statically ensure that allpattern matches are complete, so that local failure is

never promoted into a global failure. Encoding such a staticrestriction in the type system is an interesting

problem for future work.

One way to structure denotational semantic definitions so asto be able to manage effects in a more clean,

generic and modular way is to usemonads([84, 83, 72]).

The denotations ofL1 programs augmented by pattern matching are the meanings of theL1 types aug-

mented by a special valueFail indicating failure of pattern matching somewhere in the program. Thus,

definition of the monadM for our purposes would be

M A = A + {Fail}

returnM e = Inl e

(Inr Fail) ⋆M f = Inr

(Inl v) ⋆M f = f v

Two non-proper morphisms,fail and [](pronounced “fatbar”), are also defined.

failM = Inr Fail

(Inr Fail) [] m = m

m1 [] m2 = m1

The first,fail, represents a failing computation. The second,[], is a biased (left) choice operator (also called

“fatbar”): given two computations, its value is the first one, unless it fails, in which case it returns the second

computation. (For a detailed discussion of semantics of patterns in Haskell, and of “fatbar”, see [56]).

Finally, we can define the meaning of types ofL+
1 in a new monad-based framework.

JIntK = N

Jτ1 + τ2K = Jτ1K + Jτ2K

Jτ1 → τ2K = Jτ1K→M Jτ2K

Sums inL+
1 are mapped to the (set theoretic) sums in the meta-language.One notable difference from the

semantics ofL1 types is that the function space has been changed so that its domain isM Jτ2K. This reflects

the fact that functions suspend computations and their effects: after a function is applied, computing the

result of the range typeJτ2K may also result in effects that the monadM hides.
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The semantics of patterns is defined as follows:

JΓ ⊢ p : τ ⇒ Γ′K : JτK→ JΓK→M JΓ′K

JΓ ⊢ •τ : τ ⇒ Γ, τK v ρ = returnM (ρ, v)

JΓ ⊢ Inl p : (τ1 + τ2)⇒ Γ′K (Inl v) ρ = JΓ ⊢ p : τ1 ⇒ Γ′K v ρ

JΓ ⊢ Inl p : (τ1 + τ2)⇒ Γ′K (Inr v) ρ = failM

JΓ ⊢ Inr p : (τ1 + τ2)⇒ Γ′K (Inr v) ρ = JΓ ⊢ p : τ2 ⇒ Γ′K v ρ

JΓ ⊢ Inr p : (τ1 + τ2)⇒ Γ′K (Inl v) ρ = failM

JΓ ⊢ (p1, p2) : (τ1 × τ2)⇒ Γ3K (v1, v2) ρ = (JΓ ⊢ p1 : τ1 ⇒ Γ1K v1 ρ) ⋆M λρ1.

(JΓ1 ⊢ p2 : τ2 ⇒ Γ2K v2 ρ1)

The meaning of patterns is defined by induction on the derivations of the pattern inference judgment

Γ ⊢ p : τ ⇒ Γ′. The meaning is a function that deconstructs a value of typeJτK and produces a runtime

environment transformer that either augments the runtime environment with bindings for variables in the

patternp. Note that deconstructing a sum value, if there is a mismatchin the injections between the pattern

and the value, may result in failure. Hence the type

JΓ ⊢ p : τ ⇒ Γ′K : JτK→ JΓK→M JΓ′K

Now, let us consider the semantics of functions with patternmatching:

JΓ ⊢ λp. e : τ1 → τ2K ρ = λv.(JΓ ⊢ p : τ1 ⇒ Γ′K v ρ) ⋆M λρ′.(JΓ′ ⊢ e : τ2K ρ′)

The meaning of functions consists of two parts: first, meaning of pattern deconstructs the function ar-

gument. If this computation succeeds, a new runtime environmentρ′ is constructed and the body of the

function is evaluated in this new environment.

Finally, we consider the meaning ofcase expressions.

JΓ ⊢ case e of pn → en : τ ′K ρ = JΓ ⊢ e : τ1K ⋆M λv.

JΓ ⊢ p1 : τ ⇒ Γ1K v ρ ⋆M λρ1.JΓ1 ⊢ e1 : τ ′K ρ1

[] JΓ ⊢ p2 : τ ⇒ Γ2K v ρ ⋆M λρ2.JΓ2 ⊢ e2 : τ ′K ρ2

[] · · · · · · · · ·

[] JΓ ⊢ pn : τ ⇒ ΓnK v ρ ⋆M λρn.JΓn ⊢ en : τ ′K ρn

5.3.3 Implementation ofL1 with Patterns

The data-typePat t gin gout corresponds to the well-typedness judgments on patternsΓin ⊢ p : τ ⇒

Γout.
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data Pat t gin gout =

PVar (Equal gout (gin,t))

| ∀αβ. PInl (Pat α gin gout) (Equal t (Either α β))

| ∀αβ. PInr (Pat β gin gout) (Equal t (Either α β))

| ∀αβγ. PPair (Pat α gin γ) (Pat β γ gout) (Equal t ( α, β))

Note that we omit the actual encodings of patterns in the typePat since it is unnecessary to the de-

velopment presented here. The case for variable-binding patternsPVar carries the proof that the type of

the target type assignmentgout is equal to the source type assignmentgin paired with the type of the

pattern itself (Equal gout (gin,t) ). The left injection patternPInl takes as its argument the proof

of a pattern judgmentPat α gin gout , together with the proof thatt equalsEither α β. The most

interesting case is the pair pattern. Its first argument is a proof of the pattern judgmentPat α gin β.

The target type assignment of the first argument,γ, is then given as a source type assignment to the second

argumentPat β γ gout , thus imposing a sequence on type assignment extension for pairs. Finally, this

constructor also needs a proof that the type of the patternt equals( α, β) .

Below, we give the definitions of the smart constructors for building proofs of pattern judgments.

pvar :: Pat a b (b,a)

pvar = PVar refl

pinl :: Pat a b c →Pat (Either a d) b c

pinl pat = PInl pat refl

pinr :: Pat a b c →Pat (Either d a) b c

pinr pat = PInr pat refl

ppair :: Pat a b c →Pat d c e →Pat (a,d) b e

ppair pat1 pat2 = PPair pat1 pat2 refl

The next step is to extend the definition of expressions to work with patterns.

1 data Exp e t

2 = Lit Int (Equal t Int)

3 | V (Var e t)

4 | ∀αβγ. Abs (Pat α e γ) (Exp γ β) (Equal t ( α→β))

5 | ∀α. App (Exp e ( α→ t)) (Exp e α)

6 | ∀αβ. Pair (Exp e α) (Exp e β) (Equal t ( α, β))

7
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8 abs :: Pat a b c →Exp c d →Exp b (a → d)

9 abs p e = Abs p e refl

The only change from the previous definition (Figure 5.2) is theλ-abstraction case (Line4): the abstrac-

tion constructor takes as its first argument a pattern judgment which, given an argument of the domain type

α, produces an extended type assignmentγ. Then, the judgment for the body of the abstraction is typed

under the the extended type assignmentγwith the codomain typeβ. Note, that with the introduction of

pair patterns, we have dispensed with the need for separate elimination constructs (Pi1 andPi2 ) for the

product types.

Example We list an example well-typed term with patterns:

-- swap = λ(•, •).(Var 0, Var 1)

swap :: Exp a ((b,c) → (c,b))

swap = abs (ppair pvar pvar) (pair (V z) (V (s z)))

The function swap uses the pattern(•, •) to deconstruct a pair, and returns a pair with the order of its

elements reversed. Note that the variable index zero,V z, refers to the rightmost variable in the pattern.

Case expressions Case expressions are used to eliminate sum types. We extend the typing judgment for

expressions with the constructorCase:

data Exp e t =

. . . . . . . . . . . .

| ∀α. ECase (Exp e α) [Match e α t]

data Match e t’ t = forall e’. Match (Pat t’ e e’) (Exp e’ t)

A case expression consists of a discriminated expression oftypeExp e α, and a list ofmatches. The

data-typeMatch is a ternary type constructor: its first argument is the type assignmente; its second

argument is the type of the discriminated expressiont’ ; its third argument is the result type of the match

t . Since each pattern in a match may bind a different number of variables, the type assignment that the

right hand side expression of each of the matches in a case maybe different. Thus, an existential type is

introduced in the definition of the matches. A match is a pair of a pattern and an expression, where for each

match there exists an output type assignmente’ produced by that pattern, in which the expression is typed.



125

An Interpreter for L+
1

There are a number of design choices to take when implementing the interpreter for the language with

pattern-matching. The first is how to handle local and globalfailure. For the interpreter we will present

here we have opted for the following:

1. Global failure is modeled by a non-terminating Haskell computation. This diverges somewhat from

the set-theoretic model we have outlined above, but it makesour definitions more concise.

2. Local failure is modeled by computations in the HaskellMaybe monad, as outlined in Section 5.3.2.

In case expressions, after alternatives to the local failures are exhausted, global failure is raised.

The first step is to implement the evaluation function for patterns.

1 fatbar :: Maybe a →Maybe a →Maybe a

2 fatbar ( Just x) e = Just x

3 fatbar Nothing e = e

4

5 evalPat :: (Pat t ein eout) → t → (ein →Maybe eout)

6 evalPat ( PVar p) v = \e → return (b2a p (e,v))

7 evalPat ( PInl pt p) v = \e → case a2b p v of

8 Left x →evalPat2 pt x e

9 Right _ →Nothing

10 evalPat ( PInr pt p) v = \e → case a2b p v of

11 Left _ → Nothing

12 Right x → evalPat2 pt x e

13 evalPat ( PPair pat1 pat2 p) v = \e →

14 let v’ = a2b p v

15 in do { e’ <- evalPat2 pat1 (fst v’) e

16 ; evalPat2 pat2 (snd v’) e’ }

The functionevalPat takes a proof of the pattern judgmentPat t ein eout , a value of typet ,

and returns anenvironment transformerfunctionein →Maybe eout , where theMaybe type in the co-

domain indicates that pattern matching may fail (local failure).

The case for variables is trivial: given a valuev , the environment transformer simply adds the valuev

onto the initial environment.

The case forInl patterns is more interesting. First, the valuev is discriminated to determine whether it

is the left or right injection of a sum. If it is the left injection, evalPat recursively deconstructs the sub-

pattern with the projection of the value. If, however, the value has the form of the right injection, failure is

symoked using the non-proper morphismfail . The case for the right injection pattern is symmetric.
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Finally, for pair patterns,evalPat first evaluates the left sub-pattern with the left element ofthe pair

value. Then, the right sub-pattern is recursively matched.The environment is threaded through from the

results of the left to the input of the right pattern match.

Having definedevalPat , we are ready to give semantics ofλ-abstractions with patterns and the case

expressions:

1 eval :: (Exp e t) →e → t

2 . . . . . . . . . . . .

3 eval ( Abs pat exp p) env = b2a p

4 ( \x →

5 case (evalPat pat x env) of

6 Just env’ →eval exp env’

7 Nothing→ error "Pattern match failure in abstraction!")

8 eval ( Case e branches) env =

9 case (evalCase (eval e env) branches env) of

10 Just v → v

11 Nothing→error "Pattern match failure"

12

13 evalCase :: t1 → [Match e t1 t2] → e →Maybe t2

14 evalCase val [] env = fail

15 evalCase val (( Match pat branch):rest) env =

16 (do { e’ <- evalPat pat val env

17 ; return (eval branch e’) })

18 ‘fatbar‘

19 (evalCase val rest env)

The case ofeval for abstraction (line3-7) creates a function value whose argument,x , is passed to

evalPat in order to create an extended runtime environmentenv’ . In case of failure ofevalPat , an

error is raised. If the pattern matching succeeds, the body of the function is evaluated in the augmented

runtime environmentenv’ .

The case ofeval for the case expressions first evaluates the expression to bediscriminated, and passes

the resulting value to the functionevalCase . If evalCase succeeds, its value is returned as the final

result. In case of failure ofevalCase , a pattern matching error (global failure) is raised.

The functionevalCase (lines13-19) performs the evaluation of a case expression. If there are no matches

left to examine (line14), failure is raised. Otherwise, for each of the matches, thepattern is evaluated with

evalPat against the value of the discriminated expression. If the pattern match succeeds, the augmented

environment is passed on toeval of the right hand side of the match. If a local failure occurs along the

way,evalCase re-tries with the next match.
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Example As a more comprehensive example, we implement the factorialfunction. This function uses a

few more syntax building combinators than has been introduced in the previous text. These are additions to

L+
1 that support recursive definitions (fix ), arithmetic and integer comparison operations. Their signatures

are given below:

1 data Exp e t = . . .

2 | Fix (Exp (e,t) t)

3

4 fix :: Exp (e,t) t →Exp e t

5 fix e = Fix e

6

7 eval ( Fix e) env = eval e (env, eval ( Fix e) env)

8

9 lte :: Exp e Int →Exp e Int →Exp e Bool

10 times,minus :: Exp e Int →Exp e Int →Exp e Int

11

12 fact2 :: Ext e (Int → Int)

13 fact2 = fix

14 (lam pvar

15 (ecase (lte (V z) (lit 0))

16 [ Match (pinl pvar) (lit 1)

17 , Match (pinr pvar) body ]))

18 where body = times (V (s z)) rcall

19 rcall = (V (s (s z))) ‘app‘ (minus (V (s z)) (lit 1))

Note that we use lines and arrows to connect a use site of a variable with its binding site. Note also that

fix binds a variable which is used in the recursive call to the factorial.

5.4 Staging

The technique for encoding and interpreting languages presented in the previous sections may at first ap-

pear untagged. The interpreter functioneval has the typeExp e t → e→ t : instead of injecting all

possible types of its result values into a single value domain, the interpreter returns “untagged” values: in-

tegers, functions, and so on6. However, instead of tagging with injections into the universal domain, these

interpreters exhibit another form of tagging, as can be recalled from the following part of the definition of

eval :

6One should note that a number of programming language features come together to make this possible. The use of equality types
has already been explained in considerable detail. Furthermore, parametric polymorphism and polymorphic recursion allow us to type
functions likeeval .
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eval :: (Exp e t) → e→ t

eval ( Lit i p) env = b2a p i

eval ( Pair e1 e2 p) env = b2a p (eval e1 env, eval e2 env)

Note that the boxed casting operations in fact play the same role as injections and projections of the

universal value domains in more traditional implementations of interpreters in Haskell. In this section,

however, we will point to a crucial difference between tagging/untagging operations with an universal value

domain and the casting and equality operators we use. This distinction becomes visible and practically

useful only when we addstagingto the meta-language.

5.4.1 Staging: Interpretive and Tagging Overhead

We will first make a small digression to introduce and motivate the notion and techniques ofstaging .

Consider the following interpreter forL+
1 . We use typing judgment as usual, but the range of the eval is a

universal domain of values (V) which is a sum of functional values (tagVF), integers (tagVI ), pairs (tag

VP), and tagged sums (tagVS). The interpretereval0 contains uses of tagging and untagging operations

(i.e., the operations which inject or project into/out of the universal value domain), which are highlighted.

data V = VF (V →V) | VI Int | VP V V | VS (Either V V)

unVF ( VF f) = f

eval0 :: Exp e t → [Val] →Val

eval0 ( Lit i _) env = VI i

eval0 ( V var) env = evalVar0 var env

eval0 ( App f x) env = unVF (eval0 f env) (eval0 x env)

eval0 ( Abs pat e _) env =

VF ( \v→ eval0 e (unJust(evalPat0 pat v env)))

evalVar0 :: Var e t -> [V] -> V

evalVar0 ( Z _) (v:vs) = v

evalVar0 ( S s _) (v:vs) = evalVar0 s vs

evalPat0 :: Pat t ein eout -> V -> [V] -> Maybe [V]

evalPat0 ( PVar _) v env = return (v:env)

... ... ...

An examination of the interpretereval0 reveals two sources of inefficiency:
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Interpretive overhead. Interpretive overhead [67] is the main reason why interpreted programs are as

a rule less efficient than compiled programs. The overhead comes from the fact that the interpreter must

spend considerable computation time and resources to analyze and interpret a programat runtimeof the

program it is interpreting. For example, the functioneval0 calls itself recursively in the body of aVF

value when it interprets anAbs expression. Moreover, these recursive calls toeval0 arelatent: they are

not symoked until the function valueVF f is untagged and applied at run-time. If the functional valueis

applied many times, the latent recursive calls will be performed each time.

A more efficient implementation can be obtained by specializing the interpreter with respect a given

object program (the first Futamura projection [38, 67]): this in effectunfoldsthe interpreter “statically,” at

a stage earlier than the actual execution of the program being interpreted, thus removing from the runtime

execution of the program all the operations on its source syntax performed by the interpreter. This means,

among other things, that latent recursion present in theVF case can be removed by “evaluating under the

lambda” of the tagVF. For example, instead a value

VF ( \v→ eval0 (V z) (v:env))

we obtain the equivalent, but more efficient

VF ( \v→ v)

Traditionally, partial evaluation has been used to performthis kind of specialization of interpreters.

Meta-programming bystagingoffers a particularly elegant way of removing this interpretive overhead

(e.g., [117]).

Following MetaML [137, 136], we will introduce into our meta-language a type ofcode , (here written

©t, taking the syntax from Davies [30, 29]) which indicates “computation oft deferred to the next com-

putational stage.” An introduction construct for this codetype are thecode brackets〈e〉, which delay the

expressione of type t , obtaining a value of type©t . Code can be “spliced” into a larger code context by

theescapeexpressioñe . When an escape expression appears inside code brackets, the escaped expression

is computed at the earlier computational stage. The resultsof this computation (which itself must be a code

value) is then “spliced” at the same spot in the delayed context where the escape had first appeared.

We consider adding staging constructs to Haskell as a conservative extension relatively uncontroversial.

Combining staging constructs with a call-by-name languageshould be no more difficult than combining

them with a call-by-value one [129]. We have implemented an interpreter for a Haskell-like language with

staging [124], in which the subsequent program examples arewritten.

We will now stage the example interpretereval0 , obtaining a two-stage version,eval0S . The ex-

ecution of the functioneval0S is divided into two distinct computational stages: in the first stage, the
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interpreter is unfolded over a particular expression, performing all the interpretive operations on the syntax

of the program itself; in the second stage (properly a run-time stage of the interpreted expression), only

computation pertaining to the object program on which the interpreter was specialized remains.

eval0S :: Exp e t →©[Val] →©Val

eval0S ( Lit i _) env = 〈 VI i 〉

eval0S ( V var) env = evalVar0S var env

eval0S ( App f x) env = 〈 unVF ˜(eval0S f env) ˜(eval0S x env) 〉

eval0S ( Abs pat e _) env =

〈 VF ( \v→ ˜(eval0S e 〈unJust ˜(evalPat0S pat 〈v〉 env) 〉))

evalVar0S :: Var e t → [ ©V] →©V

evalVar0S ( Z _) env = 〈head env 〉

evalVar0S ( S s _) env = evalVar0S s 〈tail ˜env 〉

evalPat0S :: Pat t ein eout →V→ [ ©V] →©(Maybe [V])

evalPat0S ( PVar _) v env = 〈return (v:env) 〉

... ... ...

Applying the functioneval0S to an example expression yields the following result:

ex1 = eval2 ( Abs ( Abs ( App ( Var 0) ( Var 1)))) []

-- 〈VF ( \x→VF( \y→ unVF (head [y,x]) (head (tail [y,x])))) 〉

v1 = run ex1

v1 :: V

MetaML also has arun operation which takes an expression of type©t and runs the delayed computa-

tion now, yielding a value of typet . It is important to note thatrun ex1 returns aV from whose evaluation

all recursive calls toeval0S have been removed: even though it is easily provable that in MetaML [129]

(eval0 e []) is semantically equivalent to(run (eval0S e [])) , the latter expression executes

potentially considerably faster then the first (see [62, 16]for some experimental measurements).

Tagging overhead. Another kind of overhead introduced into interpreters istagging overhead(for a

detailed explanation see Section 2.1.1). Tagging overheadoccurs in certain situations when both the meta-

language and the object-language are strongly typed, but the type system of the meta-language forces the

programmer to “sum up” the values of the object-language programs purely in order to make the interpreter
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type-check [102]. If we only consider interpreting well-typed object language programs, these tags are

unnecessary – the strong typing of the object language ensures that no tag mismatch occurs at runtime.

This is the case with the interpretereval0 given above, since evaluating proofs judgments restricts the

function to evaluating only well-typedL+
1 expressions. When such an interpreter is staged, the tagging and

untagging operations are inherited by the residual program.

For example, the residual program first shown above has threetagging operations (shown boxed):

〈 VF ( \x→ VF ( \y→ unVF (head [y,x]) (head (tail [y,x])))) 〉

When interpreting large programs, these tags can proliferate and cause considerable run-time perfor-

mance penalty [133].

5.4.2 Staging the Interpreter forL+
1

We will proceed with staging of the interpreter forL+
1 in a couple of steps. First, we will make the most

straightforward (naı̈ve) staging modification to the interpreter we have already presented. Then, we will

discuss how certainbinding time improvements[67] can be made to the original interpreter to make staging

even more efficient.

First Attempt

The simplest way of staging an interpreter is to begin with the text of the original (non-staged) interpreter,

and simply add staging annotations to it, separating the interpreter into two phases: the static (staging time)

and dynamic (run-time) phase. In this operation we are guided by types: we shall add a single circle type

to the types of values we expect to be performed in the dynamicphase.

Thus, the type of theeval function is changed from(Exp e t) → e→ t to

(Exp e t) →©e→©t , meaning that the runtime environment binding values to variables, and the

value returned by the interpreter are dynamic. The sourceL1 program itself (Exp e t ) remains static.

We now examine the annotations and changes that need to be made to the definition ofeval .

1 evalS :: Exp e t →©e →©t

2 evalS ( Lit i p) env = castTa (sym p) 〈i 〉

3 evalS ( V v) env = evalVarS v env

4 evalS ( Abs pat body p) env = castTa (sym p)

5 〈\x → (let env2 = unJust ˜(evalPatS pat 〈x〉 env)

6 in ˜(evalS body 〈 env2 〉)) 〉

7 evalS ( App e1 e2) env = 〈˜(evalS e1 env) ˜(evalS e2 env) 〉

8
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9 evalVarS :: Var e t →©e →©t

10 evalVarS ( Z p) env = 〈snd ˜(castTa p env) 〉

11 evalVarS ( S v p) env = 〈 let env2 = fst ˜(castTa p env)

12 in ˜(evalVarS v 〈env2 〉) 〉

13

14 evalPatS :: Pat t ein eout →© t →© ein →©(Maybe eout)

15 evalPatS ( PVar p) v ein = 〈Just ˜(castTa (sym p) 〈(˜ein,˜v) 〉) 〉

16 evalPatS ( PInl pt p) v ein =

17 〈 case ˜(castTa p v) of

18 Left x → ˜(evalPatS pt 〈x〉 ein)

19 Right _ →Nothing〉

20 evalPatS ( PInr pt p) v ein =

21 〈case ˜(castTa p v) of

22 Left _ → Nothing

23 Right x → ˜(evalPatS pt 〈x〉 ein) 〉

24 evalPatS ( PPair pat1 pat2 p) v ein =

25 〈let (v1,v2) = ˜(castTa p v)

26 in do { eout1 <- ˜(evalPatS pat1 〈v1 〉 ein)

27 ; ˜(evalPatS pat2 〈v2 〉 〈eout1 〉) }〉

The simplest case is evaluating integer literals:

( 2) evalS ( Lit i p) env = castTa (sym p) 〈i 〉

The integer value〈i 〉 is returned in the next stage. Note that the casting operation is changed from

b2a p :: Int → t to castTa (sym p):: ©Int →©t – which reflects the fact that cast must be

“pushed through” the© type constructor. Similar changes to casting operations tomake them work in a

code context are made throughout the interpreter.

Next, we examine the variable case:

( 9) evalVarS :: Var e t →©e→©t

( 10) evalVarS (Z p) env = 〈snd ˜(castTa p env) 〉

( 11) evalVarS (S v p) env = 〈 let env2 = fst ˜(castTa p env)

in ˜(evalVarS v 〈env2 〉) 〉

The auxiliary functionevalVarS is similarly annotated to ensure that the environment is projected from

at runtime of the object program. Thus, evaluating variable(s z) with some environment〈e〉 results in

〈snd (fst e) 〉. Note that projection of the appropriate value from the environment is thus completely

delayed to the runtime.
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Example

Let us now consider staging a sampleL1 program.

ex1 :: Exp a (Int → Int → (Int,Int))

ex1 = abs (abs (pair (V z) (V (s z))))

- evalS ex1 〈() 〉

〈\x→\y→ (snd (((),x),y), fst (snd (((),x),y))) 〉

Two things should be noted. First, much of the interpretive overhead has been removed from the resulting

expression.

〈\x→\y→ (snd (((),x),y), fst (snd (((),x),y))) 〉

However, one small piece of this overhead remains: whenevera variable is evaluated, it is looked up in

the environment dynamically. This is too dynamic, since theactual position in the runtime environment is

knownstatically and does not change for each variable.7 Recognizing this fact and changing our imple-

mentation to take advantage of it constitutes abinding time improvement,which we shall discuss later.

Second,all tagging overhead has been removed from the resulting code. This is a significant improve-

ment over earlier implementations of staged interpreters (e.g., [117]). It was made possible by a careful use

of equality operators and casting: since code is just another type constructor, we were able to cast a type

“through” code – allowing us to perform the actual casting atan earlier stage. This behavior is very rem-

iniscent oftag elimination[132, 133], where a separate stage (between static and runtime stages) is used

to perform the elimination of tagged values in residual codeof a staged interpreter. Here, the rôle of this

special tag elimination stage is played by stage 0, while stage 1 becomes the run-time stage for interpreted

programs.

Binding Time Improvements

The process of (slightly) changing the interpreter to make it more amenable to staging is known asbinding

time improvement[67]. In the remainder of this section, we will make two binding time improvements

to the staged interpreter forL+
1 with the goal of removing even more interpretive overhead, especially the

dynamic lookup mentioned above.

1. Partially static environments. What the previous staged interpreter fails to take advantage of is the

fact that the runtime environment ispartially static. Namely, while the values in the environment are

7 In other words, the environment in this interpreter ispartially static.
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not known until stage one, the actualshapeof the environment is known statically and depends only

on the structure of the term being interpreted. We should be able to do away with the dynamic lookup

of values in the runtime environment. The resulting interpreter should produce residual code for the

above example that looks like this:

〈\x→\f → f x 〉

2. Pattern matching and control flow. Pattern matching as presented in the semantics above relies

on the failure monad, and thefatbar operator to propagate pattern matching failure. This makes

residual code rather complicated and less efficient. A standard technique in staging is to rewrite such

code incontinuation passing style. Instead of propagating failure with the monad, we will simply

rewrite our pattern matching functionevalPat to accept a success-and-failure continuation. The

residual code produced by this interpreter is much cleaner and easier to read, implementing cases in

L1 by cases in the residual program.

Partially Static Environments. Recall that environments in the previous definitions of the interpreter are

dynamic nested pairs of the form〈 ((...,v2),v1) 〉. The corresponding partially static environment is

a set of static nested pairs, in which each second element is adynamic value:((..., 〈v2 〉), 〈v1 〉) . This

relationship between environment types and the corresponding partially static environments is encoded by

the following data-type:

data PSE e

= INIT ©e

| ∀αβ. EXT (PSE α) ©β (Equal e ( α, β))

-- smart constructor

ext :: PSE a →©b→PSE (a,b)

ext e t = EXT e t refl

A partially static environment (hence, a PSE) can either be completely dynamic (INIT ), or it can be an

environment extended by a dynamic value. The equality proofargument ensures that the type argumente

is identical in form to the form of type assignment index of judgments (thee in (Exp e t) and(Var e

t) ). Now, we can give a new type to the interpreter, as follows:

eval2S :: Exp e t → (PSE e) →©t

evalVar2S :: Var e t → (PSE e) →©t
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The interpreter now takes a well-typed expression(Exp e t) , and a partially static environment

(PSE e) , and produces a delayed result of type©t . The largest change is in the evaluation function

for variables,evalVar2S :

evalVar2S :: Var e t → (PSE e) →©t

evalVar2S ( Z p) ( EXT _ b p2) = castTa prf b

where (_,prf) = pairParts (trans (sym p2) p)

evalVar2S ( S s p) ( EXT e _ p2) = evalVar2S s (castTa prf e)

where (prf,_) = (pairParts (trans (sym p2) p))

The base case takes a derivation of the typing judgment for variable zero, which contains the equality

proof p::Equal e ( α,t) . Its second argument is a PSE, withb:: ©β, and the proofp2 of type

Equal e ( α, β) . The main work is performed by constructing the proofprf , which shows thatβ is

equal tot . A simple cast then converts the valueb from the type(©β) to (©t) . Note that the definition

of prf uses the product equality axiompairParts .

The inductive case is similar. The pair equality axiom is again used to obtain a proof object and cast the

sub-environment so that the recursive call toevalVar2S is well typed.

The functionality ofevalVarS can also be retained by simply providing two additional cases for

evalVar2S , i.e., when the PSE is of the form(INIT dynenv) .

evalVar2S ( S s p) ( INIT env) = evalVar2S s ( INIT 〈fst ˜(castTa p env) 〉)

evalVar2S ( Z p) ( INIT env) = 〈snd (˜(castTa p env)) 〉

Pattern Matching and Continuations. We have seen how PSE’s are used by the new interpreter. It re-

mains yet to see how those environments are extended. Rewriting the functionevalPat2S in continuation

passing style is not difficult. We start by giving it a new type:

evalPat2S :: Pat t ein eout →

©t → (PSE ein) →

(Maybe (PSE eout) →©ans) →©ans

The functionevalPat2S takes a pattern judgment(Pat t ein eout) , a delayed value of typet ,

an input PSE of typeein , and acontinuationfunction. The continuation takes as its argument a maybe

type which is either a new, augmented PSEeout , orNothing and returns a piece of code of some answer

typeans . When given the(Just ein) argument, the continuation constructs the answer for the case in
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which the pattern matching succeeds. When givenNothing , the continuation constructs the code for the

case in which the pattern matching fails.

evalPat2S ( PVar p) v ein k = k ( Just (castTa (sym p) (ext ein v)))

The variable case always succeeds. Therefore, the input PTEis extended by the value (ext ein v ), and

passed to the continuation as success (Just ).

evalPat2S ( PInl pt p) v ein k =

〈case ˜(castTa p v) of

Left x→ ˜(evalPat2S pt 〈x〉 ein k)

Right x→ ˜(k Nothing) 〉

ThePInl case (lines38-39) creates a piece of code which first analyzes the input valuev , generating a

case expression with two branches. The first branch is generated for the case where value is of the form

(Left x) . Its body is generated byevalPat2S which calls itself recursively on the sub-patternpt and

input value〈x〉 without modifying the continuationk . The other branch, however, concerns the situation

where the input value is of the form(Right x) , i.e., a mismatch has occurred. The body of this branch

is generated by the continuationk , symoked with failure,̃(k Nothing) .

Finally, we examine the case for pair patterns (lines43-47).

evalPat2S ( PPair pt1 pt2 p) v ein k =

〈case ˜(castTa p v) of

(v1,v2) → ˜(evalPat2S pt1 〈v1 〉 ein (h 〈v2 〉)) 〉

where h n Nothing = k Nothing

h n ( Just eout1) = evalPat2S pt2 n eout1 k

Given a pair pattern with sub-patternspt1 , andpt2 , and an input valuev , the input value pair is first

deconstructed into its elementsv1 andv2 . Then,evalPat2S calls itself recursively with the left sub-

patternpt1 , the value〈v1 〉, the input environmentein , and, most importantly, the enlarged continuation

h 〈v2 〉. The continuationh 〈v2 〉 (lines46-47) discriminates against its argument:

1. If it is Nothing , then a previous pattern match must have failed and it symokes the initial continua-

tion k with Nothing to propagate the failure.

2. If the previous pattern matching has succeeded with some new augmented environmenteout1 , it

symokesevalPat2S recursively with the right-hand side patterns and values, giving it the new

environment as its input, and the initial continuationk .
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Putting It All Together. The full implementation of the binding time improved interpreter forL+
1 is

given in Figure 5.7 on page 141. Combining all the improvements shown above, we can return toeval2S .

Consider, for example, the case forλ-abstraction (lines14-16). This case constructs a piece of code that is

a function〈\x→ ... 〉. The body of this function is constructed by a call toevalPat2S which is given

the pattern, the discriminated value〈x〉, the current environment and the continuationh. The continuation

h generates the body of theλ-abstraction using the enlarged environment constructed by evalPat2S in

cases of success, and error raising codeerror "failure" in case the pattern matching fails.

For example, when run with the input programλInl • . (Var 0), the staged interpretereval2S returns

the following code:

〈\x→ case x of ( Left y) → y

( Right z) → error "failure" 〉

:: code ((Either a b) → a)

It is also worth noting that if the pattern abstracted over byanL1 abstraction does not contain sums, the

failure portion of the continuation is never symoked, and nocase expressions are generated. For example,

the input programλ • .Var 0:

〈\x→ x〉 :: (forall a . code (a → a))

Let us also consider how case expressions are defined: cases are constructed using the auxiliary function

evalCase2S (lines20-24).

eval2S ( ECase e matches) env =

〈let value = ˜(eval2S e env)

in ˜(evalCase2S 〈value 〉 matches env) 〉

evalCase2S :: ©t1 → [EE e t1 t2] →PSE e→©t2

evalCase2S val [] env = 〈error "failure" 〉

evalCase2S val (( EE (pat,branch)) : rest) env =

evalPat2S pat val env h

where h ( Nothing) = evalCase2S val rest env

h ( Just env2) = eval2S branch env2

First, code is constructed for the discriminated expression, and bound to the variablevalue . Then,

evalCase2S is called to match all the branches of the cases against〈value 〉. This trick is used to
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prevent code duplication between individual matches. The evaluation of each match proceeds just as with

λ-abstraction. The only difference is that in case of failure, the continuationh symokesevalCase2S

recursively to construct further branches for all alternatives.

We show the code generated byeval2S for the expression

λ • .case Var 0 of

Inl • →Var 0

Inr • →Var 0

〈 \x→ let v = x

in case v of ( Left y) → y

( Right ) →

case v of ( Left ) → error "fail"

( Right z) → z 〉

5.5 Conclusions

In previous chapters we have proposed and elaborated on a technique for implementation of strongly typed

object languages. Essential to this technique are certain properties of the object language, such as being

strongly typed; these properties are used to justify producing interpreters which are efficient and reliable

by construction. In particular, we have used dependent types to encode inductive sets of onlywell-typed

terms. Interpreters can be defined over these well-typed terms to avoid tagging overhead, and staged to

avoid interpretive overhead.

In this chapter, we have explored the extent to which similartechniques can be adapted in the setting

of the more popular programming language Haskell. The motivation for this is twofold. First, we wish to

explore the power and flexibility of Haskell-like type systems in order to understand its potential for meta-

programming. The second reason is pragmatic: although the meta-programming system with dependent

types has many useful theoretical properties, such systemshave yet to develop a wider user base, and is

thus liable to gain wider acceptance.

5.5.1 Computational Language vs. Specification Language

To implement object languages (interpreters, compilers, type-checkers, static analysis tools, and so on), one

needs a meta-language. The meta-programming framework we have developed requires the meta-language
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to be typed. In such a typed language we can distinguish between acomputational stratumof the meta-

language which describes the programs that are executed at runtime, and a staticspecification stratum,

which is used to specify properties of the programs in the computational stratum. In functional languages

the distinction between these is rather simple: programs that result in some value-yielding computation at

runtime are the computational stratum, while types of theseprograms whose validity is checked statically

(at type-checking time) are the specification stratum. The distinction between these two coincides with the

usual separation between static and dynamic phases of a program execution.

Thisphase distinction[17] is often difficult to maintain in programming languageswith dependent types

since type-checking (static phase) often requires evaluation (dynamic phase) because types can depend on

dynamic values. In MetaD [102] and FLINT [116], this distinction is maintained by an elaborate stratifica-

tion: the language is explicitly divided into acomputational languagewhose expressions are classified by

a type system (specification language) which itself is a highly expressive language (a version of the Calcu-

lus of Inductive Constructions [24, 22]). The specificationlanguage is expressive enough that interesting

domain values that exist at runtime (such as integers) can also be represented at the level of types. Logi-

cal propositions are then also implemented at the level of kinds, proofs of these propositions being types.

Singleton types[57] are used to force a correspondence between runtime-values and their representations

at type level.

In our Haskell implementation, this complex structure mustbe mapped into the only two levels available:

runtime Haskell programs and static Haskell types (and typeconstructors, and so on). We summarize the

main correspondences.

Domain value types.These Haskell types that are conceptually intended to represent runtime values

at the level of types.They correspond to the elements of the inductive kindNat in FLINT [116]. One

difference between our encoding of domain-value types and the inductive kinds in MetaD and FLINT is

that we have no way of enforcinga priori the well-formedness of such domain value types – rather, in our

Haskell implementation, they are like terms upon whom structure must be imposed by a disciplined use of

these terms.

Well-formedness judgments.These play a dual role in the Haskell implementation. First,they are

there to impose a structure ondomain value types: the typeIsNat from Section 4.3 is a particularly

good example of this. For example, the typeS (S Z) represents the natural number 2, but the type

S (S (String → Int)) should be excluded from consideration as a valid representation in the domain

of integers. Type constructorIsNat ensures that any argument type given to it is well-formed; byrequiring

IsNat types as arguments for functions, the user can ensure that only well-formed domain value naturals

are used in types of her programs.
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Well-formedness judgments as singleton types.Another important consideration is to connect runtime

values to the domain value types that describe them. A standard way that has been proposed to deal with

this is to introduce a type constructorsnat : Nat → * (whereNat is the inductive kind of natural

numbers) such that

given a type termn of kind Nat , if a computation valuev has typesnat n, thenv denotes

the natural number represented byn. [116].

A good example that illustrates this connection in our Haskell implementations is the addition of num-

bers (Section 4.3). The way we speak about addition between domain value types at type-checking time is

by the type constructorPlusRel m n z : a value of the typePlusRel m n z is a proof thatz equals

mplusn. However, this property must ultimately be connected to some runtimevalue and a function that

performs addition at runtime. A number of systems establishthis connection between runtime values and

their representations at type level through singleton types [57, 148, 116].

In our Haskell implementation, however, the role ofsnat is played by certain well-formedness judg-

ments (e.g.,IsNat ). The MetaD and FLINT the system ensures that this representation is correct by

construction (a meta-theorem guarantees thatsnat adequatelyrepresents runtime natural number values),

in our framework, the user must ensure that the well-formedness judgment corresponds to the objects that

are modeled closely enough (usually a 1-to-1 correspondence) so that the proofs (or derivations) of these

well-formedness judgments can be usedas a representation of the objects themselves.

In most interesting cases (inductively defined sets, such asthe set of natural numbers), this is easily es-

tablished (e.g.,IsNat n ∼= N, for anyn). Still, it is important to emphasize that the burden of establishing

this correspondence falls upon the programmer, and that there seems to be no way to prove this adequacy

within the system itself.

5.5.2 Staging

We have also shown that staging can be successfully combinedwith equality-proof based implementations

of programming languages. In particular, the combination of staging and equality proofs allows us to write

staged interpreters from whichtagging overheadhas been removedby construction.
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1 data PSE e = INIT ©e

2 | ∀αβ. EXT (PSE α) ( ©β) (Equal e ( α, β))

3

4 ext :: PSE e →©t →PSE (e,t)

5 ext e t = EXT e t refl

6

7 eval2S :: Exp e t → (PSE e) →©t

8 eval2S ( Lit i p) env = castTa (sym p) 〈i 〉

9 eval2S ( V v) env = evalV2S v env

10 eval2S ( App e1 e2) env = 〈 ˜(eval2S e1 env) ˜(eval2S e2 env) 〉

11 eval2S ( EInl e p) env = castTa (sym p) 〈Left ˜(eval2S e env) 〉

12 eval2S ( EInr e p) env = castTa (sym p) 〈Right ˜(eval2S e env) 〉

13 eval2S ( Abs pat body p) env = castTa (sym p)

14 〈\x → ˜(evalPat2S pat 〈x〉 env h) 〉

15 where h ( Nothing) = 〈error "fail" 〉

16 h ( Just e) = eval2S body e

17 eval2S ( ECase e matches) env =

18 〈 let value = $(eval2S e env) in ˜(evalCase2S 〈value 〉 matches env) 〉

19

20 evalCase2S :: ©t1 → [Match e t1 t2] →PSE e→©t2

21 evalCase2S val [] env = 〈error "fail" 〉

22 evalCase2S val (( Match (pat,body)):rest) env = evalPat2S pat val env h

23 where h ( Nothing) = evalCase2S val rest env

24 h ( Just env2) = eval2S body env2

25

26 evalVar2S :: Var e t → (PSE e) →©t

27 evalVar2S ( Z p) ( EXT _ b p2) = castTa prf b

28 where (_,prf) = pairParts (trans (sym p2) p)

29 evalVar2S ( S s p) ( EXT e _ p2) = evalVar2S s (castTa prf e)

30 where (prf,_) = (pairParts (trans (sym p2) p))

31 evalVar2S ( Z p) ( INIT env) = 〈snd ˜(castTa p env) 〉

32 evalVar2S ( S s p) ( INIT env) = evalVar2S s ( INIT 〈fst ˜(castTa p env) 〉)

33

34 evalPat2S :: Pat t ein eout →©t → (PSE ein) →

35 (Maybe (PSE eout) →©ans) →©ans

36 evalPat2S ( PVar p) v ein k = k ( Just (castTa (sym p) (ext ein v)))

37 evalPat2S ( PInl pt p) v ein k =

38 〈 case ˜(castTa p v) of Left x → ˜(evalPat2S pt 〈x〉 ein k)

39 Right x → ˜(k Nothing) 〉

40 evalPat2S ( PInr pt p) v ein k =

41 〈 case ˜(castTa p v) of Left x → ˜(k Nothing)

42 Right x → ˜(evalPat2S pt 〈x〉 ein k) 〉

43 evalPat2S ( PPair pt1 pt2 p) v ein k =

44 〈case ˜(castTa p v) of

45 (v1,v2) → ˜(evalPat2S pt1 〈v1 〉 ein (h 〈v2 〉)) 〉

46 where h n Nothing = k Nothing

47 h n ( Just eout1) = evalPat2S pt2 n eout1 k

Figure 5.7: Staged interpreter forL+
1 with binding time improvements.
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Chapter 6

A Meta-language with Built-in Type Equality

1

6.1 Introduction

Earlier in this dissertation we looked at different ways of providing support for open heterogeneous meta-

programming. First, we used a custom-designed meta-language with dependent types. Next we devised a

methodology for supporting open heterogeneous meta-programming in Haskell.

However, practical experience with open heterogeneous meta-programming in Haskell does have one

practical draw-back: it is tedious, requiring a lot of humanintervention for rather simple tasks such as

equality combinator manipulation. Since the combinator manipulation is pretty straightforward, albeit te-

dious, we became interested in extending the type system of Haskell to automate the manipulation of

equality proofs as much as possible.

At this point we read Cheney and Hinze’s work on phantom types[19]. Cheny and Hinze devise a

type system that automatically propagates equalities between types, and solves type equality congruences.

With this type system, we could easily implement all our examples in a much simpler, cleaner nota-

tion. Furthermore, Cheney and Hinze presented a proof that such a type system is type safe, and that

type-checking is decidable. Finally, using this type system we no longer had to resort to axioms for ma-

nipulating equality types (e.g.,pairParts :: Equal (t1,t2) (t3,t4) → (Equal t1 t3,

Equal t2 t4) ), which could not be implemented in Haskell itself, but had to be given as primitives.

Inspired by their idea we proceeded to experiment and designa functional programming language, based

on Haskell, that implements their proposals along with someother features our experimentation in the

previous chapter found might be useful. We called this language Omega [124]. Omega has proved to be a

very useful vehicle for heterogeneous meta-programming, and much of its design was directly motivated

1Material from this chapter was published as [123] and [99].
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by the kind of meta-programming we have demonstrated in thisdissertation. We will familiarize the reader

with Omega through the small tutorial offered in this chapter.

6.2 Omega: A Meta-language Supporting Type Equality

The essential characteristic of programming with type equality is the manipulation of the proofs of equali-

ties between types using equality combinators. It has two practical drawbacks. First, manipulation of proofs

using combinators is tedious. Second, while present throughout a program, the equality proof manipula-

tions have no real computational content – they are used solely to leverage the power of the Haskell type

system to accept certain programs that are not typable when written without the proofs. With all the clutter

induced by proof manipulation, it is sometimes difficult to discern the difference between the truly impor-

tant algorithmic part of the program and mere equality proofmanipulation. This, in turn, makes programs

brittle and rather difficult to change.

What if we could extend the type system of Haskell, in a relatively minor way, to allow the type-checker

itself to manipulate and propagate equality proofs? That isthe idea behind Omega [124]. In the remainder

of this Chapter, we shall use Omega, rather than pure Haskellto write our examples. We conjecture that,

in principle, whatever is possible to do in Omega, it is also possible to do in Haskell (plus the usual set of

extensions), only in Omega it is expressed more cleanly and succinctly.

The syntax and type-system of Omega was designed to closely resemble Haskell (with GHC extensions).

For practical purposes, we could consider (and use) it as a conservative extension to Haskell. In this section,

we will briefly outline only the relevant differences between Omega and Haskell.

6.3 An Omega Primer

Omega is implemented as a stand-alone interpreted language, similar to the Hugs implementation of Haskell.

Using a rudimentary module system, the user can load, type-check and execute source files that closely

resemble Haskell. In this section, we shall explain some essential features of Omega, informally and by

example. The language Omega has many interesting features such as built-in type equality, the polymorphic

and extensible kind system, support for staging. These features were motivated by the examples appearing

in earlier chapters.
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6.3.1 Data-types with Equality

Here, we shall discuss the most important difference between Haskell and Omega: the data-type definition.

First, recall the definition of a type of well-typedλ-terms from Chapter 5.

data Exp e t

= Lit Int (Equal t Int)

| V (Var e t)

| ∀αβ. Abs (Rep α) (Exp (e, α) β) (Equal t ( α→β))

| ∀α. App (Exp e ( α→ t)) (Exp e α)

data Var e t

= ∀γ. Z (Equal e ( γ,t))

| ∀γα. S (Var γ t) (Equal e ( γ, α))

These data-types rely on the data-type(Equal a b) , which is the type of proofs that the typesa andb

are equal. When constructingExp or Var values, the user must construct and supply the required equality

proofs.

In Omega, the equality between types is not encoded explicitly (using the type constructorEqual ), but,

rather, it is built-in and implicit. Let us reformulate the well-typedλ-terms using Omega syntax:

data Exp e t

= Lit Int where t=Int

| V (Var e t)

| ∀αβ. Abs (Rep α) (Exp (e, α) β) where t = ( α→β)

| ∀α. App (Exp e ( α→ t)) (Exp e α)

data Var e t

= ∀γ. Z where e = ( γ,t)

| ∀γα. S (Var γ t) where e = ( γ, α)

Each data-constructor in Omega may contain awhere clause which contains a list of equations between

types in scope of the definition. These equations play the same role as theEqual in our Haskell examples,

with one important difference. The user is not required to provide any actual evidence of type equality – the

Omega type checker keeps track of equalities between types and proves and propagates them automatically.

Cheney and Hinze formally define a type system with equality types [19]. We will quickly sketch out

such a type system here, omitting most of the details. Figure6.1 summarizes the Cheney and Hinze’s typing

judgments: a standardλ-calculus typing relation is augmented with equality contextsΨ, which keep track

of known equalities between types. An additional judgment,∆; Ψ ⊢ τ1 = τ2, is defined to prove equalities
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σ, τ ::= · · · Types
ǫ ::= τ1 = τ2 Type equations

Σ ::= · | Σ; dataT α : κ = ∃β : κ.C σ with ǫ Data-type signatures
Ψ ::= · | Ψ, ǫ Equation contexts
e ::= C [τ ] e | case[τ ] e of ms | · · · Expressions: constructors and case
ms ::= (C [β] x → e | ms) | · Pattern matches

∆; Ψ ⊢ τ = τ Type equivalence
∆; Ψ; Γ ⊢ e : τ Typing expressions
∆; Ψ; Γ ⊢ ms : T τ ⇒ σ Pattern match typing

data T α : κ = ∃β : κ.C σ with ǫ ∈ Σ

∆; Ψ; Γ ⊢ ei : (τi[τ ′/α, τ/β])

∆; Ψ ⊢ ǫi[τ ′/α, τ/β]

∆; Ψ; Γ ⊢ C[τ ]e : T τ ′
(Cons)

∆; Ψ; Γ ⊢ e : T τ ∆; Ψ; Γ ⊢ ms : T τ ⇒ σ

∆; Ψ; Γ ⊢ case[τ ] e of ms : σ
(Case)

∆; Ψ; Γ ⊢ ms : T τ ⇒ σ ∆, β; Ψ, ǫ[τ/α, γ/β]; Γ, xn : σn[τ/α, γ/β] ⊢ e : σ

∆; Ψ; Γ ⊢ (C [γ] x → e | ms) : T τ ⇒ σ
(Match)

∆; Ψ; Γ ⊢ e : τ1 ∆; Ψ ⊢ τ1 = τ2

∆; Ψ; Γ ⊢ e : τ2
(EqCoerce)

Figure 6.1: Type system for Omega-like language (based on Cheney and Hinze).

between types. Data-types are defined as in the Omega examples above: each constructor definition may

contain a set of equalities between types.

Novel typing rules for constructor application and case expressions are formulated in the following way:

1. When applying a constructorC, which is defined to require equationsǫ, those equations must be

proven (using the equality judgment∆; Ψ ⊢ τ1 = τ2) to hold based on the current equality context

(rule Cons, Figure 6.1).

2. When taking apart a constructor value using case, an appropriate instantiation of the equationsǫ from

the definition of the constructor are added to the equality context when type-checking the body of

each case match (rules Case and Match, Figure 6.1).

3. Finally, a conversion rule that allows us to assign the type τ2 to an expression that has the type

τ1, provided that we can prove thatτ1 equalsτ2 in the current equality context (rule EqCoerce,

Figure 6.1).

For further details, the reader is referred to the Cheney andHinze paper [19]. The Omega interpreter

includes a a type checker for a similar type system, supporting many Haskell-like type system features and

type inference. We briefly explain how such a type checker works in practice.
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The mechanism Omega uses to keep track of equalities betweentypes is very similar to the constraints

that the Haskell type checker uses to resolve class-based overloading. A special qualified type [65] is used

to assert equality between types, and a constraint solving system is used to simplify and discharge these

assertions. When assigning a type to a type constructor, theequations specified in the where clause just

become predicates in a qualified type. Thus, the constructorLit is given the type∀e t.(t=Int) =>

Int →Exp e t . The equationt=Int is just another form of predicate, similar to the class membership

predicate in the Haskell type (for example,Eq a => a -> a -> Bool ).

When type-checking an expression, the Omega type checker keeps two sets of equality constraints.

Obligations. The first set of constraints is a set ofobligations. For example, consider type-checking the

expression( Lit 5) . The constructorLit has the type∀e t.(t=Int) => Int →Exp e t . Since

Lit is polymorphic ine andt , the type variablet can be instantiated toInt . Instantiatingt to Int also

creates the equality constraint obligationInt=Int , which can be trivially discharged by the type checker.

Lit 5 :: Exp e Int with obligation Int = Int

One practical thing to note is that the data-constructors ofExp andVar are now given the following

types:

Lit :: ∀e t. t=Int => Exp e t

V :: ∀e t. Var e t →Exp e t

Abs :: ∀t t1 t2 e. t=(t1->t2) => Exp (e,t1) t2 →Exp e t

App :: ∀ e t1 t. Exp e (t1 → t) →Exp e t1 →Exp e t

It is important to note that the above qualified types can beinstantiatedto the same types that the smart

constructors for well-typed abstract syntax have in Haskell. We have already seen this forLit . Consider

the case forAbs. First, the type variablet can be instantiated to(t1 → t2) . Now, the proof obligation

introduced by the constructor is(t1 → t2)=(t1 → t2) , which can be immediately discharged. This

leaves the typeExp (e,t1) t2 →Exp e (t1 → t2) .

Assumptions. The second set of constraints is a set ofassumptionsor facts. Whenever, a constructor

with a where clause is pattern-matched, the type equalities in the where-clause are added to the current

set of assumptions in the scope of the pattern. These assumptions can be used to discharge obligations. For

example, consider the following partial definition:

evalList :: Exp e t → e→ [t]

evalList exp env =

case exp of Lit n→ [n]
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When the expression exp of type(Exp e t) is matched against the pattern(Lit n) , the equality

t=Int from the definition ofLit is introduced as an assumption.

The type signature ofevalList induces the requirement that the right-hand side of thecase expres-

sion have the type[t] . However, the right-hand side of thecase expression,[n] , has the type[Int] .

The type checker now must discharge (prove) the obligation[t]=[Int] , while using the fact, introduced

by the pattern(Lit n) that t=Int . The Omega type-checker uses an algorithm based on congruence-

closure [88], to discharge equality obligations.

In Haskell, the proof of this obligation would fall on the programmer, by explicitly constructing a proof

value of type(Equal [t] [Int]) , or using the functioncastTa :: Equal a b -> f a ->

f b to cast from[Int] to [t] .

evalList :: Exp e t → e→ [t]

evalList exp env =

case exp of Lit n tInt→ castTa tInt [n]

In Omega, these proofs are constructed automatically, and this is perhaps the greatest practical benefit of

Omega.

Another interesting example of programming in Omega is to re-implement, explicitly, the equality type

(Equal a b) . Consider the following definition:

data Equal a b = Eq where a = b

Note that the constructorEq requires no arguments. The type Omega assigns to it isa=b => Equal

a b , which can be simplified toEqual a a – the same type as the Haskell equality combinatorself

:: Equal a a .

Since Omega’s type system already knows how to manipulate equalities, writing equality proof combi-

nators becomes trivial. Consider the transitivity combinator:

trans :: Equal a b →Equal b c →Equal a c

trans (ab@Eq) (bc@Eq) = Eq

First, matching the patternab@Eqintroduces the assumptiona=b . Similarly, the patternbc@Eqintro-

duces the assumptionb=c . The result,Eq requires the proof obligationa=c to be discharged in order to

return a value of typeEqual a c . The congruence closure algorithm in the Omega type checkercan then

easily discharge this obligation based on the available assumptions.

Finally, we emphasize that, even though the examples in the chapters that follow are presented in Omega,

they can all be implemented in Haskell as well, with the already alluded-to caveats that primitive equality
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proof combinators such aspairParts may need to be used on the Haskell side. For the rest of this

chapter (and subsequent chapters that use Omega), Omega should be considered as notational convenience.

We have designed Omega to achieve a greater conciseness and clarity of presentation, because the explicit

equality proof manipulation in meta-programs manipulating more complex object-languages can become

very tedious.

6.3.2 Inductive Kinds

Let us recall the Haskell encoding of the natural numbers at the type level from Chapter 4. At the type level,

natural number 0 is represented by the typeZ, number 1 by the type(S Z) , 2 by(S (S Z)) , and so on.

data Z =

data S x =

data IsNat n = IsZero (Equal n Z)

| ∀ m. IsSucc (IsNat m) (Equal n (S m))

This definition follows a standard pattern. First, each constructor of natural numbers is defined as a

type constructor, Z :: * andS :: * → * , respectively. It is worth noting that there are novalues

classified byZ, (S Z) , and so on. This can be seen by the lack of constructor functions forZ andS. It is

also worth noting that the type system of Haskell has no way ofstatically preventing the type constructorsZ

andS from being combined with other types to construct ill-formed representations that do not correspond

to any natural number, such as(S (S (Int →Bool))) .

Second, we define a type constructor ofruntime representationsof natural numbersIsNat :: * → * .

This data-type allows us to construct values that are classified byIsNat which are parameterized bywell-

formednatural numbers at the type level. In other words,IsNat reflects the natural numbers at the type

level (comprised ofS andZ) to the value level. The type constructorIsNat comes with a built-in invariant:

for any value classified by the type(IsNat n) , the typen is a well-formed representation of some natural

number.

The type constructorIsNat performs the role of a singleton type: there is only one validvalue of type

IsNat n , i.e., that which is isomorphic to the natural numbern.2 Type constructors such asIsNat allow

the programmer to connect the type-level representations of naturals with the behavior of programs. For

example, a function of the type((IsNat m) → (IsNat (S (S m)))) takes any natural number as

its argument and returns a natural number that is greater by 2.

2Note that there is no way in Haskell or Omega to check that a particular type constructor such asIsNat is indeed a singleton
type. Rather, being a singleton is a meta-theoretical property that the programmer must maintain in writing his program.
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value | type | kind | sort | · · ·

5 :: Int :: *0 :: *1 :: · · ·

Nat :: *1 :: · · ·

Z :: Nat :: *1 :: · · ·

S :: Nat  Nat :: *1 :: · · ·

IsNat :: Nat  *0 :: *1 :: · · ·

IsZero :: IsNat Z :: *0 :: *1 :: · · ·

IsSucc :: (IsNat m) → (IsNat n) :: *0 :: *1 :: · · ·

Table 6.1: Classification in Omega.

In Omega, there is a simple feature that makes the encoding technique described above both simpler and

more user friendly. This feature allows the programmer to define newkinds.

Before we demonstrate how kind declarations work, we shall explain the classification system of Omega.

In Haskell, values and expressions areclassifiedby types. In Omega, the classification scheme is somewhat

more general. Values and expressions are classified by types, as in Haskell. Types themselves are classified

by thekind *0 . Kinds (e.g.,*0 ) are classified by*1 , *1 by *2 and so on. Kinds can be combined using a

kind arrow ( ). Table 6.1 gives an example of the classification relation in Omega.

To represent natural numbers at the type level in Omega, we shall define a newkindNat :

kind Nat = Z | S Nat

The kindNat has twotype constructors: (1) Z of kind Nat ; (2) S of kind Nat Nat. For example,

(S Z) is a valid type of kindNat . It is important to note, however, that(S Z) is not a type of kind*0 .

Now, we can define a type of runtime representations of natural numbers. It is a type constructorIsNat

:: Nat  *0 :

data IsNat (n::Nat) = IsZero where n = Z

| ∀m. IsSucc (IsNat m)

where n = (S m)

one :: IsNat (S Z)

one = IsSucc IsZero

It is important to notice that the two versions of the exampleabove, Haskell and Omega, are equally

expressive: using two different type constructors for successor and zero works equally well as the Omega’s

kind declaration. The advantage of using Omega is that certain kind errors can be caught earlier, since the

kind definition facility provides an additional amount of type discipline at the kind level which is missing in

Haskell. Thus, the user cannot even write a type(S Bool) , since that would result in a kind error. Also,

it allows us to combine all the constructors that represent values at the type level (with the same kind) in
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Expressions and types

τ ∈ T ::= b | τ1 → τ2

Γ ∈ G ::= 〈〉 | Γ, τ
e ∈ E ::= Var n | λτe | e1 e2

Γ, τ ⊢ 0 : τ
(Base)

Γ ⊢ n : τ

Γ, τ ′ ⊢ (n + 1) : τ
(Weak)

Γ ⊢ n : τ

Γ ⊢ Var n : τ
(Var)

Γ, τ1 ⊢ e : τ2

Γ ⊢ λτ1
.e : τ1 → τ2

(Abs)
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(App)

Substitutions à la λυ [9]

σ ∈ S ::= e/ | ⇑(σ) | ↑

Γ ⊢ e : τ

Γ ⊢ e/ : Γ, τ
(Slash)

Γ, τ ⊢↑: Γ
(Shift)

Γ ⊢ σ : Γ′

Γ, τ ⊢⇑(σ) : Γ′, τ
(Lift)

Figure 6.2: Simply typedλ-calculus with substitutions.

one single definition which makes it easier for the programmer to modify and maintain.

6.4 Omega Example: Substitution

To round off the introduction to Omega we present a slightly larger example. First, we shall define a

language of simply typedλ-calculus judgments, and then implement a type-preservingsubstitution function

on those terms.

This example demonstrates type-preservingsyntax-to-syntaxtransformations between object-language

programs. Substitution, which we shall develop in the remainder of this Chapter, is one such transforma-

tion. Furthermore, a correct implementation of substitution can be used to build more syntax-to-syntax

transformations. At the end of this Chapter, we shall provide an implementation of big-step semantics that

uses substitution.

The substitution operation we present preserves object-language typing. Unlike the interpreters we have

presented previously, it not only analyzes object-language typing judgments, but also builds new judgments

based on the result of that analysis.

6.4.1 The Simply Typedλ-calculus with Typed Substitutions

Figure 6.2 defines two sets of typed expressions. The first setof expressions, presented in the top half

of Figure 6.2 is just the simply typedλ-calculus. The second set of expressions, presented in the bottom
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.

.

.

.
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.

(a) Slash(e/) (b) Shift (↑) (c) Lift (⇑ (σ))

Figure 6.3: Substitutions

half of the figure defines a set of typed substitutions. The substitution expressions are taken from theλυ-

calculus [9]. There are several of other ways to represent substitutions explicitly as terms (see Kristoffer

Rose’s excellent paper [113] for a comprehensive survey), but we have chosen the notation ofλυ for its

simplicity.

A substitution expressionσ is intended to represent a mapping from de-Bruijn indices toexpressions

(i.e., a substitution), the same way thatλ-expressions are intended to represent functions. As inλυ, we

define three kinds of substitutions in Figure 6.2 (see Figure6.3 for a graphical illustration):

1. Slash(e/). Intuitively, the slash substitution maps the variable withthe index 0 toe, and any variable

with the indexn + 1 to Var n.

2. Shift (↑). The shift substitution adjusts all the variable indices in aterm by incrementing them by

one. It maps each variablen to the termVar (n + 1).

3. Lift (⇑ (σ)). The lift substitution(⇑ (σ)) is used to mark the fact that the substitutionσ is being

applied to a term in a context in which index 0 is bound and should not be changed. Thus, it maps the

variable with the index 0 toVar 0. For any other variable indexn+1, it maps it to the term thatσ maps

to n, with the provision that the resulting term must be adjustedwith a shift: ((n + 1) 7→↑ (σ(n))).

Typing substitutions. The substitution expressions are typed. The typing judgments of substitutions,

written Γ1 ⊢ σ : Γ2, indicate that the type of a substitution, in a given type assignment, is another type



153

assignment. The intuition behind the substitution typing judgment is the following: the type assignmentΓ1

assigns types to the free variables that may occur in the expressions that are a part of the substitutionσ;

the type assignmentΓ2 assigns types to the free variables in any expression that the substitutionσ may act

upon.

Example.We describe a couple of example substitutions.

1. Consider the substitution(True/). This substitution maps the variable with the index 0 to the Boolean

constantTrue . The type of this substitution isΓ ⊢ True/ : Γ, Bool. In other words, given any type

assignment, the substitution (True/) can be applied in any context where the variable 0 is assigned

typeBool.

2. Consider the substitutionσ = (⇑ (True/)). σ is the substitution that replaces the variable with the

index 1 with the constantTrue.

Recall that the type of any substitutionθ under a type assignmentΓ, is a type assignment∆ (written

Γ ⊢ θ : ∆), such that for any expressione′ to which the substitutionθ is applied, the following must

hold∆ ⊢ e′ : τ andΓ ⊢ θ(e′) : τ .

So, what type should we assign toσ? When applied to an expression, a lift substitution (σ =⇑(True/

)) does not change the variable with the index 0. Thus, when typing σ asΓ ⊢ σ : ∆, we know

something about the shape ofΓ and∆. Namely, for some∆′, we know that∆ = (∆′, τ), and

for someΓ′, we know thatΓ = (Γ′, τ). The type assignments∆′ andΓ′ are determined by the

sub-substitutionTrue/, yielding the following typing derivation:

Γ ⊢ True : Bool
Const

Γ ⊢ Bool/ : Γ, Bool
Slash

Γ, τ ⊢⇑(Bool/) : Γ, Bool, τ
Lift

We briefly explain the typing rules for the substitutions (Figure 6.2):

1. Slash(e/). A slash substitutione/ replaces the 0-index variable in an expression bye. Thus, in any

contextΓ, wheree can be given typeτ , the typing rule requires the substitution to work only on

expressions in the type assignmentΓ, τ , where the 0-index variable is assigned the typeτ .

Γ ⊢ e : τ

Γ ⊢ e/ : Γ, τ
(Slash)

2. Shift (↑). Since the shift substitution maps all variables with indexn to a variable with indexn + 1,

this means that, whatever a type assignment assigned to the index 0, prior to the substitution, the
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Substitution on expressions
(·, ·)⇒ · ⊂ S× E× E

(σ, e1)⇒ e′1
(σ, e2)⇒ e′2

(σ, (e1 e2))⇒ e′1 e′2

(⇑(σ), e)⇒ e′

(σ, λ.e)⇒ λe′
(σ, n)⇒ e

(σ, Var n)⇒ e

Substitution on variables
(·, ·)⇒ · ⊂ S× N× E

(e/, 0)⇒ e (e/, n + 1)⇒ Var n (⇑(σ), 0)⇒ Var 0

(σ, n)⇒ e (↑, e)⇒ e′

(⇑(σ), n + 1)⇒ e′ (↑, n)⇒ Var (n + 1)

Figure 6.4: Applying substitutions to terms

substitution can be contracted because after the substitution is performed 0-index variable no longer

occurs.

Γ, τ ⊢↑: Γ
(Shift)

3. Lift (⇑ (σ)). For any variable index(n + 1) in a term, the substitution⇑ (σ) appliesσ to n and then

shifts the resulting term. Thus, the 0-index term in the typeassignment remains untouched, and the

rest of the type assignment is as specified byσ:

Γ ⊢ σ : Γ′

Γ, τ ⊢⇑(σ) : Γ′, τ
(Lift)

Applying substitutions. In the remainder of this Section, we show how to implement a function (we call

it subst) that takes a substitution expressionσ, a λ-expressione, and returns an expression such that all

the indices ine have been replaced according the substitution. In the simply typedλ-calculus, substitution

preserves typing, so we expect the following property to be true of the substitution functionsubst: if

Γ ⊢ σ : ∆ and∆ ⊢ e : τ , thenΓ ⊢ subst σ e : τ .

How shouldsubst work? Figure 6.4 presents two judgments,(σ, e1) ⇒ e2 and (σ, n) ⇒ e, which

describe the action of substitutions on expressions and variables, respectively. These judgments are derived

from the reduction relations of theλυ-calculus [9]. It is not difficult to show that this reductionstrategy in-

deed does implement capture avoiding substitution, although we omit such proof here to avoid unnecessary

digression (see Benaissa, Lescanne & al. [9] for proofs).
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Next, we show how to implement this substitution operation in Omega, using expression and substitution

judgments instead of expressions and substitution expressions.

6.4.2 Judgments

The expression and substitution judgments can be easily encoded in Omega. The data-typesVar and

Exp encode expression and variable judgments presented in Figure 6.2. We have only added a constructor

Const for constant expressions in order to be able to write more interesting examples. Theλ-calculus

fragment is identical to the one presented earlier in this chapter, and we shall not belabor its explanation.

data Var e t = ∀d. Z where e = (d,t)

| ∀d t2. S (Var d t) where e = (d,t2)

data Exp e t = V (Var e t)

| ∀t1 t2. Abs (Exp (e,t1) t2) where t = t1 → t2

| ∀t1. App (Exp e (t1 → t)) (Exp e t1)

| Const t

Next, we define a data-constructorSubst gamma delta that represents the typing judgments for

substitutions . The type constructorSubst gamma delta represents the typing judgmentΓ ⊢ σ : ∆

presented in Figure 6.2.

data Subst gamma delta =

∀t1. Shift where gamma = (delta,t1)

| ∀t1. Slash (Exp gamma t1) where delta = (gamma,t1)

| ∀del1 gam1 t1. Lift (Subst gam1 del1)

where delta = (del1,t1), gamma = (gam1,t1)

6.4.3 Substitution

Finally, we define the substitution functionsubst . It has the following type:

subst :: Subst gamma delta -> Exp delta t -> Exp gamma t

It takes a substitution whose type isdelta in some type assignmentgamma, an expression of typet that is

typed in the type assignmentdelta , and produces an expression of typet typable in the type assignment

gamma.

We will discuss the implementation of the functionsubst (Figure 6.5) in more detail. In several relevant

cases, we shall describe the process by which the Omega type-checker makes sure that the definitions
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1 subst :: Subst gamma delta →Exp delta t →Exp gamma t
2 subst s ( App e1 e2) = App (subst s e1) (subst s e2)
3 subst s ( Abs e) = Abs (subst (Lift s) e)
4 subst ( Slash e) ( V Z) = e
5 subst ( Slash e) ( V ( S n)) = V n
6 subst ( Lift s) ( V Z) = V Z
7 subst ( Lift s) ( V ( S n)) = subst Shift (subst s ( V n))
8 subst Shift ( V n) = V ( S n)

Figure 6.5: Substitution in simply typedλ-calculus.

are given correct types. Recall that every pattern-match over one of theExp or Subst judgments may

introduce zero or more equations between types, which are then available to the type-checker in the body of

a case (or function definition). The type checker may use these equations to prove that two types are equal.

In the text below, we sometimes use the type variablesgammaanddelta for notational convenience, but

also Skolem constants like1134 . These are an artifact of the Omega type-checker (they appear when

pattern-matching against values that may contain existentially quantified variables) and should be regarded

as type constants.

1. The application case (line2) simply applies the substitution to the two sub-expressionjudgments and

then rebuilds the application judgment from the results.

2. The abstraction case (line3) pushes the substitution under theλ-abstraction. It may be interesting to

examine the types of the various subexpressions in this definition.

Abs e : Exp delta t , where t=t1 → t2

e : Exp (delta,t1) t2

s : Subst gamma delta

Lift s : Subst (gamma,t1) (delta,t1)

subst (Lift s) e : Exp (gamma,t1) t2

The body of the abstraction,e has the type(delta,t1) , wheret1 is the type of the domain of

the λ-abstraction. In order to apply the substitutions to the body of the abstraction (e), we need

a substitution of type(Subst (gamma,t1) (delta,t1)) . This substitution can be obtained

by applyingLift to s . Then, recursively applyingsubst with the lifted substitution to the body

e, we obtain an expression of type(Exp (gamma,t1) t2) , from which we can construct aλ-

abstraction of the(Exp gamma (t1 → t2)) .
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3. The variable-slash case (line4-5). There are two cases when applying the slash substitution to a

variable expression:

(a) Variable 0. The substitution(Slash e) has the type(Subst (gamma) (gamma,t)) ,

and contains the expressione :: Exp gamma t . The expression(V Z) has the type

(Exp (delta,t) t) . Pattern matching introduces the equationgamma=delta , and we

can usee to replace(V Z) .

Slash e :: (Subst (gamma) (gamma,t))

e :: Exp gamma t

(b) Variable n + 1. Pattern matching on the substitution argument introducesthe equation

delta=(gamma,t1) . Pattern matching against the expression(V (S n)) introduces

the equationdelta=(gamma’,t) , for somegamma’. The expression result expression

(V n) has the type(Exp gamma’ t) . The type checker then uses the two equalities

to prove that it has the type(Exp gamma t) . It does this by first using congruence to

prove that gamma=gamma’, and then by applying this equalityto obtainExp gamma’ t

= Exp gamma t.

Slash e :: Subst gamma (gamma,t)

(V (S n)) :: Exp delta t

4. The variable-lift case (lines6-7). There are two cases when applying the lift substitution toa variable

expression.

(a) Variable 0. This case is easy because the lift substitution places makes no changes to the variable

with the index 0. We are able simply to return(V Z) as a result.

(b) Variablen+1. The first pattern (Lift s :: Subst gamma delta ), on the substitution,

introduces the following equations:

delta = (d’,_1),

gamma = (g’,_1)

The pattern on the variable (V(S n):: Var delta t ) introduces the equation

delta = (d2,_2)

The first step is to apply the substitutions of type (Subst g’ d’) to a decremented vari-

able index(V n) which has the typen :: Var d2 t . To do this, the type checker has

to show thatg’=d2 , which easily follows from the equations introduced by the pattern, yield-

ing a result of type(Exp g’ t) . Applying theShift substitution to this result yields an

expression of type(Exp (g’,a) t) (wherea is can be any type). Now, equations above
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can be used to prove that this expression has the type(Exp gamma t) using the equation

gamma=(g’, 1) .

5. Variable-shift case (line8). Pattern matching on theShift substitution introduces the equation

gamma = (delta, 1) . The expression has the type(Exp delta t) . Applying the successor

to the variable results in an expression(V (S n)) of type(Exp (delta,a) t) . Immediately,

the type checker can use the equation introduced by the pattern to prove that this type is equal to

(Exp gamma t) .

We have defined type-preserving substitution simply typedλ-calculus judgments. It is worth noting that

Omega has proven very helpful in writing such complicated functions: explicitly manipulating equality

proofs for such a function in Haskell, would result in code that is both extremely verbose and difficult to

understand.

6.4.4 A Big-step Evaluator

Finally, we implement a simple evaluator based on the big-step semantics for theλ-calculus. The evaluation

relation is given by the following judgment:

λe⇒ λe x⇒ x

e1 ⇒ λe′ (e2/, e′)⇒ e3 e3 ⇒ e′′

e1 e2 ⇒ e′′

Note that in the application case, we first use the substitution (e2/, e′) ⇒ e3 to substitute the argument

e2 for the variable with index0 into the body of theλ-abstraction.

A big-step evaluator differs from the other interpreters for object languages we have presented in this

dissertation. Whereas the other interpreters map object-language judgments to some related domain of

values, the big-step evaluator is implemented as the function eval which takes a well-typed expression

judgment of type(Exp delta t) , and returns judgments of the same type. The evaluator reducesβ-

redices using a call-by-name strategy, relying upon the substitution implemented above.

eval :: Exp delta t -> Exp delta t

eval ( App e1 e2) =

case eval e1 of

Abs body -> eval (subst ( Slash e2) body)

eval x = x

Note that the type of the functioneval statically ensures that it preserves the typing of the object

language expressions it evaluates, with the usual caveats that theExps faithfully encode well-typedλ-

expressions.
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Finally, let us apply the big-step evaluator to a simple example. Consider the expression,example .

example :: Exp gamma (a →a)

example = ( Abs ( V Z)) ‘ App‘ (( Abs ( Abs ( V Z))) ‘ App‘ ( Abs ( V Z)))

-- example = (λ x.x) ((λ y. (λ z.z))) (λ x.x)

The expressionexample evaluates the identity function. Applyingeval to it yields precisely that

result:

evExample = eval example

-- evExample = (Abs (V Z)) : Exp gamma (a→a)



Chapter 7

Example: λ
�

Up until now, we have considered object-languages based on the simply typedλ-calculus. In this section,

we shall expand our range of object-languages by first providing implementations of well-typed interpreters

for two object languages whose type systems are somewhat different from the type-system of the meta-

language. These languages, we shall call themL� andL©, are based on the two extension of the typed

λ-calculus, with modal and temporal operators,λ� [31] andλ© [29].

Why these particular languages? First, they are interesting typed languages in their own right, as use-

ful formalisms for describing two different kinds of stagedcomputation. Second, formalizing their type

systems in a Haskell-like language to obtain sets of well-typed object terms is a more challenging task,

allowing us to showcase our heterogeneous meta-programming methodology.

The calculusλ� is an extension of the simply typedλ-calculus. This calculus was defined by Davies

and Pfenning as the language of proof-terms for propositions in the necessity fragment of the intuitionistic

modal logic S4 [30, 31]. The propositions in this logic (and,hence, types inλ�) come equipped with the

modal necessity (also called “necessitation”) operator�.

Logically, the box operator expresses propositions that are necessarily true(the termvalid is also used).

For example,�(a → a), is such a proposition since(a → a) is always true, irrespective of the truth-value

of a.

λ� is a (homogeneous) meta-programming language. The logicalbox operator used to classify types of

object-programs (ofλ�). For example, the type(Int → �String) in λ� is a type of a program generator

that takes an integer and produces a piece of code that, when executed, yields a string value. Davies and

Pfenning prove certain binding time separation properties[31] that guarantee that, for example, while the

program of type(Int→ �String) generates the residual program of type String, all computation pertaining

to its integer argument is performed while the residual program is being constructed, i.e., there is no leftover

earlier stage computation in the residual program.

In this section, we shall present a small object language, called L� that is based on the type system of

160
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b ∈ B ::= Int | · · · base types
τ ∈ T ::= b | τ → τ | �τ | τ × τ types
Γ, ∆ ∈ G ::= 〈〉 | Γ, τ type assignments
e ∈ E ::= c | 0L |↑ e | λτ.e | e1 e2 | (e1, e2) | π1 e | π2 e λ-fragment

| 0R | e ↑| box e | let box e1 in e2 modal fragment

Figure 7.1: The syntax of the languageL�.

λ�.

7.1 Syntax ofL�.

The core syntax of the languageL� is given in Figure 7.1. Types inL� are either base types such as

Int, Bool, function types, box types or products. Expressions are somewhat non-standard and we need to

explain them.

Variables. In standard formalizations ofλ� [31], there are usuallytwo (distinct) sets of variables. The fist

is the set of variables bound byλ-abstractions. The second set is the set of modal variables that range over

code fragments (box values), and are bound by thelet box expressions. Following Davies and Pfenning,

we shall call the former variables (0R) we shall callvalue variables, and the latter (0L) modal variables.

As is usual in examples we have presented so far, we opt for a deBruijn style of variable naming. The

name of each variable is a natural number indicating the number of intervening binding sites between the

use and the definition of a variable. In Chapter 5, variables are represented by natural numbers. This has

required us to formulate a separate auxiliary typing judgment for variables. Here, we slightly modify the

notation for variables, following the example of Chen and Xi[18], who adopt their notation from the study

of λ-calculus with explicit substitutions (See Kristoffer H. Rose’s excellent tutorial [113] for more about

explicit substitutions.)

In this notation, there is only one syntactic form for variables, corresponding to the index 0. Since inL�

we have two separate sets of variables, we shall use two such expressions,0L for value variables, and0R

for modal variables.

Variables at higher indices are obtained by a “shift” (e.g.,[71]) syntactic construct (↑ e ande ↑, for value

and modal variables, respectively, where↑, on the left or on the right, binds more tightly than application).

Intuitively, the expressione ↑ increments the indices of all free value variables ine by one.

We find this notation slightly more concise in practice, and include it here to simplify our presentation,

since it allows us to, among other things, write only oneeval function, dispensing with the auxiliary
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functionlookUp of Chapter 5.

In Figure 7.2 we give a few examples of programs in aλ�-based programming language with named

variables, and their equivalent in the formalism ofL�.

λ� term L� term

λx.λy.(x, y) λ.λ.(↑ 0L, 0L)
let box u = box(1 + 2) in
let box v = box(3 + 4) in

box (v, u)

let box (box (1 + 2)) in
let box (box (3 + 4)) in

box(0R, 0R ↑)
power :: Int→ �(Int→ Int)
power 0 = box(λx : Int. 1)
power (n + 1) =

let box u = power n in
box(λx. x ∗ (u x))

power = fix powerF
powerF = λInt→ �(Int→ Int). λInt.

if (0R == 0)
then box (λNat.1)
else let box((0R ↑) (0R − 1)) in box(λInt.0R ∗ (0L 0R))

Figure 7.2: A comparison betweenλ� andL� syntax.

Box and Unbox. The two novel expression forms inL� arebox andlet box, which act as introduction

and elimination forms for the box types. The expression(box e) acts as a form of quasi-quotation. It

constructs an object-language programe. The expression(let box e1 in e2) takes an object-language

programe1, runs it, and binds its value to a box variable0L in the body of the expressione1.

Products and constants. In definingL� we shall also assume that we have a number of other, uncon-

troversial simple types such as products. Furthermore, we will assume that for various base types such as

integers, booleans and so on, we have a sufficient number of constants (including operations like addition,

comparison, and so on) for practical purposes. We will show later how such constants can be elegantly

embedded into Haskell encodings ofL� typing judgments.

7.2 Type System ofL�

The type system ofL� is given by the typing judgment relation ((∆; Γ ⊢ e : t) ⊆ G × G × E × T)

in Figure 7.3. The first thing to notice is that there are two type assignments,∆ andΓ. The intuition

behind this is that theλ-fragment ofL� is typed in the usual fashion using the type assignmentΓ. Since�

represents closed code, boxed expressions can be well-typed only whenΓ is the empty type assignment (see

rule Box in Figure 7.3). However, variables that range over code fragments can still be used inside boxed

expression, and their types are recorded by the type assignment∆. This allows us type-check expressions
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that combine smaller box fragments into larger ones.

The λ fragment

∆; Γ, τ ⊢ 0R : τ
R-Var

∆; Γ ⊢ e : τ

∆; Γ, τ ′ ⊢ e ↑: τ
R-Shift

∆; Γ, τ1 ⊢ e : τ2

∆, Γ ⊢ λτ1.e : τ1 → τ2
Abs

∆; Γ ⊢ e1 : τ1 → τ2 ∆; Γ ⊢ e2 : τ2

∆; Γ ⊢ e1 e2 : τ2
App

The modal fragment

∆, τ ; Γ ⊢ 0L : τ
L-Var

∆; Γ ⊢ e : τ

∆, τ ′; Γ ⊢↑ e : τ
L-Shift

∆; 〈〉 ⊢ e : τ

∆; Γ ⊢ box e : �τ
Box

∆; Γ ⊢ e1 : �τ1 ∆, τ1; Γ ⊢ e2 : τ

∆; Γ ⊢ let box e1 in e2 : τ
Unbox

Figure 7.3: The Static Semantics ofL�

The λ-fragment. The rules for the modal fragment are the standard rules for the simply typeλ-calculus,

except where it comes to the treatment of variables. A variable expression0L implements the start rule of

looking up its type from the rightmost position in the type assignmentΓ. The rule for shift (L-Shift) im-

plements the weakening – the expressione is typed in a smaller type assignment. The rules for abstraction,

applications, and products (not shown in the figure) are completely standard.

The modal fragment. The static semantics of the modal fragment consists of four typing rules in Fig-

ure 7.3:

• L-Var. andL-Shift are the lookup and weakening cases for the set of non-lambda-bound variables.

They are the same as theirλ fragment counterparts, except that they use the type assignment∆.

• Box. The box takes a sub-expressione, and type-checks it in the emptyλ-fragment type assignment.

If, under that assumption, the expressione has typeτ , then the whole expressionbox e has the type

�τ .

This captures the modal inference rule about necessity:e is a proof of a necessarily true proposition

τ only if τ can be proven with no assumptions (indicated by the empty type assignment). Note,

that while type-checkinge we are allowed to use any variables that are typed in the type assignment

∆, since the type assignment∆, as we will see, is augmented only with types that are themselves

necessarily true.
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• Unbox.The let box expression is an elimination construct for boxed expression. It takes two subex-

pressions,e1 ande2. Then, the expressione1 must be shown to have some type�τ1. If this is the

case, we are allowed to introduce an additional assumption (bind a variable) in the type assignment

∆ that has the typeτ1. If, with such an augmented∆ we can prove that the expressione2 has typeτ ,

then we may conclude that the entire expression has the typeτ .

Note that this is the only rule in which the modal type assignment∆ is extended. Moreover, it is

extended only with a type of a closed code fragment. Intuitively, the modal variables can occur free

inside boxed expression precisely because we know that theyonly range over expressions that are

themselves closed.

Examples. Finally, we give a couple of examples involving expressionswith box types.

Consider the expressionexample1 (for some type A):

example1 : �A→ A

example1 = λ�A. let box 0R in 0L

The type of this expression tells us, in terms of logic, that if A is necessarily true, than A is true. The

typing derivation is listed below:

〈〉; 〈〉, �A ⊢ 0R : �A
R-Var

〈〉, A; 〈〉, �A ⊢ 0L : A
L-Var

〈〉; 〈〉, �A ⊢ let box 0R in 0L : A
Unbox

〈〉; 〈〉 ⊢ λ�A.let box 0R in 0L : (�A → A)
Abs

example2 : �(A→ B)→ �A→ �B

example2 = λ�(A→ B). λ�A.








let box 0R ↑ in

let box 0R in

box((↑ 0L) 0L)







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〈〉; 〈�(A→ B)〉 ⊢ 0R : �(A→ B)
R-Var

〈〉; 〈�(A→ B), �A〉 ⊢ 0R ↑: �(A→ B)
R-Shift

〈〉; 〈�(A→ B), �A〉 ⊢ 0R : �A
R-Var

· · · · · · · · · · · · · · · · · ·

〈A→ B, A〉; 〈〉 ⊢ ((↑ 0L) 0L) : B
App

〈〉; 〈�(A→ B), �A〉 ⊢ box((↑ 0L) 0L) : �B
Box

〈〉; 〈�(A→ B), �A〉 ⊢

0

B

@

let box 0R ↑ in

let box 0R in

box((↑ 0L) 0L)

1

C

A
: �B

Unbox, twice

〈〉; 〈〉 ⊢ λ�(A→ B). λ�A.

0

B

@

let box 0R ↑ in

let box 0R in

box((↑ 0L) 0L)

1

C

A
: (�(A→ B)→ �A→ �B)

Abs, twice

7.3 EncodingL� in Omega

A first step is to encode theL� judgments described in Figure 7.3 into an Omega(or, with slight modi-

fications, Haskell) data-type. We shall use the technique that should be familiar to the reader by how of

representing the typing judgment∆; Γ ⊢ e : τ by a Haskell type constructorExp delta gamma tau .

Note that with Omega, there is no need to implement a set ofsmart constructorsfor the data-type defined

in Figure 7.4.

data Exp ∆ Γ t =
∀ Γ’. VarR where Γ = (Γ’,t)
| ∀ Γ’ t’. ShiftR (Exp ∆ Γ’ t) where Γ=(Γ’,t’)
| ∀ t1 t2. Abs (Exp ∆ (Γ,t1) t2) where t=(t1→ t2)
| ∀ t1. App (Exp ∆ Γ (t1→ t)) (Exp ∆ Γ t1)

| Lift t String

| ∀ ∆’. VarL where ∆=(∆’,t)
| ∀ ∆’ t’. ShiftL (Exp ∆’ Γ t) where ∆=(∆’,t’)
| ∀ t1. BoxExp (Exp ∆ () t1) where t=(Box t1)
| ∀ t1. UnBox (Exp ∆ Γ (Box t1)) (Exp (∆,t1) Γ t)

Figure 7.4: Typing judgments ofL� in Haskell.

The type assignments are represented by a nested product type. The lambda-calculus fragment is com-

pletely standard, as inL0 (Chapter 5).

The judgment described in Figure 7.4 also contains the constructor (Lift t String ::
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t →Exp a b t) . This constructor represents constants in the object language. It can be used to in-

ject any Omega value (of typet ) into Exp. It also takes a string argument that represents the name of

the constant, for pretty-printing purposes. For example, the constant plus is encoded by simply lifting the

addition operator:(Lift (+) "+") :: Exp d g (Int → Int → Int) .

Next, we consider the encoding of the modal fragment. The constructorBoxExp is used to create

judgments of boxed terms. It has one argument, a judgment of typeExp ∆ () t1 . This ensures that the

boxed expression is closed – any mention of free value variables will require the value type assignment to

be a pair, causing a type mismatch with the requirement that the body expression have the type() . For

example, the judgment for theL� term(box (λ. 0R)) is represented by the Omega declarationexample1 ,

given below:

example1 :: Exp a b (Box (c -> c))

example1 = Box (Abs VarR)

However, if we try to create the judgment for the term(box 0R), which cannot be correctly typed, the

Omega type-checker complains with the following error message:

Lambdabox> box varr

ERROR - Type error in application

*** Expression : box varr

*** Term : varr

*** Type : Exp c (d,b) b

*** Does not match : Exp a () b

The where -clause in the definition of the constructor specifies a proofobligation thatt is equal to

Box t1 . The type constructorBox here is some, as yet undefined representation of boxed values. We will

consider how to define Box later on.

Example: Power function. Here we shall construct an exampleL� well-typed program. The function

power from In Figure 7.2 we show an integer exponentiation function power . This function can be

staged based on the situation where its exponent argument isknown. Thus, inL�, power is given the type

(Int →�(Int → Int)) : given an integer exponent argumentn, power generates a residual program

that computesxn, given its argumentx.

Figure 7.5 shows the definition of thepower function in the Omega encoding ofL�. We examine this

definition more closely:

• In the first line, we can see thatpower is defined by using recursion. TheL� constantfixpoint
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power :: Exp a b (Integer→Box (Integer→ Integer))
power = fixpoint ‘App‘ (Abs $ Abs $ Body)

where body = iffun ‘App‘ cond ‘App‘ zerocase ‘App‘ ncase
cond = eq ‘App‘ varr ‘App‘ (Lift 0 ”0”)
zerocase = Box (Abs (int 1))
ncase = Unbox reccall newbox
reccall = (ShiftR VarR) ‘App‘ (minusone ‘App‘ VarR)
newbox = Box (Abs $ times ‘App‘ VarR ‘App‘ (VarL ‘App‘ VarR))
minusone= Lift (\x→ x-1) ”dec”
times = Lift (\x y→ x * y) ”times”
iffun = Lift (\x y z→ if x then y else z) ”if”
eq = Lift (==) ”==”

fixpoint :: Exp d g ((a→a)→ a)
fixpoint = Lift fix ”fix”

where fix f = f (fix f)

Figure 7.5: The stagedpower function inL�.

is applied to a functional(abs $ abs $ body) , where the first abstracted variable represents

the recursive call to the functionpower , and the second argument is the exponentn.

• The body of functionpower is a conditional expression that compares the exponent to 0,and then

takes two cases:

1. zerocase . If the exponent is equal to zero, we simply return the code ofa function that, given

any argument, returns 1:box (abs (int 1)) .

2. ncase . If the exponent is not zero, we first recursively construct the code for the exponentiation

function for a smaller exponent (reccall ). The result of this recursive call is a piece of code

of type�(Int → Int). Then, this piece of code is un-boxed, and a new piece of code is

constructed using the un-boxed value (newbox ).

7.4 An Interpreter for L�

We shall give the semantics ofL� by providing an interpreter for the Omega encoding of the typing judg-

ments ofL�.

Theλ-fragment ofL� is virtually identical to the interpreter forL0 in Chapter 5. The important question

is how to implement the modal fragment. In defining the meaning of L� programs, we are guided by the

semantics ofλ� described by Davies and Pfenning [31].
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First, we must decide what meaning to give to expressions of type Box a . In a functional language

(with recursion) the simplest meaning of boxed terms, as discussed by Davies and Pfenning, are suspended

computations:

J�AK = 1→ JAK

Furthermore, such a semantics must respect the following identities [31, page 19]:

box e = λx : 1. e

let box u = e1 in e2 = (λx : 1→ τ. e2[u := x ()]) e2

With these guidelines in mind, we can begin to devise an interpreter forL�. The interpreter (Figure 7.6)

takes a typing judgment ofL� of type (Exp d g t) , a runtime modal environment, a runtime value

environment, and returns a Haskell value of typet . As before, the runtime value environment is simply a

value of typeg. However, we have seen that for modal of typet , we use the type() → t , so the modal

environment cannot simply be the nested tuple of typed. Rather, it is a closely related type(ME d) ,

defined below:

data ME˜e = EMPTY

| ∀e’t. EXT (ME e’) (() → t) where e=(e’,t)

-- EXT :: ME a -> (() -> b) -> ME (a,b)

Now, a runtime modal environment of typeME (((),Int),Int) can be created as follows:

me1 :: (((),Int),Int)

me1 = EMPTY ‘EXT‘ ( \ _ -> 1) ‘EXT‘ ( \ -> 2)

Finally, we are ready to give a type to the functioneval :

eval :: Exp d g t → (ME d) → g→ t

We concentrate on explaining the modal fragment (the bottomhalf of Figure 7.6):

1. Modal variables. The modal variable lookup is fairly standard. We consider the two relevant cases:

(a) TheVarL judgment provides us with an assumption thatgamma = (x,t) . The runtime

environment supplies another assumption,gamma=(y,t2) . These assumptions are combined

to obtain an equalityt2=t , which is induced by the type signature in relation to the result

(f ()::t2) .

(b) Similarly, theShiftL case implements weakening. Again, assumptions introducedby pattern

matching on the modal runtime environment are combined withthe assumptions introduced by
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eval :: Exp delta gamma t→ME delta→gamma→ t
evalVarR e1 e2 = snd e2
eval(ShiftR exp) e1 e2 =evalexp e1 (fst e2)
eval(Abs body) e1 e2 = (\v→ (evalbody) e1 (e2,v))
eval(App f x) e1 e2 = (eval f e1 e2) (evalx e1 e2)

evalVarL (EXT f) e2 = (f ())
eval(ShiftL e) (EXT env’ ) e2 =evale env’ e2
eval(BoxExp body) e1 e2 = (Box (\ → (evalbody e1 ())))
eval(UnBox expb body) e1 e2 =

let ˜(Box u) = evalexpb e1 e2
in evalbody (ext e1 u) e2

Figure 7.6: The interpreter forL�.

pattern matching over theL� judgment so that the weakened runtime modal environment can

be passed as an argument to the recursive call ofeval .

2. Box. First, we must decide how to representboxedvalues. Here, we shall chose to define a data-type

Box a as suspended computations overa. Theeval function simply delays the evaluation of the

body of the boxed expression and returns this computation wrapped up in aBox:

dataBox a =Box (()→a)

eval(BoxExp body) e1 e2 = (Box (\ → (evalbody e1 ())))

3. Unbox. The un-boxing is performed by first evaluating the expression to aBox value, binds the

computation inside theBox in the 0-th position in the modal dynamic environment, and proceeds to

evaluate the body of thelet box expression.

eval(UnBox expb body) e1 e2 =

let (Box u) = evalexpb e1 e2

in evalbody (ext e1 u) e2

It is worth reiterating the point made by Davies and Pfenning[31], that at first, there does not seem to be

any difference between the meaning of the box modality, and simple call-by-name delay. While this is true,

it is important to note that the modal type system ofL� rejects certain programs that using delayed values

(i.e.,()→ A) would allow us to write. The type system accepts as correct only those programs that exhibit

correct meta-programming properties (e.g., binding time separation [31]).



Chapter 8

Example: λ
©

Davies and Pfenning define another version of the typedλ-calculus enriched with types based on temporal

logic, calledλ©. The logic on which the type system forλ© is based is the discrete linear-time temporal

logic.1

The motivation for devising this calculus seems to have beenits ability to express, in a simple and natural

way, binding-time analysis in partial evaluation [29]. Thenotion of “a particular time” in temporal logic

correspond to computational stages (binding times) in partial evaluation.

b ∈ B ::= Int | · · · base types
τ ∈ T ::= b | τ → τ | ©τ | τ × τ types
Γ ∈ G ::= 〈〉 | Γ, (τ, n) type assignments
e ∈ E ::= c | 0 | e ↑| λτ.e | e1 e2 | (e1, e2) | π1 e | π2 e λ-fragment

| next e | prev e temporal fragment

Figure 8.1: The syntax of the languageL©.

8.1 Syntax ofL©

The syntax of the languageL© is defined in Figure 8.1. The types ofL© are the types of the simply typed

λ-calculus, enriched with©-types. In logic, the formula©A indicates thatA is valid at the next moment.

Similarly, if we regard them as types of a programming language, we can see type(Int→©Bool) as a type

of a function that takes an integer argument, and returns a booleanat the next computational stage.These

computational stages are ordered with respect to evaluation, so that evaluation of all redices that occur at

stagen happens before evaluation of the redices at the stagen + 1.

Type assignments are lists of types, where each type in a listis annotated with a natural number. This

natural number represents the “time moment” (or stage) at which the free variable is bound.

1A “temporal logic is an extension to logic to include proofs that formulas are valid at particular times” [29].
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Γ, (τ, n) ⊢n 0 : τ
Var

Γ ⊢n e : τ

Γ, (τ ′, m) ⊢n e ↑: τ
Shift

Γ, (τ1, n) ⊢n e : τ2

Γ ⊢n λτ1.e : τ1 → τ2
Abs

Γ ⊢n e1 : τ1 → τ2 Γ ⊢n e2 : τ1

Γ ⊢n e1 e2 : τ2
App

Γ ⊢n+1 e : τ

Γ ⊢n next e :©τ
Next

Γ ⊢n e :©τ

Γ ⊢n+1 prev e : τ
Prev

Figure 8.2: Type System ofL©.

The set of expressions consists of a completely standardλ-calculus fragment, and a temporal fragment

consisting of two constructs:

1. next e. Thenextis an introduction construct for the circle types. Operationally, it delays the execution

of the expressione until the next computational stage. In a way, it is analogousto thebox expression

of L�, except that, as we will see, there is no requirement thate be closed.

2. prev e. Theprev is en elimination construct for the circle types. While constructing a value at the

next computational stage, theprev expression allows the control to pass back to the current stage,

provided that its result is a next-stage value. This next stage value can then be plugged back into the

next-stage context surrounding theprev.

8.2 Type System ofL©

The typing judgment ofL© is defined in Figure 8.2. The typing relationΓ ⊢n e : τ ⊆ G × N × E× T is

indexed by a natural numbern, which represents a particular time at which an expressione has typeτ . The

typing rules fornext andprev constructs manipulate this time index:

1. At some time indexn, a value of type©τ represents a value at the next moment. Thus, to show that

next e has type©τ at the momentn, we must prove thate has typeτ at the time indexn + 1.

Γ ⊢n+1 e : τ

Γ ⊢n next e :©τ
Next

2. An expression can be “escaped” by usingprev only in the context of type-checking an expression

at a later (non-0) point in time, and only if the escaped expression is a circle type (i.e., it already

represents a computation at a later point in time). One should note that this formulation of the rule

prevents typing ofprev when the time indexn is equal to zero, since there can be no earlier point in

time.
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Γ ⊢n e :©τ

Γ ⊢n+1 prev e : τ
Prev

The treatment of variables in the type system is also somewhat different from the simply typedλ-calculus.

When a variable is bound by aλ-expression, the time indexn at which it is bound is recorded in the type

assignment together with the type of the variable. The variable rule is written in a way that ensures that

only variables bound at time indexn can be used at the same time index.

8.3 EncodingL© in Omega

Recall that the typing judgments ofL© are indexed by a natural number that represents the time index at

which the judgment is valid. Encoding this judgment as an Omega type constructor requires us to have a

representation of natural numbersat the level of typesin order to represent time indexes. Thus, we first

define natural numbers at the type level, along the lines described in Chapter 4:

kindNat = Z

| SNat

dataIsNat (n :: Nat) = IsZero (Equal n Z)

| ∀m. IsSucc (Nat m) wheren = (S m)

Natural numbers at the level of types are represented by the type constructorsZ andS of kind Nat . The

type constructorIsNat n is a runtime representation of the natural numbern. The type signatures of the

constructors are as follows:

IsZero :: Nat Z

IsSucc :: Nat n →Nat (S n)

The encoding of the typing judgment ofL© in Omega is shown in Figure 8.3. The type constructorExp

has three arguments:

1. The first argument,n, is the time index.

2. The second argument,e, is the type assignment. It is encoded as a nested tuple in thefollowing

mapping:

tr :: G→ types

tr 〈〉 = ()

tr Γ, τn = (trΓ, (τ, n))
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dataExp (n::Nat) e t =∀ e’. Var wheree=(e’, (t,n))
| ∀ e’ t’ m. Shift (Exp n e’ t) wheree=(e’,(t’,m))
| ∀ t1 t2. Abs (Exp n (e,(t1,n)) t2) wheret=(t1→ t2)
| ∀ t1. App (Exp n e (t1→ t)) (Exp n e t1)
| Const t String
| Fix (Exp n (e,(t,n)) t)
| ∀ t’ m. Next (Exp m e t’) wheret=(Circle n t’), m = (S n)
| ∀ m. Prev (Exp m e (Circle m t)) wheren=(S m)

Figure 8.3: Typing judgment ofL© in Omega.

3. Finally, there is the representation of types. Base and arrow types ofL© are represented by their

corresponding Omegatypes. The circle types are represented by the type constructorCircle , which

we shall discuss in more detail later.

We examine the encoding ofL© judgments as the data-typeExp in more detail:

1. Theλ-calculus fragment.The λ-calculus is fairly standard, except for the treatment of variables.

First, in aλ-abstraction, a variable is bound at the same time index as the overall judgment. In the

variable case, the time-index annotation in the type assignment is required to match the time-index

of the overall expression.

2. Next.The ’next’ construct is defined as follows. The argument to the constructorNext is anExp of

type t’ , at the some time-indexm. The equality constraint forces the type of the overall judgment,

t , to be equal toCircle n t’ . Finally, there is the additional equality constraint thatmequals to

(S n) . This forces the sub-expression argument toNext to be an expression at a higher time index.

3. Prev.The constructorPrev takes one argument: a sub-judgment of type(Exp m e (Circle m t)) .

There is also an equality proof that forces the overall judgment’s time indexn to be equal to the suc-

cessor ofm.

It is worth noting how this preventsPrev expressions at time index zero. If we wanted to have an

expressionPrev e have the typeExp Z e t we would induce an equality proof obligation to

show thatZ equalsS m, for somem. In Omega this would result in a type error.

The types of the constructors for theL© judgments are listed in Figure 8.4. Let us look at a couple of

simple examples ofL© judgments.

e1 :: Exp (S n) e (t→ t)
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Var :: Exp n (e,(t,n)) t
Shift :: Exp n e t→Exp n (e,(t2,m)) t
Abs :: Exp n (e,(t1,n)) t2→Exp n e (t1→ t2)
App :: Exp n e (t1→ t2)→Exp n e t1→Exp n e t2
Next :: Exp (S n) e t→Exp n e (Circle n t)
Prev :: Exp n e (Circle n t)→Exp (S n) e t

Figure 8.4: Type signatures for constructors ofL© judgments.

e1 = Prev (next (abs var))

e2 :: Exp n e (Circle n t→Circle n t)

e2 = Abs (Next (Prev var))

e3 :: Exp n e (Circle n (t1→ t2)→Circle n t1→Circle n t2)

e3 = Abs (Next ((Prev (Shift Var)) ‘App‘ (Prev Var)))

1. The judgmente1 is “escaped,” usingPrev at the top level, so the Omega type checker infers(S n)

as its time index.

2. The judgmente2 is an identity function that takes an argument of type©τ and immediately splices

it, using Prev into a Next -stage code. TheNext andPrev cancel each other out, leaving an

identity function of type©τ →©τ .

3. The judgmente3 is slightly more complicated. It takes two arguments, a function©(τ1 → τ2) and

a delayed value of type©τ1, and produces a delayed result of type©τ2.

8.4 An Interpreter for L©

In defining an interpreter forL© we are guided by the big-step semantics for a small temporal functional

language defined by Davies and Pfenning [29]. They define the semantics of this language as a family

of functions, indexed by a natural number representing the time index, which maps expressions to values

(written:) e
n
→֒ v.

The interpreter we define here is based on the same idea, although it has a more denotational style. The

following observations can be taken as general guidelines in defining the interpreter.

Time-indexed evaluation

The work that the interpreter performs can be divided into three distinct modalities, based on the time index.
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1. At the time index 0. The time index 0 represents expressions that are to be evaluatednow. This means

that theλ-calculus fragment must be interpreted at the time index 0. For example, at time index 0,

should map the expression(λ.Var)0 to the integer value0, and so on.

2. At the time index 1. The time index 1 represents expressions that are to be evaluated at the next stage

(i.e., the next moment in time). In particular, this means that the real work (e.g., reducingβ-redices)

of theλ-calculus fragment is not to be performed at time index 1. However, escaping expressions of

the form (prev e) can occur inside time index 1 expressions. In this case, theexpressione must be

evaluatedat time index 0, produce a time-index-1 value that is to be spliced in place of prev e.

This is illustrated in Davies and Pfenning’s big-step semantics by the following rule:

e
0
→֒ next v

prev e
1
→֒ v

eval1

3. At the time indexn > 1. At the time index greater than 1, there is no real work. The interpreter

must merely traverse, and rebuild, the original term, making sure to increment its time index when

evaluating undernext , and to decrement its time index when evaluating underprev .

Values

The interpreter forL© is a written as a family of functions indexed by a natural number presenting the time

index. It must well-typed expressions (judgments) ofL© into values. At the time index 0, the values for the

λ-calculus fragment seem quite straight-forward: an expression of typeInt → Int can simply be mapped

into anInt → Int function. However, when considering the modal fragment, the notion of values gets a

little more complicated.

First, at the time index 0, we have a type of valuesCircle n t that represent the delayed (modal)

values of typet at time indexn. Second, Davies and Pfenning introduce a notion of a set of values, at some

indexn, that is a subset of the set of expressions in a particular normal form. The idea is that the set of

values at time index(n + 1) is isomorphic to the set of expressions at time index0.

data Val n e t =

ValConst t

| ∀ m e’. VarV where e = (e’,(t,n)), n=S m

| ∀ m p t2 e’. ShiftV (Val (S m) e’ t)

where e = (e’,(t2,p)), n=(S m)

| ∀ m t1 t2. AbsV (Val (S m) (e,(t1,(S m))) t2)

where t=t1->t2, n = S m

| ∀ m t1. AppV (Val n e (t1->t)) (Val n e t1) where n = S m
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| ∀ t’. NextV (Val (S n) e t’) where t = (Circle n t’)

| ∀ m t1. PrevV (Val (S m) e (Circle (S m) t)) where n = (S (S m))

| ∀ env. Closed env (Val n env t)

data Circle n t = ∀ env. Circle env (Val (S n) env t)

8.4.1 The Interpreter

With this in mind, we can tentatively assign a type to the interpreter. In order to be able to tackle the three

distinct interpreter modes in separate steps, we shall divide the interpreter into three functions:

eval0 :: Exp Z e t → e→ t

eval1 :: Exp (S Z) e t → e→Val (S Z) e t

evalN :: IsNat n →Exp (S n) → e→Val (S n) e t

First, we present the interpreter at time index 0. Theλ-calculus fragment is fairly standard (see Chap-

ter 5).

1 eval0 :: Exp Z e t → e→ t

2 eval0 ( Const c t) env = c

3 eval0 Var (env’,(v,Z)) = v

4 eval0 ( Shift e) (env’, ) = eval0 e env’

5 eval0 ( Abs e) env = \x→ eval0 e (env,(x,Z))

6 eval0 ( App e1 e2) env = (eval0 e1 env) (eval0 e2 env)

7 eval0 ( Next e) env = Circle env (eval1 e env)

The only exception is in the treatment of variables.The values in the runtime environment carry their time

indexes. These time indexes are ignored when extracting values from the environment (lines3 and4). The

λ-abstraction case must bind a new variable in the runtime environment (line5). In addition to the actual

value, its time index (Z) is also bound.

Let us consider the modal fragment. The first thing to note is that the functioneval0 is not defined for

the case when theL© judgment is of the formPrev e . This is because, by definition ofExp, judgments

of the form Prev e cannot have the typeExp Z e t . Finally, on line 7, we show the definition of

eval0 for the judgment of the formNext e . First, the sub-expressione of type Exp (S Z) e t

is evaluated byeval1 , to obtain the result of typeVal (S Z) e t . Such a value, together with the

current environmentenv can be wrapped inside aCircle value to obtain the result of typeCircle (S

Z) t .

Now, let us consider the definition ofeval1 , the interpreter at the time index 1:
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8 eval1 :: Exp (S Z) e t → e→Val (S Z) e t

9 eval1 Var env = VarV

10 eval1 ( Shift e) env = ShiftV (eval1 e (fst env))

11 eval1 ( Abs e) env = AbsV (eval1 e (env,(undefined,undefined)))

12 eval1 ( App e1 e2) env = AppV (eval1 e1 env) (eval1 e2 env)

13 eval1 ( Prev e) env = case (eval0 e env) of

14 Circle e val →Closed e val

15 eval1 ( Next e) env = NextV (evalN two e env)

16 where two = IsSucc (IsSucc IsZero)

For theλ-calculus fragment ofL©, the functioneval1 performsrebuilding. The simplest example

of this is on line9: starting with the variable expressionVar :: Exp (S Z) (e,(t,S Z)) , it

constructs a value VarV :: Val (S Z) (e,(t,S Z)). For otherλ-fragment expressions (lines10-12) such rebuilding

is performed recursively on the structure of the term.

The most interesting part ofeval1 is the case forPrev judgments (line13-14). First, the sub-judgment

e is evaluated byeval1 to obtain a circle (delayed) value. This value is de-constructed, itsVal judgment

extracted. The actual splicing of this code is performed by the constructorClosed, which allows us to

form aclosureout of any value, by remembering the environment in which it is defined.

The case ofNext e (line 15) proceeds by evaluating the judgmente at a higher time index to obtain a

value of typeVal (S (S Z)) e t , and then wrapping the result withNextV to obtain a value of type

Val (S Z) e (Circle (S Z) t) .

Finally, we consider the functionevalN which implements the interpreter at a time index greater than

1:

17 evalN :: IsNat (S (S n)) →Exp (S (S n)) e t → e→Val (S (S n)) e t

18 evalN ( IsSucc ( IsSucc n)) Var env = VarV

19 evalN ( IsSucc ( IsSucc n)) ( Shift e) env =

20 ShiftV (evalN ( IsSucc ( IsSucc n)) e (fst env))

21 evalN ( IsSucc ( IsSucc n)) ( Abs e) env =

22 AbsV (evalN ( IsSucc ( IsSucc n)) e (env, (undefined,undefined)))

23 evalN ( IsSucc ( IsSucc n)) ( App e1 e2) env =

24 AppV (evalN ( IsSucc ( IsSucc n)) e1 env)

25 (evalN ( IsSucc ( IsSucc n)) e2 env)

26 evalN ( IsSucc ( IsSucc ( IsSucc n))) ( Prev e) env =

27 PrevV (evalN ( IsSucc ( IsSucc n)) e env)

28 evalN n ( Next e) env = NextV (evalN ( IsSucc n) e env)
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The functionevalN takes as its first argument a natural number representation of the current time index.

To ensure that this time index is at least 2, the argument’s type is specified asIsNat (S (S n)) . In

both theλ-calculus and the temporal fragment the functionevalN behaves the same: the judgments are

recursively rebuilt (transformed into values), while the time indexes increment and decrement whenever

Next or Prev is encountered.

8.4.2 Power Function

The first example we present is that of thepower function, analogous to the one shown in Figure 7.5 for

L�.

1 power :: Exp Z env (Int → (Circle Z Int) → (Circle Z Int))

2 power = Fix (Abs (Abs (Abs body)))

3 where body = myif ‘App‘ v1 ‘App‘ v0 ‘App‘ body2

4 body2 = Next (times ‘App‘ (Prev v0) ‘App‘

5 (Prev

6 (v2 ‘App‘ (minus ‘App‘ v1 ‘App‘ one) ‘App‘ v0)))

7 myif = Const ( \c t e → if c then t else e) "if"

8 one = Const 1 "one"

9 times = Const (+) "+"

10 minus = Const (-) "-"

11

12 example = Next (Abs (Prev (power2 ‘App‘ (Const 2 "2") ‘App‘ (N ext Var))))

13 -- Next ( \x → (Prev (power 2 (Next x))))

14 result = eval0 example ()

The functionpower takes two arguments. The first, the exponent is an integer value. The second, the

base, is a delayed integer value (of typeCircle Z Int ), and produces as a result a delayed integer value

(of typeCircle (S Z) Int ). The function power can be specialized (line12) to exponent two to obtain

a delayed function value of typeCircle Z (Int → Int) . Evaluatingexample (line 14) yields the

following result (slightly cleaned-up and pretty-printed):

result =

( Circle

( AbsV

( AppV

( AppV

( ValConst <fn> "times")

( AppV ( AppV ( ValConst <fn> "times") ( ValConst 1 "1"))

VarV))



179

VarV))) : Circle Z (Int -> Int)



Part IV

Conclusion
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Chapter 9

Related Work

We shall organize our survey of related work by dividing it into 2 broad topics:

1. Meta-programming.(Section 9.1)

(a) Homogeneous meta-programming.(Section 9.1.1)

(b) Heterogeneous meta-programming.(Section 9.1.2)

2. Dependent types, type theory and meta-programming.(Section 9.2)

(a) General background.(Section 9.2.1)

(b) Meta-programming with dependent types.(Section 9.2.2)

(c) Simulating dependent types in Haskell.(Section 9.3)

9.1 Meta-Programming

Here we provide a very general overview of the work most directly relevant to this dissertation. We begin

with some background remarks on meta-programming, noting that a more detailed historical and taxonomic

survey of programming languages that support meta-programming has been written by Sheard [118].

The notion of treating programs as data was first explicitly developed by the LISP community. In this

context, the notion ofquasi-quotation[126, 8] was developed as a way of making the interface to the data

representing the object program “as much like the object-language concrete syntax as possible.” [118] A

historical discussion, tracing quasi-quotation from the original ideas of Quine, to their impact on MetaML

is given by Taha [128]. The idea of the need for a meta-language (that can be used as a common medium for

defining and comparing families of (object) languages) can be traced to Landin [69]. Similarly, Böhm pro-

posed using theλ-calculus-based language CuCh as a meta-language for formal language description [12].
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Nielson and Nielson [90, 93, 92] define programming languages and calculi that clearly distinguish meta-

level from object-level programs as a part of the language. This work can be seen as motivated by a search

for a formal way to study the semantics of compilation. They recognized that compilation can be seen a

meta-program with two phases: a static phase, where the compiler constructs a residual output program

from some input program, and a dynamic phase where the residual program itself is executed. Thus, they

design a functional language with two levels correspondingto the two phases of compilation [94]: all

language constructs come in two flavors, minimally distinguished by the syntax. We note also that the

two levels are essentially the same language, i.e., that themeta-programming described is homogeneous.

Nielson and Nielson study the denotational semantics of such two-level languages, [91] as well as their

applications to abstract interpretation [92]. They also generalize their work to multi-stage languages [95].

An important impetus to the study of meta-programming languages came from the partial evaluation

community.

Partial evaluation researchers approached the problem from a more syntactic point of view, not really

considering the staging constructs as first-class (semantically motivated) parts of the language. With the

benefit of hindsight, however, this perhaps explains why they did not develop type systems that would

statically guarantee type correctness of both the static and dynamic stages in two-level languages.

Gomard and Jones [49] present a two-levelλ-calculus as a part of their development of a partial evaluator

for theλ-calculus and the study of binding time analysis for such an evaluator. In this scheme, a binding time

analyzer takes a (single-level)λ-expression, and produces a two-levelλ-expression. Then, the semantics of

the two-level calculus can be used to reduce 2-level expressions produced by the BTA, yielding a residual

program that consists entirely of the level-2 parts of the 2-level expression. They also develop a type system

for the 2-level calculus in order to be able to judge the correctness of the annotations produced by the BTA.

However, only level-1 terms are typed; the residual programs constructed using the dynamic part of the 2

level calculus are dynamically typed.

Glück and Jørgensen [46, 47] studied binding time analysisand partial evaluation with more than two

stages. Their generalization of binding time analysis to multiple stages is acknowledged [128] as being a

major source of inspiration for the MetaML family of multi-stage languages.

Two important meta-programming systems emerged from the study of constructive modal logic by

Davies and Pfenning [30, 29] (See Section 9.1.1).

MetaML [137] (See Section 9.1.1 for a detailed discussion) is an important synthesis of many previous

generative meta-programming languages. It extends the work on modal calculi of Davies and Pfenning,

introducing new concepts such as cross-stage persistence,and type-safe combination of reflection (therun

construct) with open code.
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9.1.1 Homogeneous Meta-Programming

The division into homogeneous and heterogeneous meta-programming languages has was introduced by

Taha [128] and Sheard [118, for an excellent survey]. In thissection, we shall trace the context of homoge-

neous meta-programming, starting with modal-logic basedλ-calculi, and proceeding to MetaML.

Modal Logic: λ� and λ©

Many homogeneous meta-programming systems are motivated by the study of modal logic. In particular,

we shall examine two related logical systems (and their associated versions of theλ-calculus): the first,

λ�, corresponds to the modal logicS4; the second,λ©, corresponds to linear-time temporal logic. Both

of these systems have found applications in the study of meta-programming. Each of them captures an

important intuition about program generators. One of them,λ� captures the notion ofclosed code, which

can be executed from within the meta-program. The other,λ©, allows manipulation of open code fragments

that can be easily combined by “splicing.” Combining the twomodalities results in a meta-programming

language that captures very precisely the notion of homogeneous program generators. However, such a

combination is not straightforward, since the splicing (escaping) ofλ© and code execution (run) ofλ�

interact and interfere with each other. Sheard and Thiemannprovide a good discussion of the issue and a

survey of related work that addresses it [125].

The calculiλ� andλ© both use modal operators,� (necessity) inλ� and© (next) inλ©, to classify

terms that produce object-language programs. For example,the type(A → �B) is seen as a type of a

program generator that takes an argument of typeA and produces an object language program of typeB.

The calculusλ� can be seen as the language of proof terms for the propositional modal logicS4 [108].

On the logical side, box (�) is the necessity operator. The necessity operator corresponds to a type of

code, i.e., values that represent object language expressions.In particular, it classifies, a type ofclosed

code, i.e., a type of object programs that do not contain free variables. The type system ofλ� ensures

that no free variables escape from thebox construct by keeping two type assignments,∆, andΓ, (see

Figure 9.1). When type-checking the expressionbox e, the expressione must be type-checked, in the empty

the type assignmentΓ (this is the type assignment that is augmented when type-checkingλ-abstractions),

indicating that there are no free variables ine. However, the box elimination construct binds its variablein

theotherenvironment(∆) thus allowing manipulation of unboxed values when building inside other boxed

expressions.

Let us consider a standard example, thepower function which, given two integersn andx, computesxn.

Rather than providing a function of typeInt → Int → Int , we shall define a function of the related type

Int →�(Int → Int) , i.e., given the argumentn, it produces aprogramthat when given the argument
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λ-fragment

∆; Γ, x : τ ⊢ x : τ
Var1

∆, x : τ ; Γ ⊢ x : τ
Var2

∆; Γ ⊢ x : τ

∆, y : τ ′; Γ ⊢ x : τ
Weak1

∆;Γ ⊢ x : τ

∆;Γ, y : τ ′ ⊢ x : τ
Weak2

∆;Γ, x : τ1 ⊢ e : τ2

∆;Γ ⊢ λx : τ1.e : τ1 → τ2

Abs
∆;Γ ⊢ e1 : τ1 → τ2 ∆;Γ ⊢ e2 : τ1

∆;Γ ⊢ e1 e2 : τ2

App

�-fragment

∆; 〈〉 ⊢ e : τ

∆;Γ ⊢ box e : �τ
Box

∆;Γ ⊢ e1 : �τ1 ∆, x : τ1; Γ ⊢ e2 : τ

∆;Γ ⊢ let box x = e1 in e2 : τ
Unbox

Figure 9.1: The type system ofλ�.

x computesxn.

power :: Int →�(Int → Int)

power 0 = box ( \x→ 1)

power (n+1) = let box f = power n in box ( \x→ x * (f x))

Applying the power function to the argument 2 yields the programpow2. Note thatpow2 contains a

number of “administrative redices.” The generated programcan be run by usinglet box construct to obtain

the value of32, shown below.

pow2 :: �(Int → Int)

pow2 = power 2

-- pow2 = box(\x1→x1 * ((\x2→ x2 * ((\x3→ 1) x2)) x1))

result = let box f = pow2 in f 3

-- result = 9

Davies and Pfenning [29] also studied type systems extending the Curry-Howard isomorphism from

simple propositional logics to the constructive (linear-time) temporal logic. Such a system is shown to

accurately describe binding time analysis in (multi-stage) partial evaluation. More notably, they state and

prove the property oftime-ordered normalization. This property means that reductions preserve the binding

time of redices inλ© terms: all terms typed at an earlier “time”, say©A are evaluated before terms typed

at a later time, say,©©A. This property also means thatλ© realistically describes partial evaluation, or,

more generally, generative multi-staged meta-programming of a certain kind.
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λ-fragment

Γ, xn : τ ⊢n x : τ
Var

Γ ⊢n x : τ

Γ, y : τ ′m ⊢ x : τ
Weak

Γ, x : τn
1 ⊢n e : τ2

Γ ⊢n λx : τ1.e : τ1 → τ2

Abs
Γ ⊢n e1 : τ1 → τ2 Γ ⊢n e2 : τ1

Γ ⊢n e1 e2 : τ2

App

©-fragment

Γ ⊢n+1 e : τ

Γ ⊢n next e : ©τ
Next

Γ ⊢n e1 : ©τ

Γ ⊢n+1 prev e1 : τ
Prev

Figure 9.2: The type system ofλ©.

They prove that their calculus is equivalent with the systemof Gomard and Jones [49] by providing

translations between them.

The main technical trick in the type system (Figure 9.2) is

1. To annotate the typing judgment with a natural numberlevel index. This index is augmented when

type-checking inside thenext construct, which delays evaluation. Similarly, the index is decremented

when type-checking theprev construct, which escapes back to the previous level to compute a pro-

gram fragment that is to be spliced into a larger object-program context.

2. To annotate the variable bindings in the type assignmentΓ with the level at which those variables are

bound. This assures that no variable in the program can be used “at the wrong time,” thus preventing

phase errors, situations in which a variable is used before it is defined.

Thepower function example can be replicated inλ© as well.

power :: Int →©Int →©Int

power 0 x = next 1

power (n+1) x = next (( prev x) * ( prev (power n ( next x))))

result = power 2 (next 3)

-- result = next (3*3*1)

Note that the residual code produced by theλ© version of thepower function does not contain the

extraneousβ-redices present in the residual code generated by theλ� implementation.
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Type systems ofλ� andλ© are interesting examples of non-standard type systems. In Chapters 7 and 8

we describe encodings, using our Haskell techniques, of well-typed terms inλ� andλ©, as well as well-

typed interpreters for a version of both languages. It is interesting to note that in ourλ© something very

much like the time-ordered normalization (see above) becomes a statically enforceable invariant encoded

in the type of an interpreter for the encoding of well-typedλ© terms.

MetaML

The calculi based on� and© modalities have both comparative advantages and disadvantages when used

in meta-programming. The program generators written inλ© tend to be easier to write and generate more

efficient residual programs. Program generators written with λ� tend to leave a large number of “admin-

istrative redices” in the residual programs [29]; some of these administrative redices can be eliminated in

λ©.

The disadvantage ofλ© is that the generated residual code (whose types are classified by the© type

constructor) cannot be programmatically executed in the type system ofλ© (there is noλ© analogue to

unbox).1

The considerable body of research on MetaML [135, 130, 82, 15, 129, 134] is an attempt to combine the

ease of programming of the© modality with the ability to run generated programs of the� modality, all

in a strongly typed setting. The general approach can be outlined as follows:

1. MetaML uses a slightly modified version of the© modality. In MetaML, it is a type constructor,

called “code”, and written as a bracket around a type:〈A〉. The constructsprev andnext are replaced

by bracketed code templates (〈e〉) and escapes (˜e).

2. MetaML introduces arun construct in the language which takes an expression of type〈A〉 and pro-

duces an expression of typeA. However, this is unsound in general, since〈A〉 might contain free

variables whose value bindings may not be known at the time ofrunning the piece of code. A number

of type-systems have been devised to deal with this problem:

(a) Before a piece of code can be run, the type system must prove that it is closed [135]. This

is done by making sure that it is typable in an empty typing context. While this approach is

safe, there are situations in which it rejects programs thatare perfectly safe. It also preventsλ

abstractions over certain terms that containrun.

1In practice this means that execution of residual programs generated is performed by some extra-linguistic (ad hoc) means – e.g.,
a top-level way of executing programs.
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(b) Counting the number of escapes, brackets and run that surround a term can also used to pre-

vent run from going wrong. [130] This is a very syntactic method of ensuring the safety of

run. Similarly, such a type system can be seen as being to restrictive, disallowing abstractions

over run. Nevertheless, this type system can be quite useful in practice. The programming

language implementation of MetaML [121] uses a type system based on this idea, extended to

a conservative extension of Standard ML of New Jersey [79].

(c) A further development of MetaML type system, called AIM [82], solved this problem by in-

troducing an additional modality, essentially “box,” as a refinement of the MetaML type of

code. Then, only boxed code terms ([〈A〉]) can be executed usingrun. Unlike the previous

approaches, this type system allows for abstractions overrun. However, the formalism of AIM

makes the meta-programming with explicit staging a lot moreverbose and, at times, somewhat

awkward [134, for discussion].

(d) Recently, Taha and Nielsen presented a type system for MetaML using environment classi-

fiers [134]. The environment classifiers are a formal way explicitly naming environments in

which free meta-variables appearing in open code are defined. The advantage of this type sys-

tem is that is allows the safe kinds of open code to be executed. This approach harmonizes the

tension between the approaches (2b) and (2c): “while the first approach allows us to run open

code, but not abstractrun, the second allows us to do the latter but not the former. [Thetype

system with environment classifiers] provides both features.” [134, page 2].

(e) Finally, addressing the same difficulties of safely combining run andescapeas (2d), Sheard

and Thiemann [125] design another type system for MetaML. This type system is based on

constraint solving and subtyping. The advantage of this system seems to be that it does not

require the programmer to supply any annotations beyond theusual MetaML ones, and that it

seems amenable to type inference. Unlike Taha and Nielsen’stype system [134], it does not

require explicit annotations on cross-stage persistent constants.

In addition to these features, MetaML supportscross-stage persistence, allowing later-stage programs

to use values defined at an earlier stage. A good deal of work has also been done to support stag-

ing of imperative MetaML programs [15], as well as to provide“industrial strength” implementations of

MetaML [16, 121].

We digress, briefly, to consider how is MetaML, a homogeneousmeta-language, relevant to the heteroge-

neous meta-programming framework we propose. In the examples presented throughout this dissertation,

we have concentrated on heterogeneous programming scenarios of a particular kind. In this kind of hetero-

geneous meta-programming, we use a homogeneous fragment ofthe meta-language as an efficient “back
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end” for implementation. The scenario can be described as follows:

1. We start with an encoding of the syntax (and type system) ofsome object languageL1.

2. We manipulate the object-programs by deconstructing their representations and (e.g., in the case of

interpreters) map them to some domain of values, also encoded as a part of the meta-language.

However, we can use staging in step 2, obtaining not a value inthe meta-language, but a residual program

in the meta-language that computes that value. The usual arguments for obtaining more efficient programs

through staging still apply in this situation. This way, we have a heterogeneous system which translates

programs in the object languageL1 into programs (represented in MetaML-style using the code type) in

the meta-language. By so combining heterogeneous and homogeneous meta-programming we can reap the

benefits from both worlds: we can (a) safely manipulate object programs in many different object languages,

while (b) writing highly efficient interpreters for such object languages by using MetaML notion of staging

to remove the interpretive and tagging overhead inherent inwriting interpreters for such object languages.

9.1.2 Heterogeneous Meta-Programming

Now, we shall briefly trace the genealogy of the main ideas presented in this dissertation. A couple of addi-

tional topics is worth mentioning in connection to heterogeneous meta-programming – intentional analysis,

and the pragmatics of the interface to object-language syntax – and we shall review them.

A Historical Overview

Initial motivation for our study of heterogeneous meta-programming came from the work on imple-

menting of domain specific languages in a safe, efficient and disciplined way by staging interpreters in

MetaML [120]. The basis of this approach is to define an objectlanguage as a data-type in MetaML [121],

write a definitional interpreter for it, and then stage this interpreter to obtain an efficient residual program

from which the interpretive overhead has been removed.

The first problem, however, was that with algebraic data-types in MetaML there was no way of ensuring

that only well-typed programs of the object language are interpreted. If the object language is strongly

typed, developing a way of statically ensuring well-typedness of the object language encoding would pro-

vide an additional sense of safety (and reliability) of staged interpreters by guaranteeing that no type errors

would be generated by the residual program. Furthermore, wesaw that encoding and using type informa-

tion about the object language would allow us to generatetagless staged interpretersthat are more efficient

because no tagging overhead is introduced by the implementation [102].
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As a first step we developed a prototype meta-language with staging and dependent types [102], and

implemented our first tagless staged interpreters. This language was initially modeled on Coq [139] and

similar type theory-based languages. However, it was soon recast into a FLINT-style [116] framework

that allowed us to write staged interpreters in a meta-language with effects such as general recursion and

partiality without having to compromise either type safetyof the meta-language, or the expressive power to

represent well-typed object-language terms.

Such work provided a proof of concept and a simple prototype implementation, but we were concerned

with a couple of pragmatic issues. First, implementing and,more importantly, maintaining a large new

programming language with a complicated type system and staging did not seam feasible at the time.

Second, existing programming languages with dependent types [2] did not seem to attract a large user base

among functional programmers.

At the same time, we became aware of Baars and Swierstra’s [4]paper that used equality types to rep-

resent types at runtime as a way of integrating dynamic typing in Haskell. Their work, in turn, has roots

in Weirich’s paper presenting an encoding of equality between types in Haskell [143]. Also relevant is

McBride’s work on simulating dependent types in Haskell [75].

We adapted these techniques to represent typing judgments of λ-calculus terms in Haskell. To do this we

needed to use only very standard extensions to Haskell98, available most Haskell implementations, such as

higher-rank polymorphism and existential types. To experiment with staging, we assumed that Haskell can

be extended, conservatively, with staging constructs2. In this programming language environment, we were

able to define the same tagless staged interpreters, and apply our technique to a larger set of heterogeneous

meta-programming examples.

Intentional Analysis

Here, we takeintentional analysisto refer to the ability of a meta-program to analyze the (syntactic) repre-

sentation of object-programs. In the context of homogeneous meta-programming systems such as MetaML,

intentional analysis is problematic from the semantic point of view. Indeed, MetaML (and related systems)

are known asgenerative meta-programming languagessince the programmer is only allowed to generate

programs, not to rewrite or examine them.

MetaML and Intentional Analysis. MetaML enjoys interesting (non-trivial) equational properties. The

α−,β−, η−, and bracket-cancellation reductions are sound with respect to the operational semantics of

MetaML [129]. This allows the MetaML implementations to perform a number of optimizations on their

2An implementation of such a language was produced by Sheard [119, for Tim Sheard’s prototype implementation].
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representation of code without changing the meaning of programs. For example, certain trivialβ-redices are

removed, rewriting simplifications based on monadic laws are performed on code containing Haskell-style

do expressions, andlet expressions are hoisted to avoid excessive nesting.

All these optimizations yield a representation of code thatis highly readable when printed. Automatic

removal of certain administrative redices in code representation sometimes also yields more efficient object

programs. However, the equational properties that justifythese optimizations conflict with intentional

analysis. Simply put, if the user can observe the differencebetween, say the pieces of code〈(fn x

=> x) 1 〉 and〈1〉, then the equational properties are no longer sound and optimizations cannot be safely

performed. A satisfactory formulation of intentional analysis that can be safely integrated into MetaML

implementations has yet to be discovered.

In the techniques for heterogeneous meta-programming we propose, intentional analysis can be per-

formed on source object languages encoded by the programmer(while still statically ensuring that such

intentional analysis preserves typing properties of the object program). The part of the meta-language that

deals with staging, however, allows only generative meta-programming. We conjecture that in practice this

will prove to be a reasonable compromise: intentional analysis can be used to perform optimizing source-

to-source transformations on the syntax of object-language programs, while staging is used to ultimately

ensure efficiency of object-language implementations.

FreshML. Pitts and Gabbay [39, 41, 111] formulate an elegant theory for manipulating abstract syntax

with the notion of variable binding. From the programming language point of view, this allows them to

construct data-types representing sets of syntactic termsmoduloα-conversion. Theoretical foundation of

this work is Frænkel-Mostowsky set theory, which provides models for such sets of terms. Unlike previous

approaches, such data-types admit a simple and elegant notion of structural induction, while still preserving

α-equivalence.

Integrating the key ideas of FreshML and nominal logic into ameta-programming framework has already

been proposed by Nanevski [86]. In our examples, we opt for deBruijn style of representing syntax modulo

α-renaming. The main reason is that it is not entirely clear how to express typeful abstract syntax in this

framework, although we conjecture that Nanevski’s scheme might very well be adapted to our encoding of

typing judgments. The investigation of this question is left for future work.

Names and necessity. An interesting approach to meta-programming was proposed by Nanevski and

Pfenning [86, 85]. It can be seen as a parallel effort to solvemany of the same problems that MetaML

was invented to address. Whereas MetaML starts with the© modality and finds various ways of relaxing

it to allow for execution of open code, Nanevski’s language,ν� starts with the� modality and relaxes
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its restrictions on open code by using the ideas form Pitts and Gabbay’s nominal logic to allow certain

kinds of free variables. The main idea seems to be to combineλ� of Davies and Pfenning with nominal

logic of Pitts and Gabbay [40]. This nominal-modal logic seems to provide a very rich system for meta-

programming: the modal fragment allows for construction ofprograms, including the run operation, while

the nominal fragment permits certain kinds of intentional analysis over constructed meta-programs. Thus,

while residual programs generated in this framework tend tobe very similar to ones generated byλ�,

intentional analysis can be used to make the residual programs considerably more efficient.

DALI. For sentimental reasons, we mention an attempt by the authorto study a form of intentional anal-

ysis in the context of theλ-calculus [100]. The approach was inspired by a proposal by Dale Miller [78] for

extending data-types in ML-like languages with a form of higher-order abstract syntax. Our approach was

to introduce a kind of object-level bindings that can be deconstructed using a form of higher-order patterns

in aλ-calculus. We studied the reduction semantics of such a calculus in an untyped setting and showed its

coherence with a rather standard natural semantics. This approach has been superseded by the considerably

more elegant theories of Pitts and Gabbay’s nominal logic [40] andν� [86].

Typeful code representation. Hongwei Xi and Chiyan Chen [18] have presented a framework for meta-

programming (though they seem mostly interested in studying homogeneous meta-programming) that is

very similar to the approach described in Chapter 5. This work seems to have been carried out syn-

chronously with our work, and we became aware of it relatively late in the course of our own investigations.

Xi and Chen represent object-language programs using constants whose types are essentially the same

as the smart constructors for the typeExp e t in Chapter 5. Instead of Haskell, they use their own

language with guarded recursive data-type constructors [146]. The use of guarded recursive data-types

makes it unnecessary to resort to equality-proof based encodings that we use in our implementations, and

thus results in code that is both easier to read and write. Themain difference between their examples and

ours is that we show how we can combine the use of staging with typeful syntactic representations to derive

more efficient implementations.

Finally, they present embeddings of MetaML into this language by translation. This translation, however,

seems to be a meta-theoretical operation which is not definedin the language itself. Rather, they seem to

see their language as a general semantic meta-language. Other meta-programming languages likeλ�, λ©

and MetaML can be given semantics by translation into their language. It might be interesting to compare

our implementations ofλ� andλ© in Chapters 7 and 8 to their translations.
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Pragmatics of Object-language Syntax

In the examples presented in this dissertation, we use algebraic data-types (albeit augmented with tech-

niques that allow them to statically encode important program invariants) to represent the syntax of object-

language programs. Parsing and pretty-printing interfaceto these data-types can be implemented. This

is donepost hoc, by writing functions that construct elements of these algebraic data-types from a purely

syntactic representation (e.g., strings or untyped s-expressions). In Chapters 3 and 5, we have shown how

to write such functions (calledtypeCheck ).

In this dissertation, we chose not to concentrate further onthis problem since a simple, though not very

practical, solution for it does seem to exist. However, a heterogeneous meta-programming language would

gain considerably in usability, if the programmer could be exposed to object-language programs through

some kind of interface based on concrete syntax of the object-language. Concrete types, orconctypes[1] are

a way of allowing the programmer to specify her algebraic data-types in a BNF-like notation, where the non-

terminals correspond to types. From this specification, parsers that allow the programmer to write the new

data-types in whatever concrete syntax she chooses can be automatically synthesized. Furthermore, pattern

matching can also be extended to use concrete syntax. Several contemporary theorem provers allow their

users to extend concrete syntax of expressions [139, 106] byproviding an interface to the underlying parser

and pretty-printer. Visser [142] has also investigated meta-programming with concrete object-language

syntax in the context of the term-rewriting language Stratego [141].

An interesting question is whether conctypes could be extended to handle object-language syntax with

Haskell judgments in a type-safe way. Such an extension would have to synthesize (or otherwise allow

the user to insert) appropriate equality proofs. Furthermore, how such conctypes would be typed is not

immediately obvious. Pursuing this question would providean interesting direction for future work.

9.2 Dependent Types, Type Theory and Meta-programming

9.2.1 Background

Logical frameworks were introduced by Harper, Plotkin and Honsell [53, 54] as a “formal meta-language

for writing deductive systems.” This work was similar to theearlier work of Martin-Löf on type theory as

a foundation for mathematics. Several theorem provers havebeen built that are either directly based on or

closely related to the LF approach: Elf[107], Coq[139],Nuprl[21].

Nordstrøm, Petersson and Smith [97] describe at length an approach to using Martin-Löf type theory as

a programming language. However, as a practical programming language the pure type theory they present
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is somewhat limited. Furthermore, in the Martin-Löf type theory as presented by Nordstrøm et al., there is

little attention given to pragmatics such as efficiency or ease of use. There is also no particular consideration

of how such programming system might relate to meta-programming.

Several programming languages have been designed to take advantage of expressive dependent type

systems. Twelf[109] can be used as a logic programming language based on higher-order unification.

Cayenne[2] is a Haskell-like functional programming language with dependent types. Cayenne, makes

little effort to isolate runtime computation from type-checking. Rather, it combines dependent type theory

with arbitrary recursion, making the type-checking undecidable. It is argued that in practice this is not

such a significant drawback. An important example of programming in Cayenne is an implementation of

a tag-free interpreter [3]. Compared to the tagless interpreters presented in Chapter 2, this implementation

has two distinctive features we wish to critique.

First, we note that the lack of primitive inductive types forces the rather awkward scheme of encoding

typing judgments of the object language using predicates. Unlike Coq, where these predicates could be

propositions without computational content, the Cayenne implementation must manipulate them at runtime.

This brings us to our second point. The lack of staging makes it difficult to see what practical gains are

achieved in terms of performance over a tagged interpreter.

Xi and Pfenning study a number of practical approaches to introducing dependent types into program-

ming languages [147, 148]. Like our approach, they are concerned with designing practical programming

languages where dependent types can be used to gain efficiency and expressivity. Their solution to the prob-

lems of integrating dependent types with an ML-like language is to limit the dependencies to a particular

domain (decidable subset of integer arithmetic), and use constraint solving to type check their programs.

They also appear to have pioneered the use of singleton typesin programming languages, inspired perhaps

by Hayashi [58].

The FLINT group’s work on certified binaries[116] is perhapsthe most closely related to the language

MetaD we proposed in Chapter 2. They divide their language into a computational and non-computational,

linguistically separate parts. The computational parts are programs written in one or more computational

languages, while the specification language, part of which servers as a type language for the computational

languages, is shared among many computational languages. The connection between computational and

specification languages is achieved through the use of singleton types. Computational-language programs

are annotated with proofs of various properties. These proofs are encoded in the specification language.

Each computational language in this approach must be definedseparately in the meta-theory. Shao et

al. present a number of such computational languages that can be used as intermediate representations in

a compiler pipeline. Then, they define type (and property)-preserving translations between them. Note
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that these definitions are not written in a programming (meta-)language. It is argued that in a sufficiently

powerful formalism (say the calculus of constructions), such transformations could be expressed.

In these computational languages, singleton types are “hard-wired,” usually only on simple types such as

integers, which is a reflection, perhaps, of their intended use as relatively low-level intermediate languages

in a compiler pipeline. In a heterogeneous meta-programming framework, we expect to use the inductive

families facility to allow the user to define new computational languages and provide a uniform interface to

singleton types along the lines described in Chapter 3.

9.2.2 Meta-programming and Dependent Types

Program Generators with Dependent Types. Sheard and Nelson [122] investigated combining a re-

stricted form of dependent types with a two-level language.Their type system allows them to construct

dependently typed program generators, but restrict such generators to functions expressible with catamor-

phisms. This way, termination of program generators can always be guaranteed. In this framework, both

programs and their types are expressed with catamorphisms,which makes inference also possible. For

more information about type inference and dependent types,one might consult Nelson’s dissertation [89].

In many ways, this work resembles and anticipates that of Bjørner [11].

Certified binaries. Shao et al [116] define a general framework for writing certifying compilers. They

sketch out how such a system could work by defining a number of typed intermediate languages (e.g., a

lambda-calculus, a language with explicit continuations,a closure conversion language etc). Each of these

languages is strongly typed in a sophisticated type system with singleton types. These type systems allow

each a program in each of the intermediate languages to encode and statically certify important invariants

such as bounded array indexing. A certification-preservingcompiler consists in a series of transformations

between these intermediate languages. Each transformation takes a well-typed program in one intermediate

language and produces a well typed program in another intermediate language, so that the certified invari-

ants present in the input programs are true in the result of the transformation. The invariants are specified

in a version of the Calculus of Inductive Constructions.

It is worth noting, however, when this system is considered as a meta-programming system, that they do

not give a formal meta-language in which these transformations are defined. They conjecture that such a

system could formally be specified in some type theory (e.g.,Coq) but it is not obvious how to do this.
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9.2.3 Program Extraction as Meta-programming

Coq. Coq [139] is an interactive theorem prover based on the Calculus of Inductive Constructions [22],

itself an extension of the Calculus of Constructions [23]. The original CoC system had two sorts:3 Set,

which was impredicative, andType which was predicative, whereSet:Type. Coq extended this basic

formalism with a number of useful features:

1. Inductive (and also co-inductive) definitions allow the user to define new types that resemble the al-

gebraic data-type, rather than having to work with awkward Church encodings. The types of these

inductive definitions are dependent (for a discussion of inductive families, see Dybjer [34, 35]). Con-

sider a definition for lists of a particular size, a type that is classified bySet.

Inductive List [A:Set] : nat→ Set :=

Nil : (List A O)

|Cons : (n:nat; x:A; xs:(List A n))(List A (S n)).

Definition oneList : (List Char (1)) := (Cons Char (0) ’A’ ( Nil Char)).

Definition twoList : (List Char (2)) := (Cons Char (1) ’B’ oneList).

Definition threeList :(List Char (3)) := (Cons Char (2) ’C’ twoList).

The list type has a parameterA (i.e., it is a type of polymorphic lists), and a natural number index

indicating the list’s length. Constructing such lists is arguably as easy as constructing lists in ML.

Coq can also automatically derive primitive recursion combinator(s) forList for writing functions

that analyze lists.

2. The sortProp is a “twin of Set,” [144] also impredicative, which is intended for specifying (non-

computational) propositions. Types classified byProp can also be defined inductively.

As an example, consider a membership predicate over theList previously defined. The inductively

defined predicateMember has one parameter,A : Set – the type of the elements of the list, and three

indexes:

(a) The element of typeA.

(b) A natural number indicating the length of the list.

(c) A list in which the membership of the first index argument is asserted.

3Roughly speaking, morally equivalent to Martin-Löf’s universes [74].
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Inductive Member [A:Set] : A→(n:nat)(List A n)→ Prop4 :=

MemberHead : (a:A; n:nat; rest : (List A n))

(Member A a (S n) (Cons A n a rest))

| MemberTail : (a,b:A; n:nat; rest : (List A n))

(Member A a n rest)→ (Member A a (S n) (Cons A n b rest)).

We can easily build a proof, for example, that ’B’ is a member of the list [’A’ , ’B’ , ’C’ ] by using the

following proof script:

Lemma x1 : (Member Char ’B’ (3) threeList).

Compute. Constructor. Constructor. Qed.

Print x1.

x1 =

(MemberTail Char ’B’ ’C’ (2) (Cons Char (1) ’B’ ( Cons Char (0) ’A’ ( Nil Char)))

(MemberHead Char ’B’ (1) (Cons Char (0) ’A’ ( Nil Char))))

: (Member Char ’B’ (3) threeList)

The most interesting feature of Coq is the extraction of programs from proofs [105]. The idea is based on

the notion of Heyting interpretation of propositions, which can give a realization of an intuitionistic proof

as a functional program. Several systems (theorem provers)have been inspired by this notion to provide a

way of creating executable programs from logical specifications and their proofs [59, 105, 20].

The most significant feature of Coq is that it treats the twin sortsSet andProp differently with respect

to program extraction:

1. Inhabitants of types with sortProp are, for the purpose of program extraction and execution, treated

as comments – to be erased from the final result.

2. Inhabitants of types with sortSet remain in the extracted programs. However, it can be shown

through realizability results [105] that dependent types can also be removed from the extracted pro-

gram: given a Coq term (program), the extraction produces a computationally equivalentFω program.

3. Finally, theFω program produced by the extraction process is mapped onto a program in one of

several common functional languages (Haskell, Objective CAML, Scheme).

4Recall from that in Coq notation, theΠ types are written using parentheses. The type shown here canbe written, using the more
classicalΠ notation as:Π : A.Πn : nat.Π : (List A n).Prop
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Let us consider the results of extraction for the lists with length examples above. First thing to note is

that the list values with length, when extracted, correspond simply to normal list, except that eachCons

node carries the natural number index of the length of its tail. However, in the type of the list, the natural

number index does not appear at all.

module Main where

import qualified Prelude

data List a = Nil | Cons Nat a (List a)

oneList = Cons O ’A’ Nil

twoList = Cons (S O) ’B’ oneList

threeList = Cons (S (S O)) ’C’ twoList

Now, consider extracting the membership propertyx1, defined above as a proof that ’B’ is a member of

the list [’A’ , ’B’ , ’C’ ]. Note thatx1 is defined as__ , which should never be evaluated in the program.5

module Main where

import qualified Prelude

__ = Prelude.error "Logical or arity value used"

x1 = __

Let us now critique program extraction as a technique for meta-programming (in particular, its incarna-

tion in Coq), and contrast it with solutions we propose.

1. Pragmatic complexity of the system.The pragmatic complexity of the system expresses itself in two

different ways.

(a) The reasonable scenario for meta-programming with Coq would require a user to first imple-

ment the critical parts of her (meta)program in Coq, formalize and prove properties about it, and

finally, to use the automatic extraction to derive a CAML or Haskell program. This extracted

program must then be integrated with the existing programming environment in the target lan-

guage.

This requires the programmer to be an expert in both Coq (a system not so easily mastered

by an average (meta)programmer),and the general programming language environment (e.g.,

Haskell) into which the Coq-derived programs are integrated.

(b) Developing a large program half in Coq, half in Haskell, for example, has a considerable poten-

tial of quickly turning into a software engineering nightmare.

5Since Haskell is lazy, so long as no-one pulls on a logical proposition value, no runtime error is raised. Coq prohibits definitions
of Set-based values by cases overProp-based ones, so the error is never raised in practice.
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2. Integration with existing programming languages and type systems.Recall that programs extracted

from Coq areFω programs. Mapping suchFω programs into a typed functional language such as

Haskell or OCaml is often feasible in practice, but not always [105]. In these cases, the extracted

programs cannot be well-typed in the languages targeted by the extraction mechanism. The practical

solution adopted by the implementor of Coq is to insert unsafe casting operations, when extracting

OCaml program.

When the target platform of program extraction is Haskell, this approach becomes problematic, since

some Haskell implementations require type information produced by the type-checker in the process

of compilation.

3. Lack of programming-language features.Many standard programming language features, such as

printing and state, cannot be accessed directly in Coq. It ispossible to use these features post hoc, by

transforming programs extracted from Coq by hand and integrating them into larger programs written

in Haskell or OCaml. This approach, however, may adversely affect the maintainability of programs.

9.2.4 Typeful Meta-programming

An interesting approach to well-typed meta-programming, anticipating both our techniques and those of Xi

and Chen [146], is presented by Bjørner [11]. The meta-language is presented as a two-levelλ-calculus.

Bjørner introduces a type constructor for terms that is verysimilar to our encoding of typing judgments

in Haskell. A object language expression is represented by aspecial type constructor which takes as its

argument asort. Sorts are types of a special (non-*)kind, which represent the type of object-language

terms. The sorts encode, in Bjørner’s case, simple types. For example, type of the object-language function

from integers to integers would beTerm[intsort->intsort] ). Similarly, a meta-program which

optimizes or simplifies an object-program in a (object-)type-preserving way has the type:

simplify :: ∀v:sort. Term[v] →Term[v]

The meta-language is equipped with “well-typed” constructors and deconstructors for these values. The

type system of the meta-language is explicitly designed to support type inference. This inference is re-

stricted to types that are (rank-2) polymorphic in thesorts. The machinery that allows this is rather compli-

cated, using a system based on higher-order semi-unification and constraint solving. An interesting example

in Bjørner’s meta-language is a type-preservingmap function:

map :: ∀w:sort. ( ∀v:sort. Term[v] →Term[v]) →Term[w] →Term[w]

map f (App(M,N)) = f (App (map f M, map f N))
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map f (Lam(M,N)) = f (Lam (M, map f N))

map f (Var N) = f (Var N)

The morally equivalent function in Haskell, with our typingjudgment representations, would look as

follows:

map :: ( ∀e1 t1. Exp e1 t1 →Exp e1 t1) →Exp e t →Exp e t

map f x = case x of Var p1 → f (Var p1)

App e1 e2 → f (App (map f e1) (map f e2))

Abs e1 p → f (Abs (map f e1) p)

Shift e p → f (Shift (map f e) p)

Unlike Bjørner’s system, where many interesting types of programs that manipulate typed object-

language syntax can be automatically inferred, our approach requires the programmer to explicitly manipu-

late equality proof objects. This seems to be a consequence of the fact that the object-language is hardwired

into the system. The user could not change or redefine the notion of well-typed object-language syntax.

An interesting question for future work would be whether a system like Bjørner’s could be automatically

synthesized from a specification of the object-language type system.

9.3 Dependent Types in Haskell

Faking it. A comprehensive description of how to simulate some aspectsof dependent types in Haskell

was presented by Conor McBride [75]. The technique is quite similar to the one we present in Chapter 4.

First, values of any first-order monomorphic type can be lifted (“faked”) into the type world:

1. For each such typeT, a Haskell classT t is created.

2. For each constructorC : t1 → · · · → tn → t, a data-typeC : ∗ → · · · ∗ → ∗ is created, as well as

an instance placing the data-typeC into the classT.

For example, natural numbers are defined as follows:

class Nat n

instance Nat Zero

instance Nat n => Nat (Succ n)

data Zero = Zero

data Succ n = Succ n
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Second,n-ary type families (i.e., functions fromn values to types) are implemented as(n + 1)-ary

multi-parameter type classes, where the(n + 1)th parameter is functionally dependent [66] on the previous

n parameters. Consider the type family, which given a naturalnumbern, computes a type of a function

with n natural number arguments.

nAry :: Nat -> *

nAry Z = Nat

nAry (S n) = Nat -> (nAry n)

This can be encoded by a multi-parameter type class:

class Nat n => NArry n r | n -> r where ...

instance NAry Zero Nat where ...

instance NAry n r => NAry (Succ n) (Nat -> r) where ...

Functions typed by this type family can then be defined as members of the classNAry .

This technique allows the type “computed” by the type familyto be computed by the Horn-clause reso-

lution machinery already present in Haskell type-checkers. McBride explains his technique by providing a

number of interesting examples, such as azipWith function with a variable number of arguments, and a

data-type of lists whose length can be determined statically.

The main difference between our approach and that of McBrideis that we have chosen not to rely on

Haskell’s class system to “fake” dependent types. When we lift values of first-order monomorphic types to

the type level, we do so by using an inductively defined type constructor instead of a type class.

data Zero = Zero

data Succ n = Succ n

data IsNat n = IsNat_Zero (Equal n Zero)

| forall n’. IsNat_Succ (IsNat n’) (Equal n (Succ n’))

Similarly, type families become other inductively-defineddata-types. In manipulating these families, we

rely on the equality proofs in these data-types and a libraryof equality casting and manipulating functions.

This means that we cannot rely on Haskell’s type checker to compute the results of type functions. We

motivate our style of “faking dependent types” in Haskell bythe following two points:

1. Since we have explicit equality proofs in our type families, we can use casting combinators to perform

casting across thecodetype constructor, and thus move all dynamic computation related to the faking

of dependent types to an earlier stage. Runtime computationincurred by McBride’s encoding of
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dependent types is performed by manipulating dictionarieswhich are not accessible to the user, and

thus could not be easily used to create truly tagless interpreters.

A point related to this, noted by McBride, is that “at runtime, these programs are likely to put much a

greater strain on the implementation of ad hoc polymorphismthan it was ever intended to bear.” [75,

page 15]

2. In terms of programming style, Horn-clause notation of Haskell class definitions is not always the

most intuitive way of writing functions over types. Furthermore, code for one function (which has a

dependent type that is being faked) tends to be scattered among many different instances of a single

class, leading to rather brittle-looking code.

Phantom Types. Hinze and Cheney [19] have recently resurrected the notion of “phantom type,” first

introduced by Leijen and Meijer [70]. Hinze and Cheney’s phantom types are designed to address some of

the problems that arise when using equality proofs to represent type-indexed data (e.g., our typing judgment

Exp). Their main motivation is to provide a language in which polytypic programs, such as generic traversal

operations, can be more easily written. This system, which can be seen as a language extension to Haskell,

also bears a striking similarity to Xi’sguarded recursive datatypes[146], although it seems to be slightly

more expressive.

The main difference between phantom types and the techniques presented in Chapters 4 and 5 lies in the

treatment of equality types. Instead of explicitly embedding equality types in data-type definitions, Cheney

and Hinze propose a language extension which allows the programmer to state equalities between types in

a data-type definitions. For example, the typing judgment for λ-calculus would be represented as follows

(note that the variables not bound by the data-declarations, e.g.t1 , are implicitly existentially quantified):

data Exp e t = Var with e = (e’,t)

| Abs (Exp (e,t1) t2) with t = t1->t2

| App (Exp e (t1->t)) (Exp e t1)

This definition has a couple of advantages over the definitions with explicit equality proofs. First, the “smart

constructors” are unnecessary to provide a useful interface for constructingExps. The system automatically

assigns the “smart constructor” types to the regular constructors. Second, there is comprehensive support

for de-constructing data-types with equality constraints.

The managing and propagation of equality proofs is handled automatically by the type-system. Equality

proofs are never explicitly manipulated by the programmer.Instead, the type-checker uses unification to

solve type equality constraints that arise from deconstructing Exp values. Furthermore, certain equality

proof manipulation operations that cannot be implemented in Haskell, but rather have to be declared as
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primitive, 6 need not be used since the built-in constraint-solver in thetype checker is powerful enough

infer the equalities they are used to compute.

Recasting our Haskell examples in Cheney and Hinze’s language is a relatively simple exercise, as we

have shown in Chapter 6. One obstacle to using Cheney and Hinze’s phantom types was the lack of an

implementation. This is why we developed Omega which, whilestill a prototype, is the first non-toy

implementation of Cheney and Hinze’s type system.

6For example the functionpairParts :: Equal (a,b) (c,d) → (Equal a c, Equal b d).



Chapter 10

Discussion and Future Work

In the bulk of this dissertation, we have elaborated on a general framework based on programming lan-

guages, type systems, and techniques, that supports the practice of heterogeneous meta-programming. We

have thoroughly explored the design space of meta-languagefeatures intended to guarantee that meta-

programs maintain semantic invariants of object-languageprograms. In Chapter 6, we have described a

functional programming language equipped with built-in support for type equality, and demonstrated its

power as a meta-programming language by implementing a number of interesting examples (Chapters 6-8).

In this Chapter, we summarize our findings and results, and discus directions for future work.

10.1 Thesis and Findings

Recall that the thesis of this dissertation, stated in Chapter 1.1, is that heterogeneous meta-programming

can be made into a useful meta-programming paradigm that canprovide some of the same benefits as the

homogeneous meta-programming languages:

1. safety features (e.g., type safety of object-language interpreters, memory and separation safety in

imperative object languages),

2. increased efficiency derived from the combination of semantic properties and staging,

3. type-safe object-language generation and manipulation

The first question we asked ourselves was whether it was possible to manipulate object-language pro-

grams that are not only syntactically correct, but alsotype correct? As a first step toward answering this

question, we have designed a meta-language for heterogeneous meta-programming. The key property of

this meta-language is that it allowed us to define the algebraic data-type representing abstract syntax in a

way that preserves a notion of well-typedness of the object-language as a statically checkable invariant.

203
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This meta-language, called MetaD, combined, roughly speaking, type system with dependent types with

staging in the style of MetaML.

Next, after implementing a prototype of MetaD, we used it to write a “well-typed interpreter” (in the

sense of Augustsson and Carlsson [3]) for a typed object language. This implementation exemplified a

step-by-step methodology for an important class of heterogeneous meta-programming applications, which

we reiterate here:

1. Start with a (strongly) typed object language. Variable binding in the language should utilize the

index-based technique of de Bruijn [13]. While this can makethe formal encoding of the object

language somewhat awkward, it greatly simplifies the implementation.

2. Use the dependently typed inductive definition facility of MetaD to encode the typing judgments of

the object-language terms as an inductive family.

3. Write a semantics for the object language. We have found that the “categorical style” semantics, an

inductive mapping from the typing judgments of the object language to an arrow from the meaning of

type assignments to the meaning of types, fits most naturallyinto our methodology. Such a semantics

is then implemented as a definitional interpreter in the meta-language by providing the following:

(a) A map from the syntactic representation of object-language types to their meanings as meta-

language types.

(b) A map from the syntactic representation of object-language type assignments to the type of the

runtime environments in the meta-language.

(c) Finally, a map from the typing judgments of object-language expressions (Step 2) to “arrows”

from the meaning of the associated typing assignment to the meaning of the object-language

type.

4. Reformulate the interpreter (3) by adding staging annotations [117]. Accomplishing this step makes

the deconstruction of typing judgments happen at the first stage, yielding a interpretive-overhead

free residual program. We make an observation that such a program is free of both interpretive and

tagging overhead (when the object language is a typedλ-calculus) and can thus be considered as a

simple, though reasonably efficient form of compilation [38].

Figure 10.1 illustrates the general point of this transformation by a way of “T-diagrams”. The diagram

(a) corresponds to an interpreter of step 3. Note that we haveannotated the object-language program

O, with its object-language typeτ . The current step (4) accomplishes the transformation to diagram

(b), where a meta-programM∗ transforms the object-language programOτ into another program in
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Oτ

MJτK

→Oτ M〈JτK〉

M∗

(a) Interpreter (b) Staged Interpreter

Oτ Object language program with (object) typeτ
MJτK Meta-language program of typeJτK
M∗ A tagless staged interpreter written in the meta-language.
M〈JτK〉 A residual program generated by the staged interpreter.

Figure 10.1:

the meta-language,M〈JτK〉, while preserving the relationship between the object-language typeτ and

the metalanguage type〈JτK〉.

5. Implement an associated class of meta-programs that, given a (possibly ill-typed) syntactic represen-

tation of an object-language term, constructs, if possible, a valid proof of its typing judgment that can

be executed using the interpreter (defined in Step 4).

The steps (1)-(5) can be considered a paradigmatic example of heterogeneous meta-programming, con-

sisting of an object language and an interpreter-based implementation of such a language. This kind of

implementation in the meta-language we proposed has the following features:

1. The implementation of the interpreter for the object-language program ensuresstatically that only

well-typed object-language programs are interpreted. If the object-language is strongly typed, the ab-

sence of runtime type errors is guaranteed in the interpreter by the type system of the meta-language.1

2. Adding the infrastructure for explicit staging to such aninterpreter allows us to leverage the strong

typing properties of the object-language to implement moreefficient interpreters that do not require

injecting their results into a universal domain by tagging values at runtime.

Inspection of code generated by staging clearly reveals theabsence of tags. We refer to an empiri-

cal study comparing programs generated by staged interpreters with and without tags [62]. In this

study, Huang and Taha show that in practice removing tags from residual programs generated by

MetaML results, on average, in twofold speedup of programs.We expect these results to hold for our

implementations as well.

3. Tagless interpreters are an example of programs that analyze typed object-language programs. We

have also shown how to build “parsing” functions that construct such object-language programs in a

1Provided, of course, that the meta-language is type safe.
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type-safe way. We have implemented object-language type preserving syntax-to-syntax transforma-

tions (substitution example in Chapter 6.4), as an example of meta-programs that both analyze and

construct well-typed object-language terms.

Next, we explored the question of whether the various language features present in MetaD could be

harmoniously combined? To answer this question, we gave a formal definition of a small calculus that has

all the ingredients of a heterogeneous meta-programming meta-language: a form of dependent types and

staging. We proved that such a language is type safe with respect to an operational semantics. While this

does not constitute a formal proof that the more general programming language MetaD is type safe as well,

it represents a good prima facie evidence that the main ingredients of MetaDcanbe safely and orthogonally

combined in a single language. A full formalization of the part of MetaD that contains dependent families

is left as a question for future work.

The next question we asked ourselves was whether the full expressive power of the dependent types used

in MetaD is really necessary for the meta-programming paradigm outlined above. Can the typing judg-

ments of object languages be encoded using something more akin to data-types in functional programming

languages than the inductive type families of the calculus of constructions?

Here, we demonstrated how such encodings (as well as definition of well-typed, tagless interpreters, type-

checkers, and other meta-programs) can be accomplished using a technique for encoding type equality in

Haskell-like languages. Thus, we have successfully recastthe object-language implementation methodol-

ogy (full steps 1-5) in Haskell.

The advantage of this approach is primarily in obtaining a more practical heterogeneous meta-

programming platform. However, we discovered significant practical drawbacks of this approach as well:

explicit manipulation of type equality encodings in Haskell can be both cumbersome and inefficient.

What was needed is a meta-programming language that allowedthe programmer to use type equality in

his encodings of abstract syntax, but automated much of the tedium of type equality manipulation. This is

why we designed and implemented the functional language Omega, the first implementation of a functional

language with automatic type equality manipulations.

In designing Omega, we started with a functional language similar to Haskell. We modified its type

system to automatically keep track of type equalities. The most important new language feature we added

was a generalized algebraic data-type definition facility which allowed to programmer to specify equalities

between types that must hold for each constructed element ofthe data-type. We implemented a type checker

that automatically proves and propagates these type equalities through the meta-program. With Omega,

we were able to implement all our Haskell examples in a cleaner, simpler style. We evaluated Omega’s

usefulness as a meta-language on an expanded set of meta-programming examples.
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Examples. Another modality of support, to which our thesis lends itself naturally, is by detailed examples

which showcase a set of techniques which, taken together, make up a practical idiom for heterogeneous

meta-programming. Also, the examples have the nature of a tutorial – the goal is to teach readers interested

in heterogeneous meta-programminghow to implement an important class of heterogeneous meta-programs

by describing step by step implementations.

Evaluation. In Chapter 1 we have outlined a set of criteria that a usable heterogeneous meta-programming

language should fulfill. We review these criteria and comment on how the work presented in the rest of this

dissertation addresses each of them.

1. Is it possible to define and manipulatedifferentobject languages?Yes. In Chapter 3 we have demon-

strated how an example object-language based on the simply typedλ-calculus can be encoded as an

inductive family in MetaD. In Chapter 5, we have started withan encoding of the sameλ-calculus

based language. Then, we extended the object language, non-trivially, with pattern matching to

demonstrate how a wider variety of object-language features can be treated with our technique. Then,

we have shown (Chapters 6-8), how an even more interesting set of object-language type systems can

be encoded, this time using Omega:λ�, λ© and the calculus of explicit substitutions.

2. Is it possible to statically enforce important object-language properties such as typing and scoping?

Yes. In Chapter 3, we show how to produce such encodings in dependently typed language MetaD

by using dependently typed inductive families.2

In Chapter 5 we have described a technique that allows us to dothis in Haskell. While Haskell,

as a meta-language, does not guarantee the soundness of the logical predicates that encode object-

language properties, we discuss how this problem can be handled in practice. Finally, in Chapter 6

we demonstrate how such invariants are enforced in Omega.

3. Can we write efficient meta-programs?Yes. A classical way of achieving efficiency in interpreters

(and other meta-programs) is by applying staging techniques to them [128, 117]. Having described

a way of encoding object-language abstract syntax that, as McBride put it, “allowing us to equip

data-structures [and abstract syntax] with built-in invariants” [75], is there any useful that staging can

play in the larger scheme of things?

We have been able to demonstrate how we can derive tangible benefits from using both typeful repre-

sentations of object-language syntaxandstaging. As a demonstration, we develop implementations

of tagless staged interpreters, thus providing a plausiblesolution to the problem posed by Taha in

2For comparison the reader might peruse Appendix A for a comparative development in Coq.
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the context of MetaML [128, page 1513]. In MetaD and Haskell staging plays an important role in

producing efficient tagless interpreters, since manipulating typing judgments/equality proofs incurs

some runtime overhead that can be removed using staging.

In Omega, we can write truly tagless interpreters (removingall tagging overhead) without the need

for staging, since the Omega type system performs type equality proof manipulation statically, at

type-checking time. Staging can still be used in Omega to remove interpretive overhead from tagless

interpreters.

4. How easy is it to integrate it into functional programming ingeneral? The answer is a qualified

‘yes.’ This is a pragmatic question that we have explored in the second part of the dissertation

(starting with Chapter 4). A plausible criticism of MetaD (and, to some extend, of Coq) is that

it is a “toy” implementation that one cannot easily integrate with “real” functional languages. By

describing a way of encoding well-typed syntactic judgments of object-language programs, we have

argued that heterogeneous meta-programmingcan be made available to the “broad masses” of Haskell

programmers.

Most importantly, we have shown how type equality can be incorporated into a practical program-

ming language (Omega). Built-in type equality provides themeta-programmer a generalization of

traditional algebraic data-types that we demonstrate to beas useful as MetaD inductive families in

practical meta-programming. At the same time, to a programmer already familiar with functional

programming and algebraic data-types, the mechanisms in Omega present a significantly less steep

learning curve than dependent types.

10.2 Future Work

Finally, we conclude our exposition by outlining several areas for future work on heterogeneous meta-

programming.

Faking dependent types. In this dissertation we have presented a number of examples of encoding typing

judgments of various object languages in Haskell and Omega.We may also observe that this technique is a

instance (in the context of heterogeneous meta-programming)of a general technique for “faking” dependent

type-like behavior in functional languages with a sufficiently expressive type system. The question that

arises, then, is “how complete4 is this ‘faking’ technique?” We do not provide a formal, rigorous answer

3“Are there practical, sound type systems for expressing tag-less reifiers?”
4A similar question about soundness has a rather facile negative answer, since in Haskell all types are inhabited. However, it is not

unreasonable to argue that with a modicum of self-discipline, this question need not adversely affect the programmer inpractice.
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to this question; rather, we concentrate on exploring, through examples, a class of problems where the

technique is sufficient for interesting applications. However, there are some negative observations about the

power of the technique that we can formulate.

We recall that in the object-language typing judgments thatwe have defined, the indexes (representing

object-language types and type assignments in the types of object-language judgments) have all been first

order data-types. This property has made it easy to encode (simulate) the values of those indexesat the type

levelin the meta-language. What if, however, we wish to encode higher-order values at the type level? Two

related problems present themselves:

1. Presumably, we would like to represent functions, say of typet1 → t2 by type constructorsof kind

∗ → ∗, with the appropriate side conditions that the argument andthe result of such a type constructor

is only used on type-level representations oft1 to yield type-level representations oft2 . However,

type constructors in Haskell are not really functions on types – they are syntactically restricted to an

applicative form of already-defined type constructors. Noβ or similar computational rules apply to

them.

When we simulate type-family computations (i.e., computing a type based on a value simulated at

type level), we rely on Haskell (or Omega’s) type checker’s implementation of unification to perform

the actual work of computation. Since type checkers for functional languages cannot be relied on to

perform sophisticated computations if they are to preservetype inference, we often have to help it

along by supplying equality proofs and various casting operations in our programs.

As we have noted already, the lack of real functions at type level also means that we cannot perform

evaluation on such type constructors either.5

2. Another technique that makes faking dependent types in Haskell/Omega usable is the ability to have

runtime representations of values that are encoded at type-level. These runtime representations can

be compared (not surprisingly, at runtime) to yield equality proofs, which, in turn, can be used to

cast between such representations. For example, this is a technique heavily relied on by the function

typeCheck in Chapter 5.

However, it is not quite clear what a runtime representationof a type constructorwould look like,

especially considering the fact that only values classifiedby types of the kind * can exist at runtime.

Let us further illustrate the problems above by an example. Suppose we have defined a type of lists in

5This is not completely true, since perhaps we could encodeS andK combinators at type level, and perhaps create inductive
judgments that would allow us to drive a form of reduction of such combinators “from below”, by designing carefully constructed
data-types at runtime. However, this is not a practical solution.
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Omega, so that the length of the list is encoded in its type:

-- kind Nat = Z | S Nat

data List a n = Nil where n = Z

| ∀ m. Cons a (List a m) where n = S m

The type of the function that appends two list can be most naturally expressed so that the length of the

list it returns is the sum of the lengths of its two arguments:

append :: List a m → List a n → List a m+n

However, neither Omega nor Haskell allow us to write such a type since we cannot define addition as

a function at the level of types. The current solution is to encode addition as a relation between natural

number at the level of types:

append :: Plus m n q → List a n → List a m →List a q

This style is both unnecessarly complex (since it introduces confusing auxiliary judgments), and ineffi-

cient (since we must construct and manipulate the proof ofPlus at runtime). The question then is whether

Omega’s type system can be suitably extended to make it possible to address them, perhaps by allowing a

restricted form of functional values at type level.

Logical framework in Haskell. The question then becomes whether Omega’s type system can besuitably

extended to make it possible to address them, perhaps by allowing a restricted form of functional values at

type level.

Logical framework in Haskell. Related to the previous question is whether we could embed a sufficiently

expressive logic into Haskell/Omegaby various ’faking’ techniques? In other words, can we fake our way

into a logic powerful enough to allow us to write non-trivial, predicate based, specifications (and proofs of

those specifications) of executable Haskell/Omegaprograms?

The details of this question remain both tantalizing and elusive.

Object-language binding constructs. The use of de Bruijn indices to represent binders in object-

languages has been used throughout this dissertation. We are well-aware that this technique is both awkward

and error prone.6 When it comes to representing syntax with binders, at least until recently, one could feel

6We note, in passing, that de Bruijn indices seem to be less error-prone in typeful syntax representations, since static type-checking
can catch a lot of “off-by-one errors” that tend to creep intoprograms manipulating de Bruijn-style terms.
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justified in paraphrasing a famous apothegm of Churchill’s:de Bruijn’s is the worst style of representing

binding constructs, except for all those others that have been tried. However, there are some glimmers of

hope.

In the context of mechanical theorem proving, McKinna and Pollack [76] present certain formalizations

of the λ-calculus and type theory (PTSs) without resorting to de-Bruijn representation of terms. Their

technique, however, seems much more applicable to theorem proving than to meta-programming.

We have already discussed Nanevski’s adaptation of Pitts and Gabbay’s nominal logic to meta-

programming inλ�. In particular, Nanevski introduces a type constructor(A 6→ B) for “binding a (fresh)

object variable of typeA in an object-program of typeB.” In the future, we plan to explore how such a

construct can be adapted to representing typeful object language syntax. This direction seems to show most

promise.

Related to this concern is the question we raised in Section 9.1.2 of whether we can integrate some

support for pretty-printing and parsing that would allow usto interface with object-language programs

using concrete syntax.

Semantic properties of object programs. In this dissertation, we have concentrated on representingone

class of properties of object-language syntax, namely, type correctness. This seems reasonable in the con-

text of heterogeneous meta-programming, since manipulating object-language syntax that is well-typed is

quite useful. However, an interesting question for future work is whether there areother interesting prop-

erties that could be easily encoded and integrated into our heterogeneous meta-programming framework.

One such example would be to encode safety properties of programs (e.g., proof of array bounds check-

ing, division by zero, and so on). Another interesting question is whether we can have object-language

representation with multiplekindsof properties, integrated into a single heterogeneous meta-programming

framework in a modular way.
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Tagless Interpreters in Coq

A.1 Introduction

Coq [139] is an interactive theorem prover based on the Calculus of Inductive Constructions [22]. Since

the underlying logic of Coq is a constructive type theory, the theorem prover has been designed to support

extraction[104] of programs from proofs and definitions. Such a system seems at first to be at least a

good candidate for the kind of meta-language that we are seeking in which to implement object language

manipulations that preserve semantic properties. Taglessinterpreters are an excellent example of such a

manipulation, and its development using Coq is indeed possible to a large extent.

Inductive nat : Set := O : nat | S : nat→nat.
Inductive T : Set := N : T | ArrT : T→ T→ T.
Inductive E : Set := Const : nat→ E | Var : nat→ E | Abs : T→ E→ E | App : E→ E→ E.
Inductive G : Set := Empty : G | Ext : G→ T→ G.

Inductive HasTypeVar : G→ nat→ T→ Prop :=
HasTypeVar Zero : (Γ:G;t:T)(HasTypeVar (Ext Γ t) O t)
| HasTypeVar Weak : (Γ:G;n:nat; t,t’ : T)(HasTypeVar Γ n t)→ (HasTypeVar (Ext Γ t’) (S n) t).

Inductive HasType : G→ E→ T→ Prop :=
HasType Const : (Γ:G;n:nat)(HasType Γ (Const n) N)
| HasType Var : (Γ:G;n:nat;t:T) (HasTypeVar Γ n t)→ (HasType Γ (Var n) t)
| HasType Abs : (Γ:G;t1,t2:T;e:E) (HasType (Ext Γ t1) e t2)→ (HasType Γ (Abs t1 e) (ArrT t1 t2))
| HasType App : (Γ:G;t1,t2:T;e1,e2:E) (HasType Γ e1 (ArrT t1 t2))→ (HasType Γ e2 t1)→

(HasType Γ (App e1 e2) t2).

Figure A.1: Syntactic Definitions forL0 in Coq.

For pedagogical reasons, then, we shall first develop a tagless interpreter using the Coq system. We will

introduce Coq syntax and operations as we go along. The reader is referred to the excellent tutorial by

Gimenez [44] for more systematic instruction.

The Figure A.1 is a Coq script defining the syntax and the type system ofL0. This script consists of a
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series ofinductivedefinitions.

Let us briefly examine the syntax of one of these definitions:

Inductive T : Set := N : T | ArrT : T→ T→ T.

The inductive family can most easily be thought of as a data-type in traditional functional languages. The

above definition introduces a new typeT. This new type is itself given the typeSet (more on this later).

Following the assignment sign (:=), we list a number of constructors, where each constructor is given its

full type. Naturally, the result type of each constructor must beT. After accepting this definition, Coq

allows the user to useT very much as one does a data-type in Haskell or ML: expressions of typeT can be

examined withcaseexpressions, and recursive functions (provided that they are indeed primitive-recursive,

i.e., that they terminate) can be defined over them.

Inductive definitions go beyond data-types in the sense thatthey allow the inductive families to be de-

pendently typed. The inductive familiesHasTypeVar andHasType, in Figure A.1, are an example of such

dependent typing.

A.1.1 A Brutal Introduction to Coq Syntax

Before we dissect these definitions, let us review the syntaxof Coq. In addition to traditional function type

former τ1 → τ2, Coq supports the dependent function spaceΠx : τ1.τ2. In Coq syntax, this is written

by prepending parentheses which bind a variable whose scopeextends to the right: (x:T1)T2. Multiple

nestedΠ-types,Πx1 : τ1.Πx2 : τ2. . . . τn can be combined in the syntax as (x1:T1; x2:T2; . . . )Tn. Further

syntactic sugar is provided whenΠ-abstracting over multiple variables of the same type:Πx1 : τ.Πx2 : τ.τ ′

can be written as the Coq type (x1,x2:T)T’. As is usual with dependent types, the function typeT1→T2 is

just syntactic sugar for(Π : T1.T2) (in Coq notation, (:T1)T2).

Function abstractionλx : τ.e is written in Coq the same as theΠ-abstraction, except that square brackets

are used instead of parentheses: [x:T1]e is a function that takes an argumentx (of typeT1) and whose body

is the expressione. In all binding constructs that require typing annotation (e.g., [x:T1]T2) the user can

omit the type of the variable provided that the type can be inferred from context by placing a question mark

instead of a term (e.g., [x:?]T2). If the inference is impossible, the system complains.

It is also worth noting that, contrary to common practice in functional programming, application (e1 e2)

has lower priority in Coq than various binding constructs. Thus, the expression [x:T]x y is fully parenthe-

sized as (([x:T]x) y.

Returning to inductive definitions, let us consider the definition of the inductive familyHasTypeVar.

The inductive familyHasTypeVar corresponds to the auxiliary typing judgmentVAR Γ ⊢ n : τ from

Figure 2.2. It is defined as follows:
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Inductive HasTypeVar : G→ nat→ T→ Prop :=

HasTypeVar Zero : (Γ:G;t:T)(HasTypeVar (Ext Γ t) O t)

| HasTypeVar Weak : (Γ:G;n:nat; t,t’ : T)(HasTypeVar Γ n t)→ (HasTypeVar (Ext Γ t’)

(S n) t).

A couple of points are worth noting:

• As in the definition of the inductive familyT, the type familyHasTypeVar itself must first be given

a type. Rather than justSet, the typeHasTypeVar is a function taking three arguments (sometimes

called indexes): a type assignmentG, a natural numbernat, and aL0 typeT, and returning thesort

Prop. In a way, this is analogous to a Haskell notion oftype constructor,except that whereas Haskell

type constructors are functions from types to types (in Coq one would write them asProp→Prop),

Coq type families are functions fromvaluesto types.

One can think ofsortsas special types that classify other types. The sortProp is a type of logical

propositions/formulas. The sortsSet andProp are similar to the notion ofkind * in Haskell, except

that Coq divides the kind of types into two distinct parts: one reserved for programs and values

(Set) and the other reserved for logical propositions (Prop). Logically, this distinction is not strictly

necessary:Set by itself would be sufficient. Indeed, most dependently typed languages unifySet

andProp into one single sort (e.g., Cayenne [2]). However, as we willsee later,Prop andSet

can be given different “operational” properties if we treatCoq definitions as programs:Set types

become types of runtime values (integers, functions and so on), while Prop types become mere

logical properties of those values which are used at type-checking but are discarded from the runtime

computation.

• The values of the inductive familyHasTypeVar can be built up using the two constructors,HasType-

Var Zero andHasTypeVar Weak. The types of these constructors merit a closer examination:

1. The constructorHasTypeVar Zero is the base case of the typing judgment on variables. It

corresponds to the (Var-Base) rule from Figure 2.2:

VAR Γ, t ⊢ 0 : t
(Var-Base)

It has the dependent type (Γ:G;t:T)(HasTypeVar (Ext Γ t) O t). This means that it is a depen-

dently typed function which takes two arguments,Γ of typeG andt of typeT, and returns a

value of type (HasTypeVar (Ext Γ t) O t).
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2. The constructorHasTypeVar Weak is the weakening (inductive) case of the typing judgment

on variables. It corresponds to the Var-Weak rule from Figure 2.2:

VAR Γ ⊢ n : t

VAR Γ, t′ ⊢ (n + 1) : t
(Var-Weak)

It also has a dependent type:

(Γ:G;n:nat; t,t’ : T)(HasTypeVar Γ n t)→ (HasTypeVar (Ext Γ t’) (S n) t).

Again, the constructor itself is a dependently typed function. Its first argument is the type

assignmentΓ. Its second argument is a natural numbern. Its next two arguments are twoL0

typest andt’. Finally, its last argument is a typing judgment of type (HasTypeVar Γ n t). Given

all these arguments, its result is of type (HasTypeVar (Ext Γ t’) (S n) t).

A closer examination reveals that this type corresponds exactly to the inductive definition of

judgments in Figure 2.2: the last argument to the constructor corresponds to the antecedent of

the rule. The result of the type corresponds to the rule consequent. The arguments preceding

the antecedent simply serve to “close” the free variables inthe judgment, which in Figure 2.2

are implicitly universally quantified.

Now, having definedL0 well-typedness judgments as Coq inductive families, they can be treated as

provable Coq propositions.

A.1.2 A Brutal Introduction to Theorem Proving in Coq

But first, we shall briefly digress here to review the process of theorem proving in Coq. Due to the Curry-

Howard isomorphism[61, 97], to prove a propositionP in Coq, all one has to do is to construct aninhabitant

of the type that corresponds toP.1 Usually, propositions are types whose sort isProp, although the theorem

prover is also capable of interactively constructing inhabitants of types with sortSet as well.

As an example, consider the judgment(EXP 〈〉, N ⊢ λ(N → N).(Var 0) (Var 1) : (N → N) → N),

i.e., that theL0 expressionλN → N. (Var 0) (Var 1) has type(N → N)→ N under the type assignment

〈〉, N . First, we write down the appropriate Coq type that corresponds to this proposition: (HasType (Ext

Empty N) (Abs (ArrT N N) (App (Var (0)) (Var (1)))) (ArrT (ArrT N N) N)).

Next, we issue the commandTheorem, and give a name under which the inhabitant of this type will be

known to the system (example1):

Theorem example1 : (HasType (Ext Empty N)

(Abs (ArrT N N) (App (Var (0)) (Var (1))))

1In other words, find an expressione whose type isP.
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(ArrT (ArrT N N) N)) .

After this command is issued, Coq goes into the interactive theorem proving mode. It prints the type of
example1, declared above, as a goal (below the line) and prompts the user for next command:

Coq output
1 subgoal

============================

(HasType (Ext Empty N) (Abs (ArrT N N) (App (Var (0)) (Var (1)) ))

(ArrT (ArrT N N) N))

Now, we issue the commandProof to begin proving the theorem. The first tactic we chose to use is the

tacticEApply (we also sometimes use a closely related tactic calledApply – the reader can assume them

to be basically equivalent). This tactic takes an argument expressione. The theorem prover first computes

the type ofe. If it is an arrow type, it tries to unify its result type with the type of the current goal. If the

unification succeeds, the current goal is replaced by the types of the arguments to the function. If the type of

e is not a function and the unification with the current goal succeeds, the goal is eliminated. The argument

we give toEApply is the constructorHasType Abs:

EApply HasType Abs.

Having succeeded in the previous tactic, the theorem proverprints out a new goal:

Coq output
1 subgoal

============================

(HasType (Ext (Ext Empty N) (ArrT N N)) (App (Var (0)) (Var (1) )) N)

Since the expression for which we are constructing the proofnow is an application, it is a good idea to

try to apply the constructorHasType App:

EApply HasType App.

Again, the tactic succeeds. Now the system introduces two new goals (one for each of the twoHasType

arguments toHasType App), and prints:

Coq output
2 subgoals

============================

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (0)) (ArrT ?3 N))

subgoal 2 is:

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) ?3)

We could continue to useEAppy with HasType constructors, but Coq has much more sophisticated

tactics that can figure out automatically what constructorsto apply. One such tactic is calledConstructor:



217

Constructor.

Now, a new subgoal is created instead of the first goal. Noticethat it has used the constructorHasType Var

and the new goal is a variable judgment:

Coq output
2 subgoals

============================

(HasTypeVar (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT ?3 N))

subgoal 2 is:

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) ?3)

We quickly dispense with this subgoal by instructing the theorem prover to repeatedly apply theCon-

structor tactic until it proves the current goal:

Repeat Constructor.

Now we are left with only one goal (former subgoal 2):

Coq output
1 subgoal

============================

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) N)

Again, we dispense with it using theEAuto tactic (which combinesConstructor with other automatic

reasoners):

EAuto.

And we are done! The system prints:

Coq output

Subtree proved!

This indicates that all the subgoals have been discharged and the proof is completed. We issue the one

final commandQed, to instruct the prover to accept the definition ofexample1 we have just interactively

constructed:

Coq output
EApply HasType_Abs.

EApply HasType_App.

Constructor.

Repeat Constructor.

EAuto.

example1 is defined
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To review, the above theorem is defined using a proof script which consists of a series of commands

(tactics) given to the interactive theorem prover between commandsProof and Qed. Due to the type-

theoretic nature of Coq, the proof of the theorem constructed above can also be viewed as a program that

the theorem prover constructs interactively. Thus, requesting the system to print the value of the variable

example1 yields the following response:

Print example1.

Coq output
example1 =

( HasType_Abs (Ext Empty N) (ArrT N N) N (App (Var (0)) (Var (1)))

( HasType_App (Ext (Ext Empty N) (ArrT N N)) N N (Var (0)) (Var (1))

( HasType_Var (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT N N)

( HasTypeVar_Zero (Ext Empty N) (ArrT N N)))

( HasType_Var (Ext (Ext Empty N) (ArrT N N)) (1) N

( HasTypeVar_Weak (Ext Empty N) (0) N (ArrT N N)

( HasTypeVar_Zero Empty N)))))

: (HasType (Ext Empty N)

(Abs (ArrT N N) (App (Var (0)) (Var (1)))) (ArrT (ArrT N N) N))

Further Tactic Examples. To round off this little tutorial, we shall give another example of interactive

theorem proving to introduce the user to the tactics that will be used later on in this chapter. First, one

should recall that the interactive prover is not limited to proving propositions, but can be used to construct

the inhabitants of any Coq type. We shall thus consider defining an inhabitant of the type (m,n:nat)nat, in

particular, the addition function. Since this type is not aProp, we shall use the keywordDefinition instead

of Theorem to enter into the interactive mode:

Definition plus : (m,n:nat)nat. Proof.

The first thing that happens when entering the interactive mode is that Coq prints the type of the goal we

are trying to define:

Coq output
1 subgoal

============================

nat->nat->nat

We will opt to define this function by recursion on its first argumentm. We issue the commandFix 1,

and the theorem prover responds with:

Coq output
1 subgoal

plus : nat->nat->nat
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============================

nat->nat->nat

We can see that we have acquired a newassumption, namedplus which has the same type as the value

we are trying to define. This assumption corresponds to a recursive call to the functionplus itself.

Next, since we are trying to prove an implication (-> ), we can instruct the prover to use the implication

introduction rule as far as possible. The tacticIntros does just this.

Coq output
1 subgoal

plus : nat->nat->nat

m : nat

n : nat

============================

nat

Now, we have two moreassumptions, namedm andn, of typenat and are trying to show an inhabitant

of nat. Any nat would logically do, but we want to define a particularnat that is the sum ofm andn.

This can be best accomplished by examining the cases over oneof the assumptions, say,m. We issue the

following command:

NewDestruct m.

Now, the prover has split the proof into two subgoals

1. The first case is whenm is zero:

Coq output
2 subgoals

plus : nat->nat->nat

n : nat

============================

nat

subgoal 2 is:

nat

But, if m is zero, then that sum ofm andn is justn, and we can issue the appropriate command:

Apply n.

2. Thus, the first goal is discharged. Now, for the inductive case wherem is of the formS n0, for some

natural numbern0:

Coq output
1 subgoal
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plus : nat->nat->nat

n0 : nat

n : nat

============================

nat

Well, we know that sincem=S n0, m + n = S(n0 + n), we can immediately provide the natural we

want:

Apply(S (plus n0 n))

This discharges all subgoals, and we exit the interactive mode by the commandDefined, which is analo-

gous toQed (thereis a slight, but for our purposes unimportant difference in howthe theorem prover keeps

track of values depending on which of the two commands is used).

We can also instruct Coq to print the definition ofplus:
Print plus:

Coq output
plus =

Fix plus

{plus [m:nat] : nat->nat :=

[n:nat]Cases m of

(0) => n

| ((S n0)) => (S (plus n0 n))

end}

: nat->nat->nat

A.1.3 Semantics ofL0 in Coq

The next step is to define the semantics of the languageL0. As we have seen in Section 2.2.1, the semantics

is defined inductively over the well-typedness judgments. In our Coq implementation, the meaning ofL0

types is a function that mapsTs into Set. Similarly, type assignments are also mapped toSet, i.e., to a

nested product of the meaning of individual types in the typeassignments.

The semantic functionsevalT and evalTS are defined below by recursion onL0 types and type as-

signments, respectively. This form of definition is quite similar to programs in Haskell or ML, with the

exception that Coq attempts to prove that the recursively defined function always terminates by examining

a particular argument (in this case the type or the type assignment) and ensuring that it is structurally smaller

at every recursive call:
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Fixpoint evalT [T:T] : Set :=

Cases T of

N⇒ nat

| (ArrT t t0)⇒ (evalT t)→(evalT t0)

end.

Fixpoint evalTS [Γ : G] : Set :=

Cases Γ of

Empty⇒ unit

| (Ext Γ′ t)⇒ ((evalTS Γ′) × (evalT t))

end.
Alternatively, we can make the appropriate definitions using Coq’s interactive theorem proving facility,

where we use tactic to generate the code for the functions we wish to define. The convenience of this

approach is that arguments available to a definition are shown as premises, while the types whose values

we are trying to construct are shown as current goals. The proof environment makes sure that all the cases

are addressed and that only well typed programs are constructed. Furthermore, certain Coq tactics[32] can

be used as powerful program generation tools. After the definition is complete, the user can easily inspect

the source of the function she has interactively defined. Thus, the semantics of types and type assignments

can be defined by the following proof script:

Definition evalT : T→ Set. Proof. Induction 1. EApply nat. Intros. EApply (X→X0). Defined.

Definition evalTS : G → Set. Proof. Induction 1. EApply unit. Intros. EApply (X×(evalT t0)).

Defined.

Syntactic notations. Another useful facility that Coq provides is to define syntactic shortcuts which allow

the user a rather flexible way of extending the syntax of her programs. Prefix, infix and mixfix operators

can easily be declared. For example, the following definitions allow us to use the more convenient notation

TJtK instead of(evalT t):

Notation ” T J t K ” := (evalT t).

Notation ” TS J ts K ” := (evalTS ts).

The syntax for these definitions is rather intuitive: concrete syntax appears on the left of the assignment

sign (:=) surrounded by quotes. The corresponding Coq expression is written on the right – identifiers

mentioned in both are considered as variables ranging over syntactic expressions (variablet above). Upon

accepting a syntactic notation definition, the Coq system automatically generates parsing and pretty-printing

functionality and the newly defined notations can be freely mixed with other Coq syntax.

Syntactic notations can be used to make our definition of typing judgments syntactically identical with

the definitions in Figure 2.2. First, we declare notations for types, expressions and type assignments:2

Notation ” t1 −→ t2” := (ArrT t1 t2) (at level 65,right associativity).

Notation ” λ t . e ” := (Abs t e) (at level 40, left associativity).

2Note that this system is not perfect, and instead of application just beinge1 e2 we had to use the infix symbol@ lest the parser
confuse application inL0 with application of Coq.
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Notation ” A @ B ” := (App A B) (at level 50, left associativity).

Notation ” 〈〉 ” := Empty.

Notation ”G ;; t” := (Ext G t) (at level 60, left associativity).

Finally, we can define a more traditional mixfix notation for typing judgments:

Notation ” ’ VAR’ Γ ⊢ n : t ” := (HasTypeVar Γ n t).

Notation ” ’ EXP’ Γ ⊢ e : t ” := (HasType Γ e t).

Resuming with the semantics ofL0, the next step is to define the auxiliary functionlookup, which imple-

ments the semantics of variable look-up: it takes as its argument a type assignment, a natural number index

of the variables, and returns a function from the meaning of the type assignment to the meaning of the type

of the variable:

Definition lookUp : (Γ:G)(n:nat)(t:T)(VAR Γ ⊢ n : t)→(TS J Γ K)→ (T J t K).

We shall define this function interactively, with tactics. The function is defined by recursion on the second

argument, the natural number index of the variable. We use the tacticFix 2, which gives us access to the

recursive call tolookUp. This gives an assumption

lookUp : (Γ:G)(n:nat)(t:T)(VAR Γ ⊢ n : t)→(TS J Γ K)→ (T J t K).

Next, we recall that what the type we are trying to prove is a (dependent) function type. In general, to

prove the proposition (x:P)Q, we have to proveQ under the assumptionx:P. In Coq, we use the tactic

Intros to do this, and obtain the following assumptions:

Γ : G

n : nat

t : T

H : (VAR Γ ⊢ n : t)

H0 : TSJΓK

The new goal becomesTJtK.

The definition now proceeds by case analysis on the type assignmentΓ: NewDestruct Γ.

Now, there are two different cases for the variableΓ:

1. CaseΓ = Empty. If Γ is empty, then the assumptionH has the typeVar Empty ⊢ n : t. If we

examine the inductive definition of the variable judgments,we notice that there is no derivation such

that under the empty environment some variable index has a type, i.e., we cannot project from an

empty environment.

This means that one of our assumptions,H, is false, and logically, from falsity we can prove any goal.
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In Coq, we shall prove this case by using theAbsurd tactic, which takes a propositionP proves an

arbitrary propositionQ, provided that both notP andP follow from the current assumptions. The

formula forP we use is simply(Var Empty ⊢ n : t). The formulaQ is, of course, the original goal

TJtK.

Absurd (VAR Empty⊢n:t).

Now, the goal¬(Var Empty ⊢ n : t) follows by examining the types of the constructors for

HasTypeVar and determining that there is no derivation with an empty type environment. Coq

has a tactic automatically does this:Inversion H.

Next, the goal(Var Empty ⊢ n : t) follows trivially from the assumptions:Trivial.

Now the initial goalTSJtK has been proved.

2. CaseΓ = Γ′, t1. For the second case, the original assumptions are rewritten with respect the new

value ofΓ:

Γ′ : G

t1 : T

n : nat

t : T

H : (VAR (ExtΓ′t1 ⊢ n : t)

H0 : TSJΓK

Now, we proceed by cases on the natural number indexn.

NewDestruct n.

(a) The first case, whenn is 0. In this case, based on the hypothesisH, it easily follows thatt1 = t,

by examining the possible derivations. Thus, we assert a newgoal t1 = t and prove it by

Inversion: Assert (t=t1). Inversion H.

Now we can use this equality to rewrite allts into t1s (using the tacticSubst) and simplify our

assumptions and goals by issuing the following commands:EAuto.Subst t.

Γ′ : G

t1 : T

H : (VAR (Ext Γ′ t1 ⊢ O : t1)

H0 : TSJExt Γ′ t1K

Recall, that the goal we are proving now isTJt1K. Now, the assumptionH0 has the type

TSJExt Γ′ t1K, which can be simplified by simply unfolding the definition ofthe meanings

of type assignments to obtain the product:
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H0 : TSJΓ′K× TJt1K.

Now, to obtain the goal, we only need to project the second part of H0:

EApply (Snd H0).

(b) There remains the one final case when the variablen is of the formS m. This case will be

computed by making a recursive call to the functionlookUp.

However, before such a recursive call can be made, we must have the appropriate judgment to

give it to as an argument. Thus, we first assert a new goal that (VAR Γ′ ⊢m : t), which is easily

proved by inversion:

Assert (VAR t0 ⊢m : t). Inversion H. Trivial.

Then use this newly proved assumption, namedH1, as one of the arguments to the recursive

call of lookUp. One final step is to provide the runtime value of typeTSJΓ′K, which is obtained,

as in the previous case by projecting, this time the first element, from the assumption (H0 :

TSJΓ′K× TJt1K).

Apply (lookUp t0 m t H1 (Fst H0)).

The recursive call is accepted because the index argumentm is structurally smaller than the

initial argumentn, which allows Coq to prove termination oflookUp:

Defined.

Having discharged all the cases, the interactive theorem prover states that all the goals have been proved.

The commandDefined instructs the prover to accept the proof term generated in the preceding interactive

session as a definition for the functionlookUp. Since it is defined using recursion, Coq makes sure before

accepting the definition thatlookUp always terminates.

The first thing one notices when examining the definition oflookUp, whether in terms of the interactive

proof script or in terms of the generated code, is the large amount of “logical book-keeping.” One example

of this is the first case which we had to show that lookup in an empty environment leads to absurdity.

Similarly, we had to assert and prove properties in other cases either to be able to project the 0-th variable

or to make a recursive call tolookUp: both of these properties were easily obtainable from the definition of

the typing judgment. These assertions end up being morally equivalent to various “generation lemmas” [5]

one often proves when defining typing relations.

All this logical apparatus clutters up our definitions and makes the connection with the semantics stated in

Section 2.2.1 rather obscure. So the question that presentsitself immediately iswhy not define the function

lookUp by direct induction over the typing judgment (VAR Γ ⊢ n : t)? Then, the assertion (VAR Γ⊢m : t),

for example, would be directly obtained from the inductive step, rather than having to be proved.

The reason why this does not work is a rather subtle but important feature of the Coq theorem prover.
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In order to obtain a property of the system calledproof irrelevance[], objects of kindProp cannot be

deconstructed (inductively, or by cases) in order to create/prove objects of kindSet. In other words, com-

putational objects that live in theSet universe cannot depend on the structure of the proof objectsin Prop,

since the actual structure of a proof should be irrelevant: all proofs of the propertyP are equally valid.

The advantage of this principle is in the possibility ofextraction, where the Coq system constructs pro-

grams (in Caml, Haskell, or Scheme) from its proofs or definitions. Under the extraction scheme, all objects

of kind Prop, i.e., all proofs of properties are simply erased from the generated program. Thus, although

the Coq term forlookUp is quite large, the extracted program is much more manageable, since most of the

logical book-keeping disappears from the extracted program.

Still, it is possible to define functions such aslookUp more straightforwardly in Coq itself. The step

required is to redefine the typing judgments to have kindSet rather thanProp.

Inductive T : Set := N : T | ArrT : T→ T→ T.
Inductive E : Set := Const : nat→ E | Var : nat→ E | Abs : T→ E→ E | App : E→ E→ E.
Inductive G : Set := Empty : G | Ext : G→ T→ G.

Notation ” t1 −→ t2” := (ArrT t1 t2) (at level 65,right associativity).
Notation ” λ t . e ” := (Abs t e) (at level 40, left associativity).
Notation ” A @ B ” := (App A B) (at level 50, left associativity).
Notation ” 〈〉 ” := Empty.
Notation ”G ;; t” := (Ext G t) (at level 60, left associativity).

Inductive HasTypeVar : G→ nat→ T→ Set :=
HasTypeVar Zero : (Γ:G;t:T)(HasTypeVar (Γ ;; t) O t)
| HasTypeVar Weak : (Γ:G;n:nat; t,t’ : T)(HasTypeVar Γ n t)→ (HasTypeVar (Γ;;t’) (S n) t).
Notation ” ’ VAR’ Γ ⊢ n : t ” := (HasTypeVar Γ n t).

Inductive HasType : G→ E→ T→ Set :=
HasType Const : (Γ:G;n:nat)(HasType Γ (Const n) N)
| HasType Var : (Γ:G;n:nat;t:T) (VAR Γ ⊢ n : t)→ (HasType Γ (Var n) t)
| HasType Abs : (Γ:G;t1,t2:T;e:E) (HasType (Γ;;t1) e t2)→ (HasType Γ (λ t1 . e) (t1 −→ t2))
| HasType App : (Γ:G;t1,t2:T;e1,e2:E) (HasType Γ e1 (t1−→t2))→ (HasType Γ e2 t1)→

(HasType Γ (e1 @ e2) t2).
Notation ” ’ EXP’ Γ ⊢ e : t ” := (HasType Γ e t).

Figure A.2: New syntactic definitions forL0, where judgments are inSet.

A.1.4 Set Judgments

Figure A.2 details the changes to the syntactic definitions that need to be made. The only change is in the

type declaration of the type familiesHasTypeVar andHasType: they are declared as returningSet rather

thanProp. This means, in particular, that they are no longer simply logical propositions, but also”runtime

values.” Now, let us examine a new, simpler definition of the functionlookUp:
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Definition lookUp : (Γ:G)(n:nat)(t:T)(VAR Γ ⊢ n : t)→(TS J Γ K)→ (T J t K).

Now, rather than by general recursion on the index, we can immediately define the function by induction

on the typing judgment argument (VAR Γ ⊢ n : t). If we name the judgment argumentH, then the following

interactive commands to the theorem prover set up the definition by induction onH:

Intros. Induction H.

The definition is now split into two cases, yielding two goals:

1. The case for the base judgment, the runtime environment argument has the typeTS JΓ′; tK. We can

immediately obtain the goalT JtK by projecting the second value from the runtime environmentH0,

which is a pair:

EApply (snd ? ?H0).

2. In the case for the weakening judgment, we obtain the premises by the induction hypothesis:

HrecH : (TS J Γ′ K)→(T t).

H0 : TS J Γ′,t’ K

What remains now is to apply the induction hypothesis to a smaller runtime environment:

EApply (HrecH (fst ? ?H0)).

Defined.

To finish off, we can easily define the functioneval which interprets typing judgments of expressions:

Definition eval : (Γ:G; e:E; t:T)(EXP Γ ⊢ e : t)→ (TS J Γ K)→ (T J t K).

This function is defined by recursion on the fourth argument,the typing judgmentH of type (EXP Γ ⊢ e

: t), which is analyzed by cases:

Fix 4. Intros. NewDestruct H.

There are four cases:

1. In the case for integer constants, we have the integer constantn available as one of our assumptions.

The goal to be proved is of typeTJNK, which simplifies tonat. Thus to prove the goal we only need

to exhibit a natural number, in particular the numbern.

EApply n.

2. In the case for variables, two assumptions are interesting, namely the variable sub-judgmentH and

the variable indexn:

H0 : (VarΓ ⊢ n : t)

n : nat
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With these assumptions, we can make a call to the auxiliary functionlookUp, previously defined:

Apply (lookUp Γ n t H0).

3. The function case creates as its result a function, the body of which is evaluated in an expanded

runtime environment:

Simpl. Intros. EApply (eval (Γ;;t1) e t2 h (H0,H)).

4. Finally, for the application case we compute the functionvaluefun, as well as the argument value

arg by recursive calls toeval. Then,fun is applied toarg to obtain the meaning of the application.

LetTac fun := (eval Γ e1 (t1−→t2) h H0). LetTac arg := (eval Γ e2 t1 h0 H0). EApply (fun

arg). Defined.

A.1.5 Program Extraction: Tagless Interpreters

We have mentioned Coq’s ability to performprogram extractionfrom its theorems and definitions. Ex-

traction is fully automatic. The user only need specify somegeneral parameters, such as for what target

language (Haskell, OCaml, Scheme) extraction is performed, and simply indicate a Coq definition that

should be extracted:

Recursive Extraction lookUp.

When issued this command, the theorem prover performs automatic extraction and prints out the text of

the generated program, data-types, function definitions and all.

module Main where
import qualified Prelude
__ = Prelude.error "Logical or arity value used"
data Nat = O | S Nat
data Prod a b = Pair b a
fst p = case p of Pair x y → x
data Typ = N | ArrT Typ Typ
data TS = Empty | Ext TS Typ
lookUp gamma n t h0 =

case gamma of
Empty → Prelude.error "absurd case"
Ext t0 t1 →

(case n of O → (case h0 of Pair f e → e)
S n0 → lookUp t0 n0 t (fst h0))

Figure A.3: Extraction oflookUp (Prop-based judgments) as a Haskell function.

We may compare the two Haskell programs generated by extraction from theProp- and Set-based

implementations (Figure A.3 and Figure A.4, respectively).

Note that in Figure A.3 there is no trace of typing judgments.The functionlookUp takes only three
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module Main where
import qualified Prelude
data Nat = O | S Nat
data Prod a b = Pair b a
fst p = case p of Pair x y → x
snd p = case p of Pair x y → y
data Typ = N | ArrT Typ Typ
data TS = Empty | Ext TS Typ
data HasTypeVar = HasTypeVar_Zero TS Typ

| HasTypeVar_Weak TS Nat Typ Typ HasTypeVar
lookUp gamma n t h h0 =

let
f t0 n0 t1 h1 h2 =

case h1 of
HasTypeVar_Zero gamma0 t2 → snd h2
HasTypeVar_Weak gamma0 n1 t2 t’ h3 → f gamma0 n1 t2 h3 (fst h2)

in f gamma n t h h0

Figure A.4: Extraction oflookUp (Set-based judgments) as a Haskell function.

arguments: the type assignment, the index number and the runtime environment. Now, a combination of

these arguments could be given tolookUp so that the resulting combination is not well-typed (i.e., there

is noVAR judgment in the original Coq definition).

In these cases, the extracted program (e.g., line11) uses the Haskellerror value. These are cases that

were defined by theAbsurd tactic in the original – if the terms are well typed these cases should never

occur.

By contrast, theSet-based typing judgments (Figure A.4) are extracted as a Haskell data-typeHasTypeVar .

Furthermore, the functionlookUp takes aHasTypeVar as its fourth argument and pattern matches over

it. This means that only well-typed judgments are analyzed and that there are noabsurdcases. The price

we pay for theSet-based definition is that the additional data-typeHasTypeVar must be passed around

in the extracted program and analyzed. This could result in potential runtime penalties.

An even more serious problem is present in the extracted problems in both styles of implementation:

the programs extracted need not be, and usuallyare not, well typed in Haskell. The functionlookUp

(Figures A.3 and A.4) XXX is a case in point: each time around the recursive loop the runtime ’ environment

has a different type. This is because the type-system of Haskell is less expressive than the type system of

Coq: Haskell rejects some well-typed Coq programs, even though they never cause runtime type errors.

For these extracted programs to be successfully compiled, the Haskell type checker must be turned off.3

Since Haskell cannot type-check the program, the user must rely on the correctness of Coq’s extraction

3Coq extraction for Objective Caml inserts the appropriate calls to the casting function,Obj.cast where it detects that Caml’s
type system is inadequate. This feature is not yet implemented for Haskell extraction.
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algorithm to assure that the programs do not go wrong at runtime.4

A.2 Do We Need a Different Meta-Language?

With the experience described above one might ask:Is Coq an adequate meta-language for our purposes

of generating safe and efficient tagless interpreters? Whatadditional/different features would be desirable

in such a meta-language?

1. Dependent types, especially inductive families, are quite useful in representing typing judgments, and

providing clean, direct implementations of object-language semantics. Furthermore, the interactive

theorem proving interface seems to be a very practical way ofgenerating/writing programs.

2. However, a straightforward implementation in Coq along the lines shown forL0 may be inadequate

for many practical languages that do not enjoy the property of strong normalization. The Calculus

of Inductive Construction, on which Coq is based, is a strongly normalizing calculus. That means,

for example, that we have an object language with non-termination and/or arbitrary recursion, we

cannot use Coq’s function space to model the function space of object programs. While it is possible

to develop domain theory in Coq, extraction of such definitions would not necessarily yield useful

artifacts.

An ideal meta-language would find a way to combine non-termination (and maybe other effects) with

dependent types in some useful and manageable way.

3. Program generation via extraction may look good but introduces a number of problems:

(a) If we useProp-based implementation, considerable difficulties emerge with implementation of

interpreters. First, we cannot define the meanings of programs (which live inSet) directly by

induction/cases over typing judgments (which live inProp). This can sometimes be circum-

vented by proving a number of “generation lemmas,” but thoselemmas become increasingly

difficult to prove and use the more complex the language we areinterpreting. Second, various

“logical book-keeping” distracts from the clarity of definitions and obscures their connection to

the semantics.

(b) If we useSet-based judgments, the interpreters generated by extraction are neither really tag-

less, nor are they typable in Haskell. This leads to both a loss of performance, as well as to a

4In the writing of this chapter the author has discovered a rather unpleasant bug in Cog 7.4 extraction, so the issue, if anecdotal, is
by no means irrelevant.
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loss of reliability – we must rely on the correctness of the program extraction rather than the

host language type system.

If we are to combine the simplicity and ease of (b) with the efficiency of (a), we would obtain quite a

satisfactory implementation. Is this possible? Fortunately, it is, if we abandon program extraction in

favor of meta-programming by staging.Then, we can use the (b) style to define interpreters, but use

staging to perform all tagging-like operation (deconstruction of typing judgments) before the runtime

of a particular object-language program (more about this later).
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monads. InSecond Conference on Domain-Specific Languages (DSL’99), Austin, Texas, 1999. USE-

UNIX.

[121] Tim Sheard, Zino Benaissa, Walid Taha, and Emir Pasalic. MetaML v1.1.

http://www.cse.ogi.edu/PacSoft/projects/metaml, March 2001.

[122] Tim Sheard and Neal Nelson. Type safe abstractions using program generators. Technical Report

CSE-95-013, Oregon Graduate Institute, 1995. Available from [98].

[123] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. InFourth International

Workshop on Logical Frameworks and Meta-Languages (LFM’04), July 2004.

[124] Tim Sheard, Emir Pasalic, and R. Nathan Linger. Theωmega implementation. Available on request

from the author., 2003.

[125] Tim Sheard and Peter Thieman. Metaml on the run: A constrained type system for staged execution

of open code. Available from authors., August 2004.

[126] Guy L. Steele, Jr. and Richard P. Gabriel. The evolution of LISP. In Richard L. Wexelblat, edi-

tor, Proceedings of the Conference on History of Programming Languages, volume 28(3) ofACM

Sigplan Notices, pages 231–270, New York, April 1993. ACM Press.

[127] J. E. Stoy.Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory.

MIT Press, Cambridge, MA, 1977.



240

[128] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Grad-

uate Institute of Science and Technology, July 1999. Revised October 99. Available from author

(taha@cs.rice.edu).

[129] Walid Taha. A sound reduction semantics for untyped CBN mutli-stage computation. Or, the theory

of MetaML is non-trivial. In2000 SIGPLAN Workshop on Partial Evaluation and Semantics-Based

Program Maniplation (PEPM’00), January 2000.

[130] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming: Axiomatization

and type-safety. In25th International Colloquium on Automata, Languages, andProgramming,

volume 1443 ofLecture Notes in Computer Science, pages 918–929, Aalborg, July 1998.

[131] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming: Axiomatization

and type safety. Technical Report CSE-98-002, Oregon Graduate Institute, 1998. Available from

[98].

[132] Walid Taha and Henning Makholm. Tag elimination – or – type specialisation is a type-indexed

effect. In Subtyping and Dependent Types in Programming, APPSEM Workshop. INRIA technical

report, 2000.

[133] Walid Taha, Henning Makholm, and John Hughes. Tag elimination and Jones-optimality. In Olivier

Danvy and Andrzej Filinski, editors,Programs as Data Objects, volume 2053 ofLecture Notes in

Computer Science, pages 257–275, 2001.

[134] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In Cindy Norris and Jr. James B.

Fenwick, editors,Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL-03), volume 38, 1 ofACM SIGPLAN Notices, pages 26–37, New

York, January 15–17 2003. ACM Press.

[135] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. InProceedings of

the ACM-SIGPLAN Symposium on Partial Evaluation and semantic based program manipulations

PEPM’97, Amsterdam, pages 203–217. ACM, 1997. An extended and revised version appears in

[137].

[136] Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations. Tech-

nical Report CSE-99-007, Department of Computer Science, Oregon Graduate Institute, January

1999. Extended version of [135]. Available from [98].

[137] Walid Taha and Tim Sheard. MetaML: Multi-stage programming with explicit annotations.Theo-

retical Computer Science, 248(1-2), 2000. In Press. Revised version of [136].

[138] Robert D. Tennent.Semantics of Programming Languages. Prentice Hall, New York, 1991.

[139] The Coq Development Team.The Coq Proof Assistant Reference Manual, Version 7.4. INRIA, 2003.

http://pauillac.inria.fr/coq/doc/main.html.

[140] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type analysis. InProceed-

ings of the ACM Sigplan International Conference on Functional Programming (ICFP-00), volume

35.9 ofACM Sigplan Notices, pages 82–93, N.Y., September 18–21 2000. ACM Press.



241

[141] Eelco Visser. Stratego: A language for program transformation based on rewriting strategies. Sys-

tem description of Stratego 0.5. In A. Middeldorp, editor,Rewriting Techniques and Applications

(RTA’01), volume 2051 ofLecture Notes in Computer Science, pages 357–361. Springer-Verlag,

May 2001.

[142] Eelco Visser. Meta-programming with concrete objectsyntax. In Don Batory, Charles Consel, and

Walid Taha, editors,Generative Programming and Component Engineering (GPCE’02), volume

2487 ofLecture Notes in Computer Science, pages 299–315, Pittsburgh, PA, USA, October 2002.

Springer-Verlag.

[143] Stephanie Weirich. Type-safe cast: functional pearl. In Proceedings of the ACM Sigplan Interna-

tional Conference on Functional Programming (ICFP-00), volume 35.9 ofACM Sigplan Notices,

pages 58–67, N.Y., September 18–21 2000. ACM Press.

[144] Benjemin Werner. (im)personal communication. The Coq mailing list., May 2000.

[145] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.Information and

Computation, 115(1):38–94, 15 November 1994.

[146] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Cindy

Norris and Jr. James B. Fenwick, editors,Proceedings of the 30th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages (POPL-03), volume 38, 1 ofACM SIGPLAN Notices,

pages 224–235, New York, January 15–17 2003. ACM Press.

[147] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types. In

Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and Imple-

mentation (PLDI), pages 249–257, Montreal, Canada, 17–19 June 1998.

[148] Howgwei Xi and Frank Pfenning. Dependent types in practical programming. InConference Record

of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, San Antonio, Texas, pages 214–227, New York, NY, January 1999. ACM.



Biographical Note
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