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Abstract

The Role of Type Equality in Meta-programming
Emir Pasalic

Supervising Professor: Timothy E. Sheard

Meta-programming, writing programs that write other pags, involves two kinds of languages. The
meta-language is the language in which meta-programshvadoigstruct or manipulate other programs, are
written. The object-language is the language of prograrimglraanipulated.

We study a class of meta-language features that are usedtéomata-programs that are statically guar-
anteed to maintain semantic invariants of object-langyeggrams, such as typing and scoping. We use
type equality in the type system of the meta-language tolkched enforce these invariants. Our main
contribution is the illustration of the utility of type ediity in typed functional meta-programming. In
particular, we encode and capture judgments about manyrtamgdanguage features using type equality.
Finally, we show how type equality is incorporated as a fesatid the type system of a practical functional
meta-programming language.

The core of this thesis is divided into three parts.

First, we design a meta-programming language with depdmnyess. We use dependent types to ensure
that well-typed meta-programs manipulate only well-tyjpdject-language programs. Using this meta-
language, we then construct highly efficient and safe ingeps for a strongly typed object language. We
also prove the type safety of the meta-language.

Second, we demonstrate how the full power of dependent fgpex necessary to encode typing proper-
ties of object-languages. We explore a meta-languagestorgsof the programming language Haskell and
a set of techniques for encoding type equality. In thisisgtiie are able to carry out essentially the same

meta-programming examples. We also expand the range aftdbjgguage features in our examples (e.g.,



pattern matching).

Third, we design a meta-language (called Omega) with bugguality proofs. This language is a signif-
icant improvement for meta-programming over Haskell: Oa'®type system automatically manipulates
proofs of type equalities in meta-programs. We further desirate our encoding and meta-programming
techniques by providing representations and interpréteabject-languages with explicit substitutions and

modal type systems.

Xi



Chapter 1

Introduction

1.1 Meta-programming

Meta-programming is the act of writing programs that geteecat manipulate other programs. The pro-
grams manipulated are calletject-programsand are represented as data. The programs doing the ma-
nipulation are calledgneta-programsThe language in which meta-programs are written is callaettta-

language The language of object-programs is calledodject-language.

Meta-programming systems can be classified into two braagsek: homogeneous meta-programming
systems and heterogeneous meta-programming systems.miogeneous systems the object and meta-
language are the same. In heterogeneous systems, the alj@cheta-language are different.

Homogeneous meta-programming languages have receivedo attention over the years. Several
homogeneous meta-programming languages have been impka@12[ 121, "47]. Many issues in homo-
geneous meta-programming have been thoroughly explotedi-guotation [126.,] 7]; type systems][B0, 29,
128 15[ 13I7]; semantics 10,182, 1.8, 1129,[861 108]; intevati analysis (86, 85]; applicatiorls 137, 117] 42]
and so on.

Programming languages designed specifically to suppoerdgéneous meta-programming have re-
ceived less attention. The thesis of this dissertationds tieterogeneous meta-programming can be made
into a useful meta-programming paradigm that can provideesof the same benefits as the homogeneous

meta-programming paradigm:

1. Static type safety for heterogeneous meta-prografype safety of heterogeneous meta-programs
involves the following. The meta-program is written in aosigly typed languagé ;. The object
program is written in some object-langualgg, which is also strongly typed, but its type system may
be different from the type system of the meta-language. A-{y@fe heterogeneous meta-program
is one that statically guarantees that both the meta-pnodira L ,,) is type correct, and that any

object-language program it generates or analyzes is gh&odgrrect (in the type system 6f).



2. Semantic invariantsFrom the point of view of the meta-programs, object-proggame just data.
Often, this means that the values that represent objegramnts in a meta-program represent only the
(abstract) syntax of object-language programs. In a hgé&reous meta-programming framework
the programmer should be given the tools to specify additimvariants that the representation of
object-language programs should obey. For example, tha-pregram might guarantee that only

well-formed, correctly scoped object-programs are cocstd.

3. Practical concernsMuch of the success of meta-programming languages (e.daNile Scheme)
comes from the abstractions they provide that make commaa-pregramming tasks easy to write.
Such abstractions include quasi-quotation for constngadbject-programs, built-in support for re-

naming of bound variables (hygiene), and so on.

In a heterogeneous meta-programming language, commos g as defining new object-
language syntax, parsing, and implementing substitutiooulsl be supported by the meta-language.
The programming language abstractions that serve as #résioe to these common tasks should be
intuitive and easy to learn, and should be well integratdd wther (hon meta-programming specific)

features of the meta-language.

1.2 Contributions

We support our thesis by designing a language-based frarkdéarcheterogeneous meta-programming. In
doing so, we have made a number of specific contributionse Hee point out the three most significant

ones, in order of importance.

First, we illustrate the value of type equality in functibmaeta-programming languages. We have
shown how judgments about many important features of oltgecfuages (such as typing judgments for
the simply typed\-calculus, pattern matching, and box and circle types) eacalptured using type equal-
ity, and manipulated safely by functional meta-programse Wesent detailed descriptions of relevant
meta-programming examples as a tutorial intended to detradesand teach type-equality based meta-
programming.

Second, we show how type equality can be used in an existimgjiinal language (Haskell) and, more
importantly, how support for type equality can be built iatsophisticated type system for a practical pro-
gramming language (called Omega). In Omega, the prograroameuse a generalized notion of algebraic
data-types conveniently combined with support for typeadijuto represent interesting judgments about
object-language programs. We have implemented a protatfy@mega, and demonstrated its utility on

comprehensive heterogeneous meta-programming examples.



Third, we design a programming language with dependentstgpel support for meta-programming
(called MetaD). We use this language to present a novel wagldrfessing an interesting meta-programming
problem (tagless and well-typed interpreters). We alsdcegphe theoretical aspects of such languages by
formalizing a core MetaD-like calculus and proving its tygefety. We also compare the approach to
meta-programming using dependent types in MetaD to the figheveight approaches using Haskell and

Omega.

1.3 Background

We outline some historically relevant work in meta-prognaimg that represents the most direct roots of our
own research. In the most general view, meta-programmiunbicuitous in computing. Any program that
constructs or manipulates something else that could badsmes a program is a meta-program. For ex-
ample, compilers which translate a program in one objecflage to programs in another object language
are meta-programs. On a more mundane level, even printiadPstScript printer is meta programming:
an application creates a PostScript program based on séeneahdata-structure and ships this program to

the printer, which interprets and executes it to producerd bapy.

At another level, meta-programming is the study of metagpams (and meta-languages) as formal sys-
tems in their own right. While meta-programming is possiblany programming language that allows for
representing data, a number of languages have been desigtheabstractions that are intended to make
writing meta-programs easier.

The notion of treating programs as data was first expliciéyedoped by the LISP community. In this con-
text, the notion ofjuasi-quotatio12€,[8] was developed as a way of making the interface to &te e p-
resenting the object program “as much like the object-lagguconcrete syntax as possitile |118].” Quasi-
guotation is a linguistic device used to construct LISP&Beh s-expressions that represent LISP/Scheme
object programs. The Scheme community has also developewbtion of hygiene [€8] to prevent acciden-
tal capture and dynamic scoping when manipulating obgeatiage representations that contain binding
constructs.

The need for a meta-language (as a programming languagedhdbe used as a common medium
for defining and comparing families of (object) languagesswescribed by Landin [59]. Around the
same time, Bohm also proposed using thealculus-based language CuCh as a meta-language forlforma
language description [1L2].

Nielson and Nielsor [90. 93. B2] define programming langsael calculi that syntactically distinguish

meta-level from object-level programs as a part of the laiggu These two level languages provided a tool



for formulating and studying the semantics of compilation.

Two important meta-programming systems emerged from thdysbf constructive modal logic by
Davies and Pfennind [30, 29]. Davies and Pfenning observamri@spondence between propositions in
constructive modal (and temporal) logic and types that eaadsigned to certain classes of meta-programs.

The considerable body of research on MetalML ]135] 13D, 82128,[134] described a strongly typed
meta-programming language that supports constructioneaedution of object programs in a strongly
typed setting.

Language abstractions that support meta-programmingoatamited to functional language3emplate
meta-programming386, [37] in C++ (re)us&the notion of a template to perform program generation at
compile time. This mechanism has been successfully useldeirdésign and implementation of high-
performance C++ librarie§ [28, R7]. The work cited abové faaches the surface of the vast area of meta-
programming (Chaptéil 9 contains a more in-depth discusdioglated work), but it illustrates several key
ideas that have inspired our research.

Starting with Landin, and throughout the work outlined adothe crucial idea is to approach meta-
programming by studying meta-languages as formal systerieir own right. This allows us to concen-
trate not on any particular meta-program and its propeftieson large classes of meta-programs, and to

understand meta-programming at a considerably higherdéedstraction.

The work on quasi-quotation and hygiene in Scheme, MetaMHt, even the C++ templates, under-
scores the importance of thinking clearly about interng¢otblanguage representation, and of the interface

between the concrete syntax and the internal object-laygepresentation.

The work on logical modalities and type systems (Davies drdritng, MetaML) underscores both the

utility and the importance of strong and expressive typéesys for meta-programming languages.

1.4 A Meta-programming Taxonomy

In this section, we shall outline some basic ways of clagsifymeta-programs and meta-programming
languages. We shall also define some of the vocabulary thiadlew us to be precise about distinc-
tions between meta-programming systems. Then, we will ixathe “heterogeneous vs. homogeneous”

classification in more detail.

1|t was initially designed as a preprocessing mechanismdaaderics to C++.



Generator vs. Analyzer. A basic classification of meta-programs can be expressegtnmstof the two
broad categories gfrogram generatorandprogram analyzefi18d]. A meta-program is program gener-
ator if it only constructs object-language programs based oresoputs. Aprogram analyzeis a meta-
program that observes (analyzes) an object program, angdutesisome result. Some meta-programs can
be both analyzers and generators, as in the case of soustehtoe transformations and optimizations.
Some meta-programming languages have meta-programmatgaetions for writing of both generators
and analyzers (e.g., Scheme, Lisp; [B6]), while others (e.g., MetaML or C++ with template meta-

programming) only support writing generators.

Homogeneous vs. HeterogeneousAnother way of classifying meta-programs is by dividingrthto
homogeneouand heterogeneoufl2d,[118] meta-programs. This division is based on thetitjeaf the
meta- and object- language. A homogeneous meta-progratiemin a language L, is a meta-program that
constructs or manipulates other L programs. A heterogeseaiia-program is a meta-program, written in
a languagd.; that constructs or manipulates object-programs writtesoime languagé..

The property of being homogeneous and heterogeneous &yctetated to the way that object-programs
(considered as data that meta-programs manipulate) areserged in the meta-language. In a weak
sense, any programming language with strings can be usedit® leterogeneous (or homogeneous)
meta-programs, since strings can be used to represent-phggrams. However, when we speak about
homogeneous meta-programmlagguagesywe mean those programming languages that have some built-
in data-structures and abstractions that are designedttied for representing object-programs and are
integrated into the larger system.

There is much work in the area of homogeneous meta-progragjrim particular, programming lan-
guages with special abstractions for writing homogeneoogram generators. This work has led to both

theoretical breakthroughs and practical benefits.

Openvs. Closed. Inour discussion of object-language representation we t@wched upon an important
design decision faced by the designer ofieta-languageBasically, it involves the two following choices:

A closed meta-languagén this situation, the meta-language designer choosesthetmeta- and the
object- language in advance of any actual meta-programniimglanguage designer decides on a particular
set of linguistic features (e.g., quasi-quotation, typiligcipline, hygiene) which are built into the meta-
language to allow the programmer to construct object-lagguyprograms. A good example of a closed

meta-language is MetaML.

The closed-language scenario offers a number of benefis.nMiéia-language and object-language are



identified once and for all. Therogrammermwho uses the meta-language never needs to concern himself
with representing, parsing, printing, or even type cheghime object-programs. All of these problems
can be addressed and solved by the language implementerpidmotes a tremendous amount of reuse
across all meta-programs. Moreover, restricting the @nogner’s access to the underlying representation
of object-language programs makes it easier to establish-theoretic properties that hold for all object
programs. These properties can be used by the compilepieter to perform optimizations, as is the case

with the MetaML [121] implementation.

The obvious disadvantage of a closed meta-language memnifesf if the meta-language does not sup-
port the object-language the programmer wants to mangulabr example, MetaML provides the pro-
grammer with an excellent way of constructing and executletaeML object-programs, but if a program-
mer wants to construct Java programs, he is entirely lefigoWwn devices.

An open meta-languagén this situation, the designer of the meta-language caassgime what partic-
ular object-language the meta-programmer is interestetamipulating. All the language designer can do
is to design the meta-language so that it contains usefturesathat will allow the programmer to encode
and manipulate the object language(s) of his choice.

A meta-language can be open with respect to a particulaureaf an object language. Many general
purpose programming languages do provide some abstradtipencoding object-language syntax. How-
ever, most general purpose languages do not provide atistrafor meaningful manipulation of the object-
language syntax (e.g., renaming of bound variables, ceqatviding substitution, and so on). Rather, these
operations must be implemented by the programmer for eagtobgct language. This results in a great

deal of repeated work across many implementations.

For example, a general-purpose programming language liwed8rd ML may be open with respect to
the programmer’s ability to define abstract syntax of neweobljanguages. Algebraic data-types are a
particular mechanism that SML offers to the programmer tmawlish this. Moreover, the type system of
SML can guarantee that only syntax-correct object-langiagnms are ever constructed or manipulated by
his meta-programs. SML offers the programmer no compaeddsitractions that would allow him to encode
sets of well-typed object-language terms. Of course, hestihimake sure, by meta-theoretic reasoning
about a particular meta-program, that this program maatpalonly well-typed expressions. However,
the meta-language offers him no guarantee that its typermsysiill reject any meta-programs that try to

construct ill-typed object programs.



1.4.1 Homogeneous and Heterogeneous Meta-programming

Homogeneous Meta-programming

A classical example of a homogeneous meta-programmingiayeis Schemé[112]. Here, we present a
simple example of such meta-programming. Consider theviatlg two functions written in Scheme. The
first function,sum, takes a list of numbers and computes their sum. This is by fstiandard functional
program involving no meta-programming.

(define (sum )
(if (null2 1) 0 (+ (car I) (sum (cdr 1))))

;; Scheme session transcript
1:=> (sum’ (1 2 3))

The second functiorsumgen, is quite similar tasum, except for the use of Scheme’s meta-programming
abstractions. Instead of adding the numbers in a digingen computes a Scheme program that when
executed produces the sum of all the numbers in a list.

(define (sumgen )
(if (null?2 1) O ‘(+ ,(car I) ,(sumgen (cdr 1)))))

;; Scheme session transcript

1:=> (sungen '(1 2 3))
(+1(+2(+30))

1:=> (eval (sumgen '(1 2 3)))
6

Scheme’s meta-programming facilities are particularipvamient to work with because programs in
Scheme are represented using the same structured expeeasiall other data. In Scheme, any expression
can be marked blgack-quote(‘exp) , indicating that the expression should be considasecbnstructing
an s-expression representing a Scheme programaide a quoted expression, comnfgxp) are used
as an escape notation. An expression escaped with a comwalusted to an s-expression representing a
Scheme program, which is then spliced into the larger pragvéhere the comma occurs.

Using these language constructs, the funcsiemgen is a meta-program which acts as a program gener-
ator. Given a list of number§x 1 xo x3 .. X n),itconstructs a scheme express{gnx 1 (+
X2 (+ X3 ... (+ x n 0))) . Scheme also comes equipped with the conseuat , which takes
an s-expression representing a Scheme program and exieclitass the expressideval (sumgen (1 2 3)))

first generatesa prografh 1 (+ 2 (+ 3 0))) , and then evaluates it, returning the result



Most homogeneous meta-programming languages relguasi-quotation[8] (e.g., back-quote and
comma in Scheme), which can be thought of as a special sigitatetrface for constructing object-program
code. Some of these languages (e.g., Scheme and MetaMLijleroonstructs for executing the object-

language programs constructed by the meta-program évaj., in Scheme andun in MetaML).

A drawback of programming in Scheme is that Scheme is natatiyttyped. First, there is no way
of statically guaranteeing type correctness of meta-piogr Second, there is no way of knowing object-
programs are well-typed until they are executedelbgl . For example, consider the following Scheme
session:
1:=> (define bad-program ‘(1 2))
bad- program
1:=> bad-program
(12
1:=> (eval bad-program)

*** ERROR: bi gl oo: eval :
Not a procedure -- 1
#unspeci fi ed

Using the back-quote notation the programmer is able totoaetsa nonsensical prografh 2) . When
we invokeeval on it, a runtime error is raised for attempting to apply thenber 1 as if it were a
function. Static typing in meta-programs has a number ofiathges. In addition to guaranteeing that
the meta-program encounters no type-errors while martipglabject-programs, a statically typed meta-
programming language can also guarantee that any of thetqirjegrams generated by the meta-program
are also type-correct. A dissadvantage of these type systdat (in case of meta-programming languages
with weaker type systems) they sometime may be too resegiatiobject-programs that the programmer is
allowed to construct (for an example of this phenomenon sep@iZ11).

MetaML [128,[137[1209] (and its derivative, MetaOCamll[7@te examples of staticaltypedhomo-
geneous meta-programming languages. MetaML is designadasservative extension of the functional
programming language Standard ML[80]. In MetaML, the typstam is extended with a special type
constructor (calledodg that is used to classify object programs. For example, grar of typeint
is a program that produces an integer value. On the other, lraptbgram of typgcode Int) is a
(meta-)program that produces an object program which, velkenuted, will produce an integer value.

Let us revisit oursumgen example, this time written in MetaML. In MetaML, code bratkéwritten
< ... > ) play the role of back-quote in Scheme, while tilde (called¢ape”) is analogous to Scheme’s

comma operator. The type of code is written with code bracketrounding a type:



MetaML

Meta-language (stage 1) Meta-language (stage 2)

Object language

Figure 1.1: Multi-stage structure of a Homogeneous Metagluage

(* sum : int list -> int *)
fun sum [] = 0
| sum (x::xs) = x + (sum xs)

(* sumgen : int list -> <int> *)
fun sumgen [] = <0>
| sumgen (x:xs) = < x + “(sumgen xs) >

Many homogeneous meta-programming languages, MetaMuded, supportnulti-stage program-
ming. The structure of a multi-stage programming language istilated in Figur€TIl1. In a multi-stage
program, a meta-program can be used to generate an objecapraovhich is itself a meta-program gen-
erating another program, and so on. The execution time df seta-program is aomputational stage.
Typed homogeneous meta-programming languages of the Mefalily have three properties that make

them well-suited for meta-programming:

1. Strong typing and type safety [131T-he strong typing of MetaML (alsa™, A©, and some other
statically typed homogeneous meta-languages) guarathiaseta-programs are free from runtime
type errors (e.g., adding strings to integers, and so onmjh&umore, their type systems also guarantee
that any object programs constructed by a well-typed metgrpm will be free of runtime type errors

when executed.

2. Phase errors. Phase errors occur when an object-language variable isasédt were a meta-

language variable. Consider the following Scheme defimitio
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1:=> (define f1 ‘(lambda (x) (+ 1 x)))
1=> fl

(lambda (x) (+ 1 x))

1:=> (define f2 ‘(lambda (x) ,(+ 1 x)))
*** ERROR: bi gl oo: +:

The first definitionfl creates an object program, i.e., a function that adds orts tsgument. The
second definitionf2 attempts to create an object program that is a function. MWewénside the
body of thelambda abstraction, the comma operator forces Scheme to evaiuater{ the meta-
program) the expressigqr 1 X) , wherex is a variable that is bound only in the object program,
and has no value assigned to it. Thus, when trying to eva(tate x) the Scheme interpreter can
find no value forx, and raises a runtime exception. If one tries to wftein MetaML, the type
checker statically catches such an error:

val f2 = <fn x => "(1+x) >

Error: phase error in 1 + Xx.

3. Semantic coherencé [129]Object-program code in MetaML is implemented as an absttata
type. This abstract data-type has an important meta-thie@m@perty, which guarantees that if two
MetaML programsp; andp., are semantically equivalent, no meta-program can distiigoetween

their representations as code.

This property guarantees the soundness of a simple eqahtlogory that can be used to reason
about object programs. For example, a program that geiseréfte x => x) 4> is equivalent

to the program that generates jggt>. Since no meta-program can distinguish between those two
programs, the MetaML implementation can perform optingzgource-to-source transformations

automatically, resulting in the construction of cleaneorenefficient code.

However, MetaML's semantic coherence has more restrictivesequences. In particular, no meta-
program can safely analyze the values of the abstract tygtedpresents object-language programs.
The only thing that can safely be done with object-programnse constructed, is to execute them
with run . In other words, MetaML only supports the writing of progrgenerators. This prevents

the user from implementing a whole class of interesting ot such as syntax-to-syntax transfor-

mations (optimizations).

Heterogeneous Meta-programming

In a heterogeneous meta-program, the meta-language arubjbet-language are different. A typical

heterogeneous meta-programming exercise has the foljostaps:
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1. The programmer encodes the syntax of the object langumagerae form of structured data in the

meta-language.
2. The programmer writes a meta-program that

(a) Constructs an object program, or

(b) Transforms an existing object- program into anotheeobprogram (which may be written in

the same object language or not), or

(c) Computes some other result over an existing objectrarage.g., its meaning, its size, its free

variables, its data flow graph, and so on.

How does this scenario compare to meta-programming in theolgeneous setting? When writing a
homogeneous meta-program in MetaML the skgp (1) is unnagesEhe decision about how to represent
object-language programs has already been made, once iaall, foy the language designer. MetaML
provides support for Stefp{Ra) by its strongly typed quasitgtion. Stepl(db) is not directly possible in
MetaML, since the language supports oglgnerativemeta-programming — once constructed, MetaML
object programs cannot be analyzed, only executed.

At first glance point[[Zc) looks like it is not possible in Mbth. But, consider the possibility when
the object language is not MetaML, but some other objectlagg represented by an algebraic data-type.
Then, an interpreter for this language can be modified soittltamputes a residual MetaML program.
When run, this program will compute the result more effidietitan simply interpreting the original pro-
gram [67[11l7]. This is a well-known technique often cakggingan interpreter. We will return to this

idea many times later in the dissertation.

1.5 Problem: Object-language Representation

The main problem of designing a useful heterogeneous nregramming paradigm is the problem of
choosing object-language representations. In the nexbgeeve outline a specific set of proposals and
approaches to solve this problem. Here, we examine four whrepresenting object-programs, and point

out the advantages and disadvantages of using each in mogfeampmming.

Strings. The simplest way of representing object-language progiartts use strings, i.e., to represent
object programdextually This technique can be used in both homogeneous and hetemge meta-

programs, but has an important drawback. Any meta-languaiieonly standard string manipulation
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operations (e.g., concatenation, indexing, and so onjffe abstractions to statically enforce the invari-
ant that strings must represenntly syntactically correct object-language programs. In pcactobject-
programs represented as strings may be quite difficult ttya@asome form of parsing must be used to

access the underlying structure implicit in the stringsisocess is both complicated and error-prone.

One success case with string representations is Perl, dgoggogramming language for writing CGI
scripts. Perl uses a powerful regular expression facility @a number of libraries to make string manipula-

tion of programs more palatable to the programmer.

Algebraic data-types. In functional programming languages, the abstract syntabject-language pro-
grams can be represented using algebraic data-types.nalitezly, other higher-level programming lan-
guages have different structured data-facilities suchbgeco hierarchies in Java or s-expressions in Lisp
and Prolog. Here, we shall mainly address algebraic dgtastin functional languages, but much of the
argument should hold for similar data-representationsels w

As a way of representing object-language syntax, algelutaia-types have a major advantage over
strings. First, they are a natural way of encoding conteeg-fibstract syntax trees. Consider the following

BNF [87] specification of the syntax of a smaHcalculus based language:
(Var) == z,y,2,...
(Exp) (Var) | A{Var).(Exp) | (Exp) (Exp)
(Decl) let (Var) = (Exp) | letrec (Var) = (Exp)

The following Haskell declarations define three data-typpe® for each non-terminal specified in the

BNF grammar above.

type Variable = String

data Exp = Var Variable
| Abs Variable Exp
|

App Exp Exp
data Decl = Let Variable Exp
| Let Rec Variable Exp

It is not difficult to convince oneself that the three datpey in Haskell represent exacHyhe parse
trees specified by the BNF grammar. It is also important t@ tiodt ill-formed syntax trees are statically
rejected by Haskell’s type system: just as there is no déoivdor the ill-formed term(let =) A y, there is
no well-typed analogue in Haskell (i.e., the Haskell expi@s(App(Let "x") Abs "y") is rejected
by the type-checker).

2Modulo undefined values and infinite trees.
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The algebraic data-type representation significantlywiltes the draw-backs of string representations.
For example, in functional languages pattern matching @anded to analyze algebraic data-types that
represent object-programs. The typing discipline of theart@nguage like Haskell or Standard ML catches
and rejects meta-programs that can build syntacticallgriect object-programs.

However, there are interesting properties of object-moty other than syntactic correctness that are
not statically enforced by the meta-language using an algelo@ia-type representation. For example,
context-sensitive properties like typing of object-pragis cannot be automatically checked and enforced.
For example, a capture avoiding substitution operatiomfiyped object language should not only produce
syntactically well-formed results, but should presenetfpe of object-language terms on which it oper-
ates. In a meta-program using algebraic data-types, it te tipe programmer to craft his meta-programs

so that this meta-theoretic property holds.

Abstract code type. Particularly interesting is the representation for objaciguage programs used by
the homogeneous meta-language MetaML. In a MetaML progxabes representing object-language
programs are classified by a built-in abstract typeade The programmer constructs and manipulates
such values that represent object-language programsasiaif-in quasi-quotation mechanism. However,
the programmer has no access to the concrete, underlyirgpmqation of object-language programs: this
representation is chosen by the implementers of MetaML fiaed once for all.

The MetaML style of code representation has major benefitst, it statically guarantees that object-
language programs represented in this way are syntaxet@me type correct. Second, this representation
has several useful meta-theoretic properties: it enfafeesorrect static scoping discipline; it makes code
representations of alk3-equivalent object programs observationally equivalenteta-programs. The
latter allows the programmer to perform standard equati@aaoning about meta-programsin the presence
of therun construct.

In a heterogeneous setting, a MetaML-style abstract cquieisyalso plausible. However, it is important
to note that the choice of how to represent such code infgrised design decision taken ltlge language
designer(and implementer), not by the programmer who merely usesiita-language to write his own
meta-programs. Therefore it is less likely to be useful iactice, since one would have to design and

implement a new meta-language for every new object-languag

Dependent types. Finally, we describe the most promising approach to reprteésgobject-language pro-
grams. This particular technique of representation is aat-ait has a long history in the logical framework,

theorem proving, and type theory community, but has veryaalbeen used in meta-programming.
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This technique is similar to using algebraic data-typessfreésent the syntax of object-language pro-
grams. However, instead of algebraic data-types, it relieadvanced type-theoretic techniques such as
the inductive families in the Calculus of Inductive Constians, predicate encoding in Cayenhg [3], or
LF [53]. Enriching the meta-language’s type system withedeent types allows the programmer to en-
code not only simple syntactic properties, but semantic@sewell. For example, the programmer can
specify a data-type that encodes a set of only syntacticalisectandtype correct syntax trees. All func-
tions that either generate or analyze an object progranoeced statically by the meta-language to preserve

the semantic properties of the object-language specifigddogrogrammer.

One area of concern when using dependent types is the duitigsand transparency of the type sys-
tem to the programmer. While a dependent type system canadtgienforce object-language program
invariants, violating these invariants in meta-prograans iesult in complex and arcane compilation/type-
checking errors that are not easily understood by a noviogrammer. Furthermore, to appreciate and use
dependent types, one is usually needs considerable bagidyio theoretical computer science and type

theory, making dependent types still less accessible tavbmge programmer.

Generalized algebraic data-types. Using dependent types is an expressive mechanism. We targec
that properties represented this way can be arbitrarilyptexa But, in practice, even very simple proper-
ties such as those that enforce correct scoping and typsujptines of object programs are quite useful.
Perhaps something less than the full expressive power afrakgmt type theory can still be useful in meta-
programming?

We will show that this is the case, by devising a method whéchri extension of algebraic data-types
with the notion of equality between types. We will use thistioel in two settings. Both of these are

sufficient to specify scoping, typing and other invariarftslgect-language representations.

First, we shall encode type equality in Haﬁﬂnd use it in conjunction with Haskell's existing algebrai
data-types. This technique can be presented to the Haskegllggnmer as a new programming idiom and
is accessible even to Haskell programmers without highlaaded type theoretic background.

Second, we shall design a language (Omega) in which typeligges a built-in, primitive notion is
added to algebraic data-types. Omega provides the progeamith a practical and intuitive interface to
type equality leading to smaller programs that are easientterstand and debug than their equivalents in

the Haskell setting.

3By “Haskel” we actually mean Haskell plus a number of comm@vailable extensions such as higher-rank polymorphisth an
existential types, which are available in most popular lefisknplementations.
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1.6 Heterogeneous Meta-programming: Desiderata and Appraches

In this section, we shall outline our proposal for puttinggnegeneous meta-programming into practice. To
do this, we shall have to design a meta-language for heteemges meta-programming. We shall outline
the requirements, choices, and goals in designing such & lareguage, and the concrete approaches we
take to meet them.

There are many useful heterogeneous meta-programs. Reeakample of a postscript printer: the
object language is (significantly) different from the m&taguage. Another example is a compiler which
translates a program in one object language (the input anoginto a series of programs in various inter-
mediate languages, finally resulting in a machine-langpaggram.

Left with only general-purpose languages, the programmastme-implement many heterogeneous
meta-programming features from scratch every time he svateeta-program manipulating a new object
language. Moreover, using the abstractions of the meigulage, the programmer has no way to formally
check that important semantic invariants of the objectileage are preserved. To address these problems
we needan open meta-language for manipulating object-prograras éitiows for specifying and enforcing

their key semantic properties.

There are a number of goals that such a meta-language shatidde:
1. It must be possible to easily define and manipulate ndéffgrentobject languages.

2. It must be possible to express and statically enforce ftapbobject language properties such as

typing and scoping.

3. It should take into account efficiency, in the sense thatahility to express and manipulate the

semantic properties of the object-language should notilacge runtime penalties.

4. It must support good abstraction mechanisms, found int meseral purpose-programming lan-
guages, for writing software. Such abstraction mechanisnigde, but are not limited to recursive

definitions, pattern matching, input/output, and so on.
5. It must preserve phase distinction between static tyeking and dynamic (runtime) computation.

Points [1) and[{2) are a simple consequence of the fact thatam anopenmeta-language for het-
erogeneous meta-programming. The meta-language degigsano knowledge of the object-language
particulars, but must instead equip the programmer witlrattsons and techniques for object-language
representation.

They should begoodtechniques and abstractions, or at least better than wbatrently offered in

general-purpose programming languages: first, the mataubge should be equipped with a type system
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that guarantees important semantic properties of obfgjtlagestatically, where they can be automat-
ically checked and enforced by the meta-language implestient second, common techniques and pro-
gramming idioms should be presented to show how the langeagees of an open meta-language can best
be utilized. For example, there should be a clear procesamfimenting efficient and reliable interpreters
for object languages.

The requiremen{d3) has to do with a general scheme we haverdating implementation of object
languages: we shall use staging to make meta-programs suctegpreters highly efficient, applying and

extending the technique of staged interpretersi[117].

The requirement§14) anfll(5) have to do with wanting to desigmactical programming language —
effects (e.g., I/0, imperative features, and so on) mustebenciled with the need to effectively statically
type-check meta-programs.

What do we propose to satisfy these requirements? We tnestaepproaches:

1. We can look for some existing meta-languages that werigres to address other problems and
try to use them to solve ours. In fact, several languages insénd logical framework and theorem
proving communities (e.g., LF, Coq) seem like good candislalhey allow us to specify type safe
heterogeneous meta-programs and to encode semantic figemérobject languages. However, in
practical terms they leave much to be desired: none of them ss good candidate for a practical

programming language.

2. Lacking an existing meta-language, we can design anceimgaht our own. We shall argue that this
is a plausible approach. We describe MetaD, a meta-languagkesigned to support open hetero-
geneous meta-programming. We demonstrate the plaugibilletaD by using it to implement an
interesting example of heterogeneous meta-programmirggaléd present some theoretical results

that establish the type safety of a calculus with the santerfesas MetaD.

The drawback of this approach is that MetaD is a rather lamgguage with number of advanced
programming language features. Adopting MetaD requiresynpaogrammers to confront a rather

steep learning curve. Implementing, maintaining and pitimgosuch a new language is resource-

intensive.

3. We can try combining the approaches (1) and (2). Rather ¢cbenpletely designing a new meta-
language from scratch, we can experiment with adding neturfea to an existing programming
language to make it more effective for heterogeneous metgr@mming. Of course this approach

can be as fraught with complications as the previous apprib&e are not careful.

Fortunately, we read about a new technique for encodingliégpaoofs in Haskell [14B[#4]. This
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allowed us to experiment using a set of “tricks” for simulgtidependent types in Haskell [75]. We
applied these techniques to the problem of representirectlinguages with semantic properties
and found them highly expressive and very useful. This erpentation was very valuable because
it allowed us to test our ideas without getting involved inking any changes to Haskell to start
with. We learned much in this process. However, our expeggointed out some practical weak-
nesses with this approach: constructing Haskell progrhatgpreserve semantic properties of object-
language programs is awkward and tedious when using eixgtjoality proofs since it requires the

programmer to explicitly manipulate them at a very low levehbstraction.

4. Experimenting with equality types in Haskell providedtimation for the next step, the design of
the Omegalanguage. We were able to add small number of ésatarHaskell: built-in support
for equality types, and inductive kinds. Omega-style eitjuéypes allowed us to retain (and even
improve upon) the expressiveness of the Haskell-baseaagpiprve developed earlier, while making

many of the tedious and routine tasks of manipulating etyuaitbofs completely automatic.

In the following sections, we discuss each of these appemohmore detail. We begin by explain-
ing our choice to reject the first approach (Secfion1.6.4) eoncentrate on the latter two approaches

(Section§ 1612 arld 1.6.3).

1.6.1 Heterogeneous Meta-Programming in Logical Framewds

Casting about for good candidates for an open heterogemestaslanguage it would not do to overlook a
group of formal languages we shall somewhat loosely caltkddgrameworks[[583]. Such meta-languages
include various forms of dependently typed calclli [5], aydtems such as Twelf [109], and Caq [6].
Implementing programming languages in these systems ell@asa powerful idea: use highly expressive
types systems with dependent types to represent semaopienties of the object language.

The most important technique is to represgpting judgmentsf the object language as a form of struc-
tured data so that only well-typed object programs can bstoocted. As we shall see later, this is precisely
the technique we shall advocate in the rest of this dissentatiowever, from the pragmatic point of view

of meta-programming these systems have a number of drawback

1. They are not designed as real programming languaderyical framework-based systems such as
Twelf and Coq are mostly targeted at a theorem proving agdiefhe languages themselves usually
have some flavor of dependent typing, and use the Curry-Hbigamorphism to encode logical
properties of programs. However, some of these systems @fg [52]) provide only the most

rudimentary support for execution of user constructed Eog.
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Perhaps the most attractive of these languages for operprageamming is Cog. Although it is
a proof checker/theorem prover based on type theory, it $ggded to supporéxtractionof pro-
grams [105]. Extraction allows the user to automaticallgtbgsize a program in Scheme, Haskell
or Objective Caml from Coq definitions and theorems. As we algstrate in AppendikdA, this
scheme, however, has certain draw-backs of its own: thaetetd programs are often type-incorrect
(as viewed from the point of view of the extracted-to langelagMoreover, the programmer has
no direct control over the extraction process and must ralthe implementation of extraction to

guarantee the correctness and static safety of generatgchprs.

More importantly, Coq places considerable restrictionst@nprograms the user can write: all pro-
grams must be guaranteed to termi&aﬂd there is no support for standard programming language

features such as I/O or other effects.

Being a consistent proof theory, Coq trades its effectissm@s a programming language to maintain
its logical consistency by omitting any programming langgifeatures that do not have a pure type-
theoretic (logical) meaning. In designing a language feetogeneous meta-programming, we hope
to more evenly balance the requirements of expressiverigsswre practical software-engineering

concerns.

. They are difficult to learn and use by meta-programmersusing these systems the programmer
must learn a great deal of type theory and logic. This may beitable, but perhaps we can find a
way to express the necessary type-theoretic and logicalepds in a notation that would be more

understandable to a programmer.

. They do not address pragmatic concerns such as efficiefficiency of programming language

implementations is an important concern. When semantiogpitiees of object languages are encoded
in a meta-language, this encoding may require additiodatimation (such as proofs of these prop-
erties) to be constructed and manipulated by the meta-anogven when all these properties are

static. This often makes meta-programs unnecessarily lesrapd inefficient.

1.6.2 A Language with Staging and Dependent Types - MetaD

The approach we propose in the first part of the disserta@biajfte[R) relies on a meta-language with the

following features:

1. Dependent types,

4This is quite limiting in deriving implementations of objdanguages that have recursion or other control featinagsritroduce
non-termination.
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2. Meta-ML-style staging, and

3. Representation (singleton) types.

We will describe how these features of the meta-languagetéize=d in heterogeneous meta-programming
and how they fit together by presenting a detailed examplestéprograms that manipulate a typed object
language. We also prove the type safety of a formalized enetd-)language that has the features discussed

above.

Dependent types. The meta-language we describe in Chapler 2 supports a djeatom of algebraic

data-types called dependent inductive type families [35].

The semantic properties of object-language syntax, sudbgst-language typing, are expressed by
encoding the typing judgments of the object language asezitsrof dependent type families. The meta-
programs we write manipulate these judgments as well aythexsof object-language programs. Thus, we
assure that whatever manipulations of object programsafenmed by the meta-program, only well-typed

object programs can be constructed or analyzed.

Meta-ML-style staging. MetaML-style generative meta-programming (also cafieajing can be very

useful in an open heterogeneous meta-language. To itesttay this should be so, consider implementing
an interpreter for some object languageThe programmer first defines a data-type representing thuf se
expressions of.. Usually, an interpreter maps values from this sef gfrograms into some set of values

V that denote the meanings bfprograms.

A standard programming technique relying on MetaML-styégygg [117] can be used to improve the

interpreter forL in the following ways:

1. Staging can be used to remove the interpretive overheadlb] as a way of generating a more
efficient interpreter. First, MetaML meta-programmingilities are be used to divide the interpreter
into two stages: the static stage, where thexpressions are analyzed by the interpreter, and the

dynamic stage where computation of the interpreted progreaiue takes place.

The staged interpreter maps the setloexpressions into a residual meta-language program of
type (code V). When the staged interpreter is evaluated on some ihpexpression, it com-
putes/constructs a residual program is the result of (a)ldimfy the interpreter — i.e., removing the
case analysis over object programs; (b) removing enviranhoek-ups. Therefore, executing the
residual program generated by the staged interpreter foe g@rticular.-expression is significantly

more efficient than executing the original, non-stage@rpreter no the samie-expression 48, 67].
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2. Moreover, if the object language is strongly typed, ther esin define a set of values that represent
only well-typed expressions di. In this case, an interaction between the highly expresiapen-
dent type system and staging can result in an even more affgtigged interpreter by removing the
tagging overheadl04] that is often present in interpreters written in tyfedctional programming

languages. (We will address this problem in considerattigilde ChaptefR.)

As we will see, tagging overhead is caused by the type of teeuns/ersal value domai — by

replacing the universal value domaitwith a dependent type can make tagging unnecessary.

Representation (singleton) types. Finally, we will try to address the issues that arise when lmioing
dependent types and effects such as 1/O or non-terminatiproigramming languages. This will require
reformulation of the dependently typed meta-language ¢ésimgletontypes [58[116] — a restricted form

of dependent typing.

1.6.3 Haskell as a Heterogeneous Meta-programming Languag

The second part of the thesis develops another approacti@émbeneous meta-programming. This ap-
proach is primarily motivated by pragmatic consideratiolrsthe first part of the dissertation, we show
that introducing a new meta-language with a considerabheb®u of novel features can be used to pro-
duce meta-programs that correctly and efficiently manteulgpe-correct object-language programs. The
second part of the thesis explores the question of whetliepibssible that the same (or similar) kind of
benefits could be derived in the setting of a functional laggulike Haskell.

The answer to this question is a qualified “yes.” We shall esohow some semantic properties of
object-languages can be encoded in the type system of Haskkecommonly available extensions such

as existential types and higher-rank polymorphism.

Our approach depends on a technique of encoding equalityebattypes to “fake” dependent and sin-
gleton types in Haskell. The only language feature we prepalkling to these fairly common extensions
of Haskell isstagingwhich is essential, we shall argue, for efficient implemgate. We shall re-develop
the interpreter examples in this new paradigm and compareth approaches. The comparisons are use-
ful. The techniques are effective, but using them can pred@us, since they force the programmer to

explicitly manage equality proofs in great detail.
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1.6.4 Extending Haskell - Omega

We shall adopt an extension to Haskell's type system thatesittkese techniques significantly easier to
use by automating most of the simple, but tedious, equaldgfimanagement. We call the resulting meta-
language Omega.

We shall also present three further examples of heterogismaeta-programming. First, we shall define
a couple of type-preserving source-to-source transfoomabn object languages. We shall also extend the
range of object-language features presented in Chdgterd[@.arhe goal of this exposition is to provide
a kind of meta-programming practicum that can be a sourcearfiples and inspiration to heterogeneous

meta-programmers.

1.7 Outline of the Dissertation

The main method of supporting our thesis is demonstration nfeta-programming, we shall concentrate
on an interesting class of examples: implementing (staig¢etpreters for object-languages. Implementing
these interpreters provides the motivation for introdutf the language features and techniques that we
design for heterogeneous meta-programming. We demoagltratopen nature of our meta-language by
defining and manipulating several different object lang@sagAn important part of the thesis is a tutorial-
like presentation that demonstrates how to handle manylpessbject-language features. We intend this

to show how more than just toy object-language features eandmrporated into our framework.

Aside from this introduction chapter, this dissertatiodigded into four parts.

e Part I: Dependent Types for Open Heterogeneous Meta-pragrang.In the first part of the disser-
tation, we define a new meta-language for heterogeneousprmegaamming called MetaD. MetaD
is a functional language with staging and dependent typeanfexample, define a small functional
object language, and implement an interpreter for it, destrating along the way the benefits de-
rived from the new language features built into MetaD. NékhapteB) we sketch out a proof of
type safety of a simplified core calculus with the same festais MetaD. This proof combines stan-
dard syntactic type safety proof techniques|145] with agtit techniques developed for multi-stage

languaged [129].

e Partll: Open Heterogeneous Meta-programming in Haske#ther than implement a meta-language
with novel features, we propose a technique for encodingséimproperties of object languages in

Haskell.
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The key technique that enables heterogeneous meta-progngnmn Haskell is to replace depen-
dently typed inductive families of MetaD with carefully dgsed type constructors that encode typ-
ing judgments of the object language. We will show how to dsitthconsiderable detail (Chapfdr 4
describes the general techniques), and implement olgagubge interpreter similar to the the one

used as the main example in Part | (Chafpter 5).

Part Ill: Omega and Further Applicationgirst, in Chaptefl6, we address some of the awkwardness
of the Haskell-based techniques introduced in Part 1. Wehiby proposing a couple of exten-
sions to the type system of Haskell that greatly simplifyshigting of typing judgments of the object
language. The new language extensions (bundled up in a Hasked programming language we
call Omega) are presented through several examples. Mest#ting of these examples is an imple-
mentation of well-typed substitution over simply typgderms, an interesting demonstration of the

power of Omega support writing object-language type-présg syntax-to-syntax transformations.

Next, we proceed to define and implement meta-programs taaipulate two rather different typed
object languages whose type systems are based on modal@gipteEl) and linear-time temporal
logic (ChapteEB).

Part IV: Conclusion.First, we survey the relevant related work (Chapier 9). IBinae summarize

our findings, and discuss relevant topic for future work (@kdID).
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Chapter 2

Meta-programming in a Dependently Typed
Framework

2.1 Introduction

In this chaptgwe begin to explore the design space of heterogeneous majsamming systems, and to
show the advantages of heterogeneous meta-programmingdseng approaches to language implemen-
tation.

We will begin our exploration by examining the problem of defg tagless interpreters for typed object-
and meta- languages. This problem in general is caused litatioms of the type systems of traditional
meta-languages.

Type systems of programming languages, especially stypsigitically typed functional languages such
as Haskell, are syntactic formal system designed to guagdhe invariant that certain runtime behaviours
of programs (runtime type errors such as applying a nontfomealue) never occur in programs accepted
as valid by the type system. In most programming languagdeimgntations, the checing of the type
validity of programs is performed statically, in a phas@pto execution. In Haskell and ML, to make the
type system tractable and amenable to type inference, pleestystem is designed so that certain programs,

even though they do not violate the runtime typing invasaate nevertheless rejected by the type system.

For example, consider the following function, written iniaformal, Haskell-like notation:

- f Int —Int —??
fOx=x
fnx= \y—(@Ff (1) (x+y))

The functionf takes two integer arguments,andx and produces an-ary function that sums those

1This chapter is based on material first publishedin]102].
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arguments up. Thus, for examife2 0) results in the functionx — \y — x+y+0 .

While the functionf never causes runtime errors, functional languages suclasiseH or ML reject it
because they cannot give it a type: the result type indisean integer, while the result of the function in
the linemis a function type that takes an integer argument. In fa¢tas a wholdamily of function types
whose codomain type varies in a regular, predictable waly thi¢ value of the function’s first argument.
Type systems of functional languages such as Haskell dolloat types to depend on values, and reject
such functions despite the fact that they can be shown, bg-thebretical means, never to violate typing

discipline at runtime.

In operational terms, what happens when the Haskell typekenédries to infer a type fof ? First, it
tries to infer the result type of the bodies of both brancHekadefinition off . Then, it attemplts to prove
that they are the same type by trying to unify them. Howevrcesit can find no solution to the equation
Int = Int->? | itrejectsf.

It is worth noting, however, that the functibncanbe given a type in a richer, dependently typed system.
Instead returning a result of one particular typesan be seen as returning a result type which depends on

the value of the argument

f 0 : Int —Int —Int
f1: Int —Int —Int —Int
f 2 Int —Int —Int —Int —Int

n times

—N—
fn:int —Int —-Int — .-+ —=Int

Thus, if we could write a functiog from integers taypes we could easily give a type fdr:

g 0 = Int

gn=int —(g (n-1))

f o (n:Int) —Int —(g n)
fOXx =X

fnx= \y—f @1 (xty)

Unfortunately, we cannot write such a functignin Haskell. If one wanted to implement similar func-

tionality, we would be forced to resort to a more indirectigique.

Recall that the reason why the type-checking in Haskell efftimctionf fails is that for some values of
its argument it must return an integer, and for others a fancBut Haskell's type system assumes that, no
matter what the value of an argument is, the function alwaysns a result of the same type. A solution

to this problem is to use Haskell's data-type facility (camibg sum and recursive types in this case) to
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produce a type of values that can be either an integer or ap fusaction:

data Univ = Z Int
| S (Int —Univ)

Now, we can define a function that encodes the result ofing the data-typeniv : f :

f o Int —Int — Univ
fOx= ZX
fnx= S (\y—=f(nl) (x+y))

The typeUniv is used to unify the two possible kinds of values thatomputes: integers and functions
over integers. The construct&#®ndsS, which are there to allow the Haskell type-checker to vetlft the
two cases in the definition df return a value of the same type, also result in runtime behaifitagging

the integer or function values with those constructors.

Now if we apply the functiorf to some integer arguments, e.§.2 0, it yields a function value

equivalent to:

S(\a—S(\b—2Z(0 + a + b))

We can even define an application operation, which takesrttyead the Univ value, theUniv value
itself, a list of integer arguments to be applied to it (eniptyone), and returns the result of the application.
The list here serves as another “universal data-type,” tsstbre a (statically unknown) number of argu-
ments to the function encoded biniv . Note that if there is a mismatch between the arity, the nurabe

arguments in the list, and the structure of thav , a runtime error is raised:

applyUniv :: Int —Univ —[Intf] — Univ

applyUniv 0 v [] = v

applyUniv n (S f) (arg:args) = applyUniv (n-1) (f arg) args
applyUniv _ = error "Error in application of Univ"

And here is the main difference between Urav -based solution and true dependent types. Whereas the
functionf can be statically type-checked with a dependent type systetniv -based Haskell solution
defers a part of this static type-checking to runtime in farhthecking for the tag$ andZ. In other
words, whereas we want to statically enforce the invariaaitft is never applied to the wrong number/type
of arguments, Haskell's type system as we have used it hanegly enforce the weaker invariant thiat
is eithernever applied to the wrong number/type of argumenti§it is, an error value results at runtime.

In this chapter, we shall concentrate on a very similar @whlthat ofsuperfluous tagginthat often

arises in staging and partial evaluation of object languaigepreters.
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Object Language
data Exp = I Int | Var String | Abs String Exp | App Exp Exp
data Val = VI Int | VF Val->Val
(define kil (lambda (i) “( I, D)

(define  nmkVar (lambda (x) ‘(  Var, x)))
(define  nkAbs (lambda (n e) ‘(  Abs, n, e)))
(define  nkApp (lambda (el e2) ‘( App, el, e2)))

Object Language

Untyped Typed
cC (d(ﬁ:g‘éh?!aa;e(ltambda (t env) (define eval (lambda (t env)
E r2y (v, (T(atfh;ff se i;
- (( Var ?n) (lookUp env n)) « Vaf 2n) (lookUp env n))
8 ((‘ Abs ?n ?t0) ( Abs 2n 2t0)
oy ( VF ,(lambda (v) (lambda (v)
Z wn (t0 eval (extend-env env n v)))))
o) o (( App 210 2t1) (eval 10
— = p 7~ (extend-env env n v))))
Q o (match-case (eval t0 env) (( App 210 2t1)
o 3 ((VE 20 (f (eval tl env))) ((g\eal'to énv) (eval t1 env)))
> o ((?r) (raise-error "type error"))))
Q N )]
c )
Q
% | eval e env = eval e env =
< case e of case e of
2 i -V I -V
o | Var s —env s | Var s —env s
—~ | Abs (s,e) — | Abs (s,e) —
% VF (\v—eval e (ext env s v)) VF (\v—eval e (ext env s v))
» | App fe — | App fe —
g case (eval f env) of case (eval f env) of
= VF vf —vf (eval e env) VF vf —vf (eval e env)
~ | VI i —error "Runtime type error" | VI i —error "Impossible case"

Figure 2.1: Interpreters and Tagging

2.1.1 Superfluous Tagging

Superfluous tagging a subtle but costly problem that can arise in interpretgémentations wheboth
the object- and the meta-language are statically typedattiqolar, in most typed meta-languages, there
is generally a need to introduce a “universal datatype’d(atdled “universal domain”) to represent object-
language values uniformly (s€e_[128] for a detailed diseus Having such a universal datatype means
that we have to perform tagging and untagging operatiortgedtime of evaluation to produce and manip-
ulate object-language values represented by the univéosadin.

When the object-language is untyped (or dynamically typed)it would be when writing a Haskell
interpreter for Scheme, the checke really necessary.

When both the the object-language and the meta-languagdsarstatically typed, as it would be when
writing an ML interpreter in Haskell, the extra tags are really needed. They are only necessargtati-
cally type check the interpreter as a meta-language progiatnen this interpreter is staged, it inherlis|[81]

this weakness, and generates programs that costigierfluous tagging and untagging operations
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FigurelZ.1 provides a brief illustration of this phenomen@onsider an evaluator for-calculus terms,
which are defined at the top of the figure: the first two linegeepnt Haskell data-types encoding the set
of expressions and values of thecalculus; the bottom four lines are Scheme functionstilaimg the
structured representations ®fcalculus terms. The bottom half of Figurel2.1 is a tabled#di into four
guadrants, along two dimensions: the horizontal dimensiaws whether the object language is statically
typed, while the vertical dimension shows whether the nietguage is statically typed. Each quadrant
shows a sample implementation of an evaluator: the top radaiskell (a statically typed meta-language)

and the bottom row in Scheme (a dynamically typed meta-laggu

In Haskell we use a universal data-tyyal to represent all the possible values that the evaluator can
compute. Inthe Scheme implementation, we use a particutar éf s-expression: integer values are tagged
in a list where the head is the atdwi and whose second element is the integer itself; the funettres

are tagged in a list whose head is the atbiff whose second element is the function value itself.

1. Untyped Meta-language (Scheme).

(a) Untyped Object Languagé&or a dynamically typed object language we must check aiment
whether the value we are applying is indeed a function. I§ihot, we must define some
semantics of runtime type errors (functiaise-error in Figure[Z1). We note in passing
that it is possible to omit this runtime check, and rely onéuk’s dynamic typing system to
catch the error if a value other than a function is apﬁlieldowever, it is more reasonable to

assume that a language designer would want to define her emansies of runtime type errors.

(b) Typed Object Languageélere, since we can assume koowby meta-theoretical proof) that the
object language is statically typed there is no need to impla runtime typing. For a function
application we simply evaluate the function expression thiedargument expression and then

apply the first resulting value to the second.
2. Typed Meta-language (Haskell)

(a) Untyped Object Languag&imilar to the untyped object language implementation ineBee,
we must introduce tags on runtime values that allow us tolchéether what we are applying
is indeed a function. We do this with a case analysis on the\tgb . If the value being applied

is not a function, we report a runtime type error.

(b) Typed Object Languagd-his is surprising: because the object language is stragghd, we

can assume that no type error will occur at runtime (tleusyr "Impossible case" ),

2|n that case the interpreter would look exactly like 1b.
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and yet still the meta-language (Haskell in this case) foussto use tags anyway. These tags are
a puzzling source of asymmetry — we would expect the Haskgdléementation of a statically

typed object-language to be a lot more like the one in Scheme.

This asymmetry can be quite costly. Early estimates of tis¢ @itags suggested that they produce up to
a 2.6 times slowdown in the SML/NJ system [1133]. More extemstudies in the MetaOCaml system show
that slowdown due to tags can be as high as 10 time< [16, 62}. ddo we remove the tagging overhead
inherent in the use of universal value domains?

In the rest of this section we describe the problem of supmrfitags in more detail, and discuss existing

approaches to solving it.

An Untyped Interpreter

We begin by reviewing how one writes a simple interpreterriruatyped language. For notational parsi-
mony, we will use Haskell syntax but disregard types. Anrimteter for a small lambda language can be

defined as follows:

data Exp = | Int | Var String | Abs String Exp | App Exp Exp
eval e env =
case e of
I — i
| Var s — env s
| Abs s e — (\v — eval e (ext env s V))
| App f e — (eval f env) (eval e env)

This provides a simple implementation of object prograrpsasented by the datatypep. The function
eval evaluate® (anExp) in an environmengnv that binds the free variables in the term to values.

This implementation suffers from a severe performancdditiain. If we were able to inspect the result of
applyingeval , such ageval (Abs "x" (Var "x")) envO0) , we would find that it is equivalent

to

(\v— eval (Var "x") (ext env0 "X" v)).

This term will compute the correct result, but it containswuarevaluated recursive call ®val . This
problem arises in both call-by-value and call-by-name lexggs, and is one of the main reasons for what
is called the “layer of interpretive overhead” that degsagerformance [67]. Fortunately, this problem can

be eliminated using staginp [128].
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Staging the Untyped Interpreter

Staging annotations partition the program into (tempgmitiered) computational stages so that all com-
putation at stage is performed before any of the computations at stagel. Brackets( _ ) surrounding

an expression lift it to the next stage (building code). Bgsca drops its expression to a previous stage.
The effect of escape is to splice pre-computed code valuesode expressions that are constructed by
surrounding brackets. Staging annotations change thaati@h order of programs, even evaluating under
lambda abstraction. Therefore, they can be used to forcartfadding of the recursive calls to theval
function at code-generation time. Thus, by just addingistagnnotations to theval function, we can

change its behavior to achieve the desired operationalrs&rsa

eval' e env =
case e of
i — (i)
| Var s — env s
| Abs se — (\v—T(eval' e (ext env s V) )
| App fe — ( “(eval f env) “(eval' e env) )

Now, applyingeval’ to (Abs "x" ( Var "x")) in some environmenénvO vyields the result
(\v —v). Now there are no leftover recursive callsieal’ , since the abstraction caseasfal’ uses es-
cape to evaluate the body of the function “under the lamb@a."— “(eval’ e (ext env s V) ).

Multi-stage languages come with a run annotatiom _ that allows us to execute such a code fragment.
A staged interpreter can therefore be viewed as user-diegy of reflecting a object program into a meta-

program, which then can be handed over in a type safe way wotheiler of the meta-language.

Staged Interpreters in a Meta-language with Hindley-Milner Polymorphism

In programming languages, such as Haskell or ML, which uséndlely-Milner type system, the above
eval function (staged or unstaged) is not well-typed. Becausie integers and functions can be returned
as a result of the interpreter, each branch of the case statemay have a different type, and these types
cannot be reconciled by simple first order unification.

Within a Hindley-Milner system, we can circumvent this plexh by using a “universal type.” A universal
type is a type that is rich enough to encode values of all thesyhat appear in the result of a function like
eval . Inthe case above, this includes function as well as integlees. A typical definition of a universal
type for this example might be:

data V = VI Int| VF V-V

The interpreter can then be rewritten as a well-typed (Hjgk®gram:
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unF (VF f) = f
unF (VI ) = error "Tag mismatch, expecting function"

eval e env =
case e of
I i — i
| Var x — env X
| Abs x e — F (\v— eval e (ext env x Vv))
| App f e — (unF (eval f env)) (eval e env)

Now, when we computéeval ( Abs "x" ( Var "x")) env0) we get back a value

(VF (\v—eval ( Var "x") (ext env0 "X" v))).

Just as we did for the untypedal , we can stage this version eval :

eval e env =
case e of
i - M i)
| Var x — env X
| Abs x e — (VF (\v— T(eval e (ext env x v)) )
| App fe — ((unF “(eval f env)) “(eval e env) )

Now computingleval ( L("X", V "x")) env0) yields: ((VF (\v—V)) )

Problem: Superfluous Tags

Unfortunately, the result above still contains the Y&g While this may seem like minor issue in a small
program like this one, the effect in a larger program will gafusion of tagging and untagging operations.
Such tags would indeed be necessary if the object-languagemtyped. But if we know that the object-
language is statically typed (for example, as a simply-tiylaenbda calculus) the tagging and untagging

operations are really not needed.

There are a number of approaches for dealing with this pnobl@ype specializatior 163] is a form
of partial evaluation that specializes programs based nlyt @an expressions, but also on types. Thus,
a universal value domain in an interpreter may be specdaliaearbitrary types in the residual versions,
removing tags. Another recently proposed possibility ¢ efimination [138[ 132, 73], a transformation
that was designed to remove the superfluous tags in a postgmiog phase. Under this scheme, a language
implementation is divided intthreedistinct stages (rather than the traditional two, statit@mamic). The

extra stagetag elimination is distinctly different from the traditional partial eveltion (or specialization)
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stage. In essence, tag elimination allows us to type chexblfect program after it has been generated.
If it checks, superfluous tags are simply erased from thegregation. If not, a “semantically equivalent”
interface is added around the interpretation. Tag elinonahowever, does nataticallyguarantee that all
tags will be erased. We must run the tag elimination at ruatfim a multi-stage language). None of the
proposed approaches, however, guarantees (at the timetimfgvthe staged interpreter) that the tags will

be eliminated before runtime.
We will present an alternative approach that does providk awguarantee: in fact, the user never intro-

duces the tags in the first place, because the type system widta-language is strong enough to avoid any

need for them.

2.2 Tagless Interpreters Using Dependent Types

The solution to the tagging problem that we will present isdzbon the use of a dependently typed multi-

stage language as the meta-language in which to implemgsdtddnguages.

A language has dependent types if its types can depend oesvadihe program. We have shown an
informal example of this in Sectidn2.1. Crucial to this ie tiotion oftype families- collections of related
types indexed by a value. A typical dependent type is the miggrat product, often writteflz : 71.79,
where the type» may depend on the value of the bound variableFor example, a dependent product
(TIIz : Int.if z == 0 then Int else Bool) is a type of a function that takes an Integer, and if that letég)

0, returns another integer; otherwise it returns a Boolean.

We demonstrate this solution by means of an example: we buittmpiler from an interpreter [11.7] by
staging, from beginning to end. The slogan we are guided Badgselimination by never introducing the

tags in the first place!”
We start by presenting a definition of a simple, strongly tipebject language, callely, giving its

syntax and semantics. The remainder of this chapter descaib implementation of a tagless interpreter

for Ly using dependent types and staging.

Dependent types are used to express the invariant that allityped object-language programs can be
constructed and manipulated by well-typed meta-prograrhs.interpreter for object-language programs
is given family of types that vary with respect to the (objketguage) type of the object-language program.
For example, this allows it to return function values foraatijlanguages with function types, integer values
for object-programs with integer types, and so on. If theeobjanguage type system is designed correctly
to exclude object-language programs that “go wrong,” thembeta-language type system forces the inter-

preter to preserve this invariant without needing to chagls to ascertain at runtime whether the execution
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of the object-program has indeed “gone wrong.”

To illustrate viability of combining dependent types witlaging, we have designed and implemented
a prototype language we call MetaD. We use this language akial® to investigate the issues that arise
when implementing staged language implementations in ardiémtly typed setting: we thus re-develop
the Ly implementation as a staged interpreter in MetaD. We alstudssthe issues that arise in trying to
develop a dependently typed programming language (as egpos type theory).

For comparison, we give an implementation of a taglesspnéger forLg in Coq [139] in AppendiXA,
where we shall critically examine our Coq implementatiod aansider its strengths and weaknesses com-

pared to MetaD.

In a subsequent chapter, we will present the technical bniton of formalizing a multi-stage language
with such features, and proving its type safety. We do thisdpijtalizing on the recent work by Shao, Saha,
Trifonov and Papaspyrou’s on the TL systém [116], which imtouilds on a number of recent works on
typed intermediate languageés[55] 25,1147 114, 26, 140].

2.2.1 Object-Language Syntax and Semantics

We begin by considering a definition of the syntax and seroaitiLy. L is sufficiently simple to make
our development and presentation manageable. It is, howsvficient to demonstrate the main issues
that arise when constructing a tagless interpreter withirsgeand dependent types. We begin by formally

presenting the syntax and semantics of the object language.

7 €Tu= N|T7—>T
' eGu= ()|I,7
e €Eu= n|Ar.elee|Varn
EXPID,7Fe: 7’ EXPTFe:7—7 EXPIles:T
T vaNaY (Lam) (App)
EXPT'Fn:N EXPTF M.e:7— 7/ EXPT Fejeg: 7’
VART Fn:71 VART Fn:71
(Var) (Var-Base) (Var-Weak)
EXPI'FVarn: 7 VART,7+O0:7T VAR, 7/ (n+1):7

Figure 2.2: Syntax and static semantics of gf

Syntax. Figure[Z2 defines the syntax and type systeni@f The language is a version of the simply
typed A-calculus. Types include a base type of natural numh¥®is &nd function type former¢). For
simplicity of the development, we use de Bruijn indices farigbles and binders, where natural number
indices that identify a variable represent the number a@rirgning\-abstractions between the variable’s

use and binding site.
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Type system. The type system of,q is presented also in FiguEeR.2. It consists of two judgmethis
well-typedness judgment defined inductively over the esgitn,e, (EXP T' | e : 7), and the auxiliary
variable judgment(VAR T  n : 1), which projects the appropriate type for a variable indenfrthe
type assignment. The splitting of the typing rules into two judgments is nesential, but will make

our presentation a bit simpler when we define functions budtidn on expressions and variable indices,

respectively.
[EXPTFe: 7] o [T] =[]
[EXPTFn:NJp = n
IIN] = N [EXP T F Varn: 7] p = [VARTFn:7]p
T — 7] = Jr]’ ] [EXPTFAre:T—=7]p = z— ([EXPT,7Fke:7'] (p,x))
[EXPTFejez:7]p = [EXPTtrer:7 — 1]p([EXPT I ez : 7']p)
JA[O] = 1
TA[L, 7] = TJA[I] x I7] [VART Fn: 7] o [T] =[]
[VART, 7+ 0:7]p = m(p)
[VART, 7"+ (n+1):7]p = [VART FVarn:t](m1p)

Figure 2.3: Semantics df,

Semantics. The semantics of the languadg is shown in Figuré2]13. This semantics consists of three

parts:

1. The semantics of types, which maps the (syntactic) typds @o their intended meaning, is given
as the semantic functidf|-] : T — = in Figure[ZB. The typing we give the semantic functin],
T — «is purely for reader’s convenience. The base Befts as well as products and function spaces
used are set-theoretical entities. For example, the mgaiithe typeN is the set of natural numbers,
while the meaning of the arrow type — 7 is the function spac@A[]”4["1. This function’s
role is to compute that type of the semantic function for espions (similar teval above), when

given that expression’s type.

2. The semantics of type assignments are defined as a sefadiion TA[-] : G — «: each type
assignment is mapped into a product of the sets denoting the individuys in the assignment. For
example, the meaning of the type assignniért (), Int, Int — Int, is the product setl x N) x (N —

N). This function’s role is to compute the type of the runtimgissnment of the semantic function,
given the particular type assignment under which we typeothject-language expressions whose

meaning we are trying to compute.

3. Finally, the semantics of programs is definedyqing judgmentsGiven a typing judgmerfEXP T" -
e : 7], it maps the meaning of the type assignmierifA[I'], to the meaning of the type of the object
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expressio|r].

The definition of the semantic functidieXP - - - : -] : (EXP T F e : 7) — TA[[] — T[r] is
given in FigurdZB . For its variable case, it uses an auyifianction which projects (i.e., looks up)
that variable’s value from the runtime environmepfAR- + - : -] : (VART Fn : 7) — TA[T'] —
TTr]-

This is a standard way of defining the semantics of typed laggs([138[ 51,_110] (also known as

categorical stylg and the implementation in the next section will be a dicedification of this definition.

2.3 A Brief Introduction to Meta-D

In this section we shall enumerate here the main ingredemdsfeatures of Meta-D, a meta-language in
which we shall then implement the tagless interpreterifgr The purpose of this section also is also to

familiarize the reader with the syntax and type system ofdvigt proceeding informally and by example.

Dependent types. In designing Meta-D, we opt for a predicative style of depantdypes with universes.
The Coq sort$Set andProp are unified into a single so#;, which in turn is classified by an increasing
order of sortsks, *3, . ... All this is fairly standard([2, 139]. This flavor of dependéypes, while it works
very well in a type-theoretic theorem prover, may introdsaese practical problems in a programming lan-
guage implementation. We will explore how some of these lerab may be solved while still maintaining

the expressiveness of the type system.

Basic staging operators. The type system of Meta-D includes a modal type construCi¢pronounced
“code of"), as well as with the standard staging annotat{sas Sectioh2.1l.1 for examples of the notation).
Typing rules of the code constructors are fairly standa@ijiZ3,[128]. The type system prevents phase

errors, i.e., prevents uses of values defined at later sthgewy earlier stages.

Inductive families. Inductive type families (e.g. 1838, 22]) can be thought ofda@pendent data types.
While not strictly necessary (one can use Church encodirtigsy greatly improve the usability of the
meta-language.

The syntax for inductive families is largely borrowed frorad; and has a very similar feel. Syntactically,
each data-type defined must first be given its own type (speoisstants*l, *2 are sorts, wher&l
classifies types;2 classifies kinds, and so on). Each constructor’s type igewribut fully, and is subject

to standargbositivity conditiong6] to ensure that the data-type defined is truly inductive.
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For example, to define the inductive family of natural nunsharstead of writing
datatype Nat = Z | S of Nat we write

inductive Nat : *1 = Z : Nat| S : Nat —Nat.

The inductive notation is more convenient when we are defidiependent data-types. Also, it allows
the user to define not only inductive types, but also indedtiads(by simply changing, say1 to %2 in
the definition). As an example dependeninductive families, consider the following definition:
inductive List (a:*1) : Nat —*1 =

Nil : Lista ZzZ
| Cons : a —(n:Nat) —(List a n) —(Lista (S n))

The inductive family(List a n) is a family of lists of elements of typa with lengthn. After a

family’s namelist ,the user lists zero or mopmarametersA parameter ta.ist |, in this case, is a typa

*1 . The parameters are arguments to the type family which datmartge in any of the constructors.
Next, after the colon, we give the typing of the type family.the case oList a , itis a function from
natural numbers, representing the list’s length, to thé alotypes,«;. Note thatNat here is the type of
anindexof the type family. The difference betweparameteraandindexeds that while parameters may
not be changed anywhere in the types of the constructofereift constructors of the family may vary the
values of thendexes For example, the construct@ons takes as its argument the valagand a list of
lengthn. The list it constructs, however, has a different index galiamelyS n indicating that it is one

element longer.
To give an example, the ligtx1 below is a list of integers of length three:

val exl :: List Int (S(S(S2)) =
Cons (102 ( S (S 2) ( Cons 101 (S Z2) ( Cons 100 Z Nil))
Values of inductive families can be deconstructed usingctise construct. The case is designed to be
as similar as possible to case expressions in functiongkanoming languages. For example, the following

is a map function that converts a lista$ to a list ofbs:

fun_ maplList (a:*1) (b:*1) (f : (a — b)) (n:Nat) (I : (List a n))
: (List b n) =
case | of
Ni I — Nil

| ( Cons x m xs) —(Cons (f xX) m (mapList a b f m xs))

Dependent products (functions). Functions in Meta-D are defined using an ML-style syntax:
fun funName (arg 1:Typ 1) .. (@g n:Typn) : Typ r = ... . The function name follows th&un
keyword, and is followed by declarations of the functiomguaments, and finally the type of the func-

tion's codomain. Function typeéxit 1) —t 2, (unlike in Coq, they are always written with the arrow



37

—) can be dependent, i.e., the codomain typemay mention the variable. Also, the A\-notation is

modeled on MLfn  (xit) — e is an anonymous function that takes an argument of type

To demonstrate dependent function types, we revisit thenplafrom sectiof.211. This involves the
functionf , which takes an argument some initial integer valug, and produces an-ary function that
sums up its arguments. The argumerid the integer value for the “nullary” case wherés zero. First, we

define the functiolyg which computes the type we can givefto

fun g (n:Nat) : *1 =
case n of
Z — Nat
| Sn — (Nat —(g n))

n times
The functiong takes a natural numberand constructs a tyfet — --- — Nat.

Now we are define to construct some inhabitants of this typepalrticular, the functiofi from Sec-

tion[Z Are there any inhabitants of this type, for a givéhConsider:

fun f (n:Nat) (x:Nat) : (g n) =
case n of
Z— X
| Sn — (fn_ (y:Nat) — (f n" (xty)))

As we have seen, inductive functions can be defined usinggiecu It is assumed that the type-checker

can prove that recursively defined functions termHlate

Another interesting function might bmakeList , which, given a natural number, produces a list of

zeros of the length:

fun_ makelList (n:Nat) : (List Nat n) =
case n of

Z— Nil

S n —(Cons Z n' (makeList n’))

Dependent sums. Dependent sum types are also available. Dependent sunexgesitten agx:t](f
X) . An element of such a sum is a pair of values: the first is a ai¢wfetypet ; the second element is of

typef t ,i.e., its type may depend on the value of the first elemeng.simtax for constructing such a pair

3In the actual implementation the user can instruct the tfpeker to ignore termination checking, in which case tyipeecking
may not terminate, as in Cayenne. This makes the type sysiemed as logic, unsound, but may be acceptable in progragimi
practice [2]
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is written[x=e 1]e 2. Informally, the typing rule for sum introduction may loo&raething like this:

Phep:m Tx:mbex: (mfr:=e))

Pk lx=-ei]es: [x: 7] (Sum)

Dependent sums do not have a special elimination constingtead, the user can deconstruct them using

case expressions and pattern matching.

2.4 A Tagless Interpreter

After that short introduction to the syntax of Meta-D, we caw begin to implement a tagless interpreter
for L. First, we define data types that represent the syntdx othe basic types, typing environments and

expressions. The following non-dependent type familiesaspond to the syntactic categoried gf

inductive Typ : *1 = NatT : Typ

| ArrowTl : Typ —Typ —Typ
inductive  Env : *1 = EnptyE : Env

| EXtE : Env —Typ — Env
inductive Exp : *1 = El : Nat —Exp * n %

| EV : Nat —Exp (* Varn %)

| EL : Typ —Exp—Exp (* Ar.e ¥)
| EA : Exp —Exp—Exp (* e1e2 ¥

Expressions

inductive J : (Env, Exp, Typ) —*1 =
JN: (e 1:Env) —(n :Nat) — J(e 1.El n,NatT)

| JV: (e 1:Env) —(n:Nat) —(tTyp) —
JV(e 1,nt) —Je 1,EV nit)

| JL : (e 1:Env) —(t 1:Typ) —(t 2:Typ) — (s 2:Exp) —
JEXtE e 1 t1,5s2,t 2) —J(e1,EL t 1 sp, ArrowT t 1 tp)

| JA : (etEnv) — (s 1:Exp) — (s 2:Exp) —(t 1:Typ) —(t 2 : Typ) —
J(e,s 1,ArrowT t 1 to)) —@(es 2t 1)) —JIe EAs 1 sp, t o)

Variables

inductive JV : (Env, Nat, Typ) —*1 =
| VZ: (e 1:Env) —(tTyp) —JIV(EXtE e 1 t, Z, t)
| VW: (e 1:Env) —(t 1:Typ) —(t 2:Typ) —(i:Nat) —@IV(e 1.t 1)) —
(JUV(EXtE e 1 t2, Si, t 1))

Figure 2.4: The typing judgmedt(without representation types)

Next, we implement the type judgment 6f. To define the judgments, we need a dependent family
indexedby three parameters: a type assignnent, an expressioExp, and a typelyp. The relevant
definitions are shown in FiguEe2.4. Each constructor indaistype corresponds to one of the rules in the

type system for our object language.
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We shall examine the various constructors of the inductweilfy J from Figure[Z} in turn. The basic
idea is to use the “judgments as types” principlég [53]. Wedaw a typing rule as a combinator building
larger proofs judgments out of smaller ones. Members of ype 3 (e,s,t) are proofs of logical
assertions that - s : t. These proofs are built-up using the constructors of thedtide typeJ. These
combinators take proofs of hypothesis judgments (and theesaof their free variables) to construct the

proof conclusion judgment.

1. The rule for natural number constanislj.

| JN: (e 1:Env) — (n:Nat) — J(e 1,El n,NatT)

Given a type assignmeat , and a natural number, we can produce the proof of the typing judgment
Je 1, El n, NatT) ,ie,eqtn:N.

2. The rule for variables. Variables are implemented udiegatuxiliary judgmendV, also an indexed
type family, whose indices are the type assignment, a nungpeesenting the de Bruijn index of a
variable, and the type of the given variable.

The variable judgment proofs have two cases.

inductive JV : (Env, Nat, Typ) —*1 =

(a) Base case, where the variable index is zero.
| VZ: (e 1:Env) —(tTyp) —JIV(EXtE e 1 t, Z 1)

(b) Inductive case (also callegleakeniny Repeated applications of the weakening rule perform
the lookup from the environment.

| W: (e 1:Env) —(t 1:Typ) —(t 2:Typ) —(Nat) —@V(e 1.t 1)) —
UV(EXE e 1 t2, Si, t 1))

3. The rule for lambda abstractiobgm).

JL : (eEnv) —(t 1:Typ) —(t 2:Typ) —(s:Exp) —
JExXtE et 1,s, t ) —Je ELt 1 s, ArrowT t 1 to).

In this case, the first argument to the constructor is the&gsegnment in which theX abstraction is
typed. Next, it takes two typées andt,, for the domain and the co-domain of the function expression
respectively. Next, it takes an expressiowhich is the body of the lambda abstraction. Finally, it
takes the proof of the antecedent judgment fhat; - s : ¢2), and constructs proof of the judgment
(e b At.s : t; — t2). The correspondence between the construgtoand theLam rule from

FigurelZP should be apparent.
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fun project (e:Env) (rho:(envEval e))
(n : Nat) (tTyp)( : IV(e,nt) : (typEval t) =

case j of
VZ e t — #2(rho)
We tq tp ij —(project e (#1(rho)) i t 1)

fun_eval (e : Env) (rho: envEval(e))
(s : Exp) (t : Typ) (j : J(e,s,t) : (typEval t) =
case j of
JN en —n
| JV entjv —project e rho nt jv
| JLetq to soj —
(fn_ v:(typEval t 1) —(eval ( ExtE e tq) (tho, Vv) so to )
| JAesysptgtyjijo—
(eval e thos 1 (ArrowT t 1 to) j 1) (eval ethos o tq j2)

Figure 2.5: Dependently typed tagless interpreter

4. The rule for applicationJA) implements thé\pp rule from FigurdZP: given two premises- s; :
t1 — to ande |- sy : t1, the constructor builds the conclusieft s; s : ta:
| JA : (eEnv) —(s 1:Exp) —(s2:Exp) —(t 1:Typ) —(t 2 : Typ) —

Jess 1, ArrowT t 1 to) —J(es 2t 1) —
Je, EA's 1 so, t 2)

In the definition ofJs we see differences between the traditional datatype tiefisiand inductive
datatypes: each of the constructors can have dependepdigt Brguments and a co-domain tybehose
index arguments are different. Data-types in functionadjleages, on the other hand, force the constructors
to return always theametype of the result. The variability of inductive family indes will allow us to
define functions by cases in which each case produces orm@ssa value of the same inductive type, but
where each case differs in the values of the indexes.

The definition ofJ allows us to use this variability in the indices to enforce tbllowing invariant:
given a type assignmest and an object-language expressigrand an object-language typeif we can
construct an inhabitant (proof) of the judgméie,s,t) , thene - s : ¢ (in the sense of the Figute2.2).
No functions that manipulate and produce proofs of typimigjuents) can break this invariant and remain

well-typed in MetaD.

2.4.1 Interpreters of Types and Judgments

Having definedL, typing judgments as Meta-D inductive families, we are retdimplement thel
interpreter in form of the functioaval from FigurdZ®b. One thing to note, however, is that the tyfgh®
range of the functiomval must depend on thg, type of the judgment being interpreted: for an integer

Ly program, the result will be an integer, for a functibg program, it will be a function and so on.
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This dependency is captured in the interpretation fundiipival . Recall that syntax of are repre-
sented by inductive famil¥yp . The functiortypEval gives the meanings of these object language types

by mapping the inductive familyyp into meta-language types:
fun typEval (t : Typ) : *1 =
case t of
Nat T — Nat
| ArrowT tl1 t1 — (typEval t1) — (typEval t2)

Predictably,typEval maps Ly type NatT to the meta-language type of natural numbbsiat .
Similarly, given a Lo arrow type ArrowT t1 t2 , typEval computes a Meta-D arrow type
(typEval t1) — (typEval t2) as its meaning (ling above).

Similarly, type assignmentsf L, must be given a meaning as well, since the type judgmenifs,of
programs depend on the structure of the type assignmentwhie types for the free variables in thg
expressions. Recall thaf type assignments are represented by the inductive faemly, its structure is
that of a list of L types.

The functionenvEval takes a representation of tlig type assignment and computes the Meta-D type

of the runtime environments corresponding to that typegassent:

fun envEval (e : Env) : *1 =
case e of
Empt yE — unit
| ExtE e2 t —(envEval e2, typEval t)

The runtime environment corresponding to the empty typigaseent is simply the unit type. For a type
assignmeng2 extended by the typie, EXtE e2 t , the type of the runtime environment is the product of
the meaning o&2 and the meaning df: (envEval e2, typEval t)

The functioneval is defined by case analysis on the proofs of the typing judgen@&igurd2Zb). There
are four such cases, each of which we shall examine in soraé:det

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =

1. Natural number literals. The first case is the judgment féx, literal expressions. If the proof of
the judgmenf of type J(e,s,t) is of the formJN e n, then by the definition of, we know
that the expressios is of the formEl n, and that thel, typet is equal toNat T. The codomain
type ofeval istypEval t , but sincet equalsNat T, we know that the result type of this case
branch must bé&ypEval NatT , which is equal to the Meta-D typsat . Fortunately, we have a
nat , namelyn.

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =
case j of
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JN e n—n

2. Variables. The variable case is more interesting. First, note that i lbhanch, the expression
index iseV n for the natural numben which represents the index of the variable expression. The

constructod V carries a proof of the variable sub-judgmékie,n,t)

fun_eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =
case j of
JVentjv —project e rho ntjv

Thus, the meaning of variable judgments relies on the auryiliunctionproject , which imple-

ments the meaning of variable judgments:

fun_ project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) (j:JV(e ,nt) @ (typEval t) =
case j of
VZ e t — #2(rho)
We tq to i ] —(project e (#1(rho)) i t 1)

The functiornproject  is defined by cases on the inhabitants of the variable judgd&e,n,t)

wheren is the natural number index of the variable expression. e two cases

(a) The base case where the natural number index is zero.isirtdbe, we know that is of
the form(ExtT e’ t) . We also know that the type of the runtime environmérd is
envEval ( ExtT €' t) which is equivalent to the pa{evalEnv e’,evalTyp t)

Now, to produce the result ¢§ypEval t , all we have to do is project the second element of
the pairrho .

fun_ project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ)
(:3V(e,n,t)) : (typEval t) =
case j of
VZ et — #2(rho)

(b) The case where the index is greater than zero. Thus, tflexinis equal toS m We also
know that the type assignmeatis of the form(ExtE e’ t2) , and that we have the sub-
judgmentj’ of typeJV(e’m,t) . Furthermore, runtime environmertto is of the type

(envEval ( EXtE €' t2)) whichisjusta paifenvEval e’, envEval t2)

Recall that the result we are computing is of the typ@Eval t) . This result can be
obtained by projectingtth variable from the sub-judgmejit under the first element aho :

fun_ project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) (j:IV(e ,n,t)
. (typEval t) =
case j of

| We tt o mj —(project e (#1(rho)) m t j)
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3. Abstractions.

fun_eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =
case j of

| JLetq typ s j —
(fn_ v:(typEval t 1) —(eval ( ExtE e tq) (tho, v) so to )

In the case for abstraction judgments we know the following:

(&) s=EL tq s»2
(b) j :J(ExtE e tq,52;t 2)
)t =ArTtq to

(d) TheresulttypgypEval t istypEval ( ArrT t4q t2),whichisequaltdtypEval t 1) — (typEval t

Thus, the value that we are constructing in this branch meust b function typgtypEval t  1)->(typEval t 2):
we A-abstract overavariable :  (typEval t 1), and must produce a value of tyfigpEval t ).
Fortunately, we can do this if we evaluate recursively theofs of the sub-judgmeijt . Thisj’

must be evaluated in an extended runtime environment of (gpeEval e,typEval t 1)

which we can construct by pairingo with v.
4. Applications. Evaluating proofs application judgments is straightfamiva

fun eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t )) : (typEval t) =
case j of

| JAesy sptgtpyjgio—
‘(evalerhos 1 (ArrowT t 1t2)j1)H(evaIerhos 2t j2)

The judgment proof is constructed from two sub-proofs:
@j1: Jes 1,ATrT tq to)
(b)j2 : Jes 2.t 1)

Recall that the value we are trying to compute is of the type Recursively evaluatingq gives us
afunction of typegtypEval t 1 —typEval t ). Recursively evaluatingjgives us a value of

type typetypEval t 1. Simply applying the former to the latter yields the reqdiresult.

To review, the most important feature to note about the fon@val is that writing it does not require
that we use tags on the result values, because the type sgtevs us to specify that the return type of
this function istypEval t . Tags are no longer needed to help us discriminate what typedwe we are

getting back at runtime: the type system now tellssatically.
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2.4.2 Staged Interpreters in Meta-D

FigurelZ®6 shows a staged versioneofll . As with Hindley-Milner types, staging is not complicateg b
dependent types. The staged interpretalS , returns a value of typ€)(typEval t) . Note that the
type of value assignments is also changed &aéEvalS in Figure[Z®6): Rather than carrying runtime
values forLy, it carries pieces of code representing the values in tHablarassignment:

fun_ envEvalS (e : Env) : *1 =
case e of EnptyE—unit | Ext E e2 t — (envEvalS e2, Of(typEval t))

fun evalS (e : Env) (rho: envEvalS e) (s : Exp) (t : Typ)
(G :Jdesy) :( OltypEval t)) =
case j of
IN eg np—(ng)
| JV e1 tqg— #2(rho)
| JWeyp tq to ij 17— evalS e q (#1(rho)) (EV i) t 111
| JL eeq etq eto esp ej 1 —
(fn_ v:(typEval et 1) — ((evalS (ExtE ee 1 etq) (rho, (v)) eso ety € 1)) )
| JAesy sptytajrjo—
("(evals e rho's 1 (ArrowT t 1 to) j 1) “(evalS e rho s 2ty j2))

Figure 2.6: Staged tagless interpreter (without represemttypes)

Even though the eval function never performs tagging andgging, the interpretative overhead from
traversing its input is still considerable. Proofs of judgits must be deconstructed by eval at run-time.
This may require even more work than deconstructing taggaees. With staging, all these overheads are
performed in the first stage, and an overhead-free term isrgted for execution in a later stage. Executing
the functionevalS produces the tagless code fragments that we are interesteebr example, if we
construct and then evaluate the typing judgment for theesgion( EA (EL Nat T (EV 0)) ( El
1)) , the code generated leyalS looks something like this¢(fn_ (x : Nat) => x) 1 ).

Staging violations are prevented in a standard way by Métayfpe system. The staging constructs
are those of Davie$ [80] with the addition of cross-stageiptancel[135]. We refer the reader to these
references for further details on the nature of stagingatiohs. Adding a run construct along the lines of

previous works[[130, 82, 184] was not considered here.

Now we turn to addressing some practical questions that micpe to the dependent typing setting,

including how the above-mentioned judgments are congduct

2.5 Constructing Proofs of Typing Judgments

Requiring the user of 4 interpreter to construct and supply the proof of a typingyjuént for each
program to be interpreted is not likely to be acceptablé¢aigh it can depend on the situation). The user

should be able to use the implementation by supplying ordypthin text of the object program. Therefore,
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fun tcVar  (e:Env) (n:Nat) : ([t:Typ](JV (e,n,t)) =
case n of
Z— (case e of ExtE e' t — [t=t)(VZ e’ 1))
| Sn —
(case e of ExtE e’ t 2 —
case (tcvar e’ n’) of
[rx:Typ]j2 — [t=rxX](IW e2 rx t2 n’ j2))

fun_typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,;st) =
case s of
El n—[t = NatT](UN e n)
| EVidx —
let [rt:Typliv = tcVar e idx
in [t=rt](  JV e idx rt jv)
| EL targ s2 —

let  [rt:Typ]i = (typeCheck ( Ext E e targ) s2)
in_ [t= ArrowT targ rt]( JL e targ rt s2 j)
| EAsy sp—

let [rt 1:Typli 1 = (typeCheck e s 1)
[t 2:Typli 2 = (typeCheck e s »)
in case rt 1 of
ArrowT tdom tcod —
[t=tcod]JA e s 1 sp tdom tcod j 1
(cast  [assert  rt p=tdom, fn_ (tTyp) —J(e,s.0), | )

Figure 2.7: The functiotypeCheck (without representation types)

the implementation needs to include at least a type chedlimgion. This function takes a representation
of a type-annotated program and constructs the proof ofppeogriate typing judgment, if it exists. We
might even want to implement type inference, which does eqaire type annotations on the input. Figure

24 presents a functidgpeCheck . This function is useful for illustrating a number of feataiof Meta-D:

Dependent sums. The type of the reSlHt of typeCheck is a dependent sum, written

[t:Typ] J(e,s,b) H This means that the result tfjpeCheck consists of anlg type, and a typing

judgment that proves that the argument expression hasdhtétydar type under a given type assignment.
Since proofs of judgments are built from sub-proofs of sypression judgments, ease construct

in(strong dependent sum elimination) is need to decortsineaesults of recursive calls tgpeCheck .

Equality types. The case for constructing proofs of application judgmehtgure[2ZY, linegsm) illus-
trates an interesting point. Building a proof for the judgtnaf the expressio(EA sl s2) firstinvolves

computing the proofs for the sub-terre$ ands2. These judgments assigh types(ArrowT tdom

4 In a pure setting (that is with no computational effects whaver) the result ofypeCheck should beoption ([t :
Typ] (3 (e,s,t) , since a particular term given tgpeCheck may not be well-typed. In the function given in this paper, we
omit theoption , to save on space (and rely on incomplete case expressitesad).

5A note on the notation: the dependent product tyfies: ;.72 are written agx:tl) —t2 in MetaD. Analogously, we shall
write dependent sum types using similar notation, reptatire parentheses with angle brackets. THs,: .72 is written as
[x:t1]t2
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tcod) andrt2 toexpressionsl ands2, respectively.

However, by definition of the inductive family, in order to build the proof of the larger application
judgmenttdom andrt2 must be the samg, type. The equality betweddom andrt2 must be known
statically, at type checking time of the functitypeCheck so that thd., judgment for the application can
be constructed. In particular, we must “cast”, for examfilem the type(J(e, s2,rt2)) to (J(e,
s2,tdom))

How can we do this? A standard way, in type theory, to deal witthlems like this is to introduce a
type family representing equality over particular valuSsich a type family may look something like this
in MetaD :

inductive EQ (a*1, x : a) : a —*]l =
EQRefl : (EQ x X)

Next, we define a function that can perfosabstitution of equals for equals:

fun eqForEq : (a:*1) (x,y : a) (EQ axy) (f:a ->*1) fx): fy =.

The functioneqForEq takes a proof that two values of typex andy, are equal. The next argument,
f, is a function describing a type in terms ofalueof typea. Next, a value of typ€f x) is taken, and

(sincex andy are equal) returns a value of tyffey)

One question remaining is how to construct the pQf a x y? This cannot be answered in general,
but for particular inductive types such as the data-tygp, representing., types, such proofs can be
constructed by inductively examining two terms, and conmgproofs of equalities of sub-terms to produce

proofs of equalities of larger terms:

fun isEqTyp : (x : Typ) (y : Typ) : (option (EQ Typ x Yy)) =
case x of
Nat T — (case y of NatT — (SOVE (EQ-Refl NatT))
| x — NONE)
| ( ArrowTl tl1 t2) —
(case y of Arrowl t3 t4 —
(case (isEqTyp t1 t3, isEqTyp t2 t4) of
(SOMVE pl, SOME p2) — ..
[ _ — NONB)
| x — NONE)

Assert/cast. In our presentation of Meta-D, we shall examine an alteveat) the style of equality de-
scribed above. We add two language constructs to Meta-Daieess this sort of constraint between values.

First, the expression of the forassert e 1=es introduces arequality judgment(EQ t e 1 es),
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between values of equality types. The typ@ t here isnot the inductive familyEQdefined above, al-
though it is designed to perform a similar role. Instead; ttéated as a primitive type, whose introduction
construct are thassert expressions.

An elimination construatast [e 1,T.e 2] isintroduced to perform casting based on an asserted equal-
ity. The typing rule forcast is as follows:

ke :EQritita THT:7— %1 They:(Tt)
chast[el,T, 62] : (T tQ)

CAST

Thecast expression takes three arguments: the first is the proofuddlgyg between two valuels and
to of typer; the second is a functidfi that compute a typel dependent on a value. Finally, it takes an
expression ofT t;) and converts it to an expression of ty(¥® ¢2).

Operationally, the expressi@ssert e 1=eo evaluates its two subexpressions and compares them for
equality. If they are indeed equal, computation proceddbloivever, the two values are not equal, the pro-
gram raises an exception and terminates. Note that thiegars to usassert only over types of values
thatcanbe compared for equality at runtime. This would includegetss, strings, various (ground) data-
types, but exclude functions, along the lines of autombyickerivedequality typesn Standard ML[[8D].

The cast construct makes sure that its equality judgment introdumedssert is strictly evaluated
(resulting either in an equality proof or in runtime err@)d if the equality check succeeds, acts simply as
an identity on the second argumest.

The assert/cast is intended primarily to serve as a convenient programmirggtsut and relieve
the user from the effort of explicitly constructing equaliroofs. It has no analog in type theory. The
programmer need not use it: one can always usé&®éke encoding of equality and construct equality
proofs by examining the terms involved inductively.

We examine the functiotypeCheck in some detail:

fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,;st) =
case s of

1. Constant case.We start with an integer constant expresdidnn . We know that the resulting
judgment has thel{y) typeNatT . Thus, we build a dependent sum “packaftesNatT](JN e n) ,
which has the (Meta-D) typi:Typ](J(e,s,t))

fun_ typeCheck (e:Env) (s:Exp) : ([t:TyplJ(e,s,t)) =
case s of
El n—[t = NatT](JN e n)
2. Variable case. Following the usual pattern, we will use an auxiliary functicvVar to construct
the proof a variable judgment, which can then be pluggedtimgroof for the variable-expression

judgment.
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fun tcvVar (e:Env) (n:Nat) : ([t:Typ](JV (e,n,t)) =
case n of
Z—(case e of ExtE et — [t=t( VZ e’ t))

| Sn — (case e of ExtEe' t » —

case (tcvar e’ n’) of

[rx:Typ]j2 —[t=rx]( IWe2 rx t2 n’ j2))

. Abstraction case. The expressiors is of the form( EL targ s2) , where thel, type targ
is the type of the function’s argument, and thg expressiors2 is the body of the\-abstraction.
Type checking proceeds by first extending the type assighenwiith the L, type of the function’s

argument, and computing the proof for the abstraction sin the extended type assignment.

The recursive call ttypeCheck returns a dependent sym:Typ]j . The variablat is bound

to the L type of the abstraction expression’s body. The varighlevhich has the (Meta-D) type
J(Ext e targ, s2, targ) , is bound to the corresponding proof of the typing judgment f
the abstraction body computed by the recursive catypeCheck . Finally, the type for the\-
abstraction is returned §&rrowT targ rt) , and combined with the abstraction judgment proof
(JL e targ rt s2 ))

fun typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t) =
case s of
EL targ s2 —
let [rt:Typ]j = (typeCheck ( Ext E e targ) s2)
in [t= Arrowl targ rt]( JL e targ rt s2 j)

. Application case. Starting with theL, application( EAsq s»), we first compute the judgment
proof and type for each of the sub-expressisgsandso. Next, we check that thel) type index
rt 1 computed for the expressia is indeed an arrow type with domatdom and codomain

tcod .

In order to build proof of the typing judgment for the entigpdication expression, we must ensure
that the type index of the judgment for the argument expoessp must be equal tecdom . To this
end, we useast to convertthe judgmenjp : J(e,s 2,1t 2))toJ(e,s p,tdom) which

is the type we need to construct the proof of the judgmentferentire application expression.

fun_typeCheck (e : Env) (s : Exp) : ([t : Typ] J(e,;st) =
case s of
EA s1 sp—
let [t 1:Typli 1 (typeCheck e s 1)
[rt 2:Typli 2 = (typeCheck e s »5)
in case rt 1 of

ArrowT tdom tcod —
[t=tcod](JA e s 1 S tdom tcod j 1
(cast [assert rt o=tdom, fn__ (tTyp) —J(es\t), | 2D)
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2.6 Representation Types

Another practical concern is that types that depend on galae lead to either undecidable or unsound type
checking in the meta-language. This happens when valu¢ainaliverging or side-effecting computations.
In this section we discuss how both of these concerns candresgkd in the context of Meta-D. Combining
effects with dependent types requires care. For examméypeCheck function is partial, because there
are many input terms which are just not well typed.in Such inputs taypeCheck would cause runtime
pattern match failures, or an equality assertion excepiiégamwould like Meta-D to continue to have side-
effects such as non-termination and exceptions. At the same dependently typed languages perform
computations during type checking (to determine the etyualitypes). If we allow effectful computations
to leak into the computations that are done during type dhggkthen we risk non-termination, or even
unsoundness, at type-checking time. Furthermore, it ieivecal desirable to preserve the notiompbése
distinctionbetween compile time and runtinie [17], where static (typeeking) computation and dynamic
computation (program execution) are as clearly separatpossible.

The basic approach we adopt to dealing with this problemadi¢ov types to only depend on other types,
and not values. But, disallowing all dependencies of typegadues would not allow us to express any of
the evaluation or type checking functions for the impleragon of Ly, since all of their types depend to

some degree on the value of its argument.

A standard solution to restoring some of the expressiveofedspendent types is to introduce a mech-
anism that allows only a limited kind of dependency betwealnes and types. This limited dependency
uses so-called singleton or representation tybed [58,/2%21826 [ 14D]. The basic idea is to allow types to
depend not on arbitrary expressions, but rather, just theegaf runtime computations. This is achieved

by a two-fold mechanism:

1. The language of types and kinds is sufficiently enrichedllimwv for defining a representation of
values at type level: the type language becomes in effecteeibol, but pure dependently typed

language.

The idea is that this type language contains not ¢ypesof runtime values, but also a logic that can
be used to describe their properties. This is done by thelatdripropositions-as-types” idea, except
that everything is lifted one level up: properties of types @epresented as (inductiiéhds while
proofs of those properties are lifted to the level of typessp&cial (inductive) kind is reserved to

represent types that classify runtime expressions.

2. A runtime, orcomputationalanguage is introduced “below” the pure type languagel[11\pre

importantly, values in the computational language are dypeiquely by their counterparts in the
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type language. In MetaD, we shall use the built-in t{fi® write such singleton types.

For example, the type of the runtime valtids written as thaype(R 1), wherel is atype of
kindInt . The valuel in the runtime language is the only member of such a type ¢hérename
singleton). When types are given to the functions at the edatfpnal level, their behavior must be

modeled at type level as well.
For example, the runtime function that adds 1 to an integethmafollowing type:

addOne : (n : Nat)(R n) -> (R (succ n))

2.6.1 Working with Representation Types

Now, we can rewrite our (pre-MetaD) interpreter so thatjfetdoes not depend on runtime values, which

may introduce effects into the type-checking phase. Anymatation in the type checking phase can now

be guaranteed to be completely effect-free. The run-ticheegaare now forced to have representation types

that reflect, in the world of values, the values of inductiueds.

Meta-D provides the programmer with the interface to regmétion types through two main mecha-

nisms:

1. A special type constru®is used to express representation type dependency.

For example, we can define an inductkied Nat

inductive _ Nat : = Z : Nat | S : Nat — Nat

Note that this definition is exactly the same as the one we bathé typeNat, except it is now

classified by*2 instead of1 . Elements oNat are nowtypesZ, (S 2) ,(S (S 2)) ,andsoon.

The type construdR takes an element of an inductively defined kind suchas, and forms a type
RS 72) : *1 .ThetypeR (S Z) refersto atype that has a unique inhabitant that is themnti

representation of the number 1.

. We write the unique value inhabiting the tyfle (S Z)) as(rep (S Z)) . In other words:
(rep (S 2):R_(52.

If one is to be able to analyze, at runtime, the elements opeesentation typ& n, an elimination
construct is required. In particular, this is done by a fofrnase analysis on typels 55,125, 147,1114,

26]:

tycase x by y of Ch xn—en
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A pattern(Cn xn) matches against a valueof typeK, whereK is some inductive kind, only if we

have provided a representation vajuef typeR(X) .

A pattern(Cn xpn) matches against a representation typef inductivekind K. However, since
we cannot allow computation at runtime to depend on typesc{wdre available statically), we must

also supply a runtime representation of the typ@e., a value of typ&(x) .

Inside the body of the case(), the expressiorep X n provides a representation value for the part

of the inductive constructor that, is bound to.

Let us consider a simple example. We well define inductivaelyaddition function that adds two
(singleton) naturals together. First note, however, thatder to give a type to this function, we must
produce an addition functicat the level of typeghe functionplus’ ). This is done using primitive
recursion or, as in the example below, a special syntactjardior catamorphisris
plus’ (m:Nat) (n:Nat) : Nat =

cata m : Nat of

Z—n
| Sm—-Sm

fun plus : (m:Nat) (m:R  _(m)) (n:Nat) (n:R ~(n) : R _(plus’ m n) =
tycase m by m’ of
Z—n
| Sp— (ep (S)) (plus p (rep __ p) n )

2.6.2 Tagless Interpreter with Representation Types

Figure[Z8 presents the implementation with represemtdyipes. Introducing this restriction on the type
system requires us to turn the definitionExp, Env, andTyp into definitions of kinds (again this is just a

change of one character in each definition):

type nat = [n:Nat](R _(n))
inductive Nat : 2 = Z :Nat| S : (Nat — Nat)

inductive Typ : *2 = ArrowT : Typ —-Typ—Typ | NatT : Typ

inductive Exp : *2 = El : Nat —Exp | EV : Nat —Exp
| EL : Typ —Exp—Exp | EA : Exp — Exp —EXxp

inductive Env : *2 = EnptyE : Env | EXtE : Env —Typ —Env

6A more general primitive recursion scheme can be implendeaden, for example, Cof|[6]
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Because these terms are now kinds, we cannot use generadioecin defining their interpretation.
Therefore, we use special primitive recursion (and catafmem) constructs provided by the type language

to define these interpretatiofis:

fun typEval (t:Typ) —*] =
cata_ tTyp of _
Nat T — nat
| CArTty tp) —(t 1—12)

fun envEval (e:Env) : *1 =
cata e:Env of
Enpt yE— unit
ExtE et t —(et,t)

Judgments, however, remain a type, of kidd The reason for this is that typing judgments are wsed
runtimeby the interpreter. It is important to note, however, thavudgments are a type indexed by other
types, not a dependent family indexed by values.

For the most part, the definition of judgments and the intgiion function do not change. We need to
change judgments in the case of natural numbers by augrgeh#m with a representation for the value

of that number. The constructdN now becomes
JN: (el : Env) —(n : Nat) —(R n) — J(el,El nNatT)

and the definition okval is changed accordingly. First, we define an auxiliary fumttnknat which
converts &R(n) forsomeNat n into the typenat which corresponds to the type to which object-language

integer expressions are mapped. This function is then eseahistruct an appropriate value for thid case:

fun_ mknat (n : Nat) (rmn : R(n)) : nat =
tycase n by rm of
Z — [n=zero](rep zero)

| Sn2—
case (mknat n2 (rep  n2)) of _
[n2:Nat]rn2’ — [n=(S n2)](rep(S) rn2’)

fun eval (e : Env) (rho: envEval €) (s : Exp) (t : Typ)
(G : Jd(e,s,t) : (typkval t) =

"These constructs are similar to primitive recursive scharttaat the Coq theorem prover derives for inductively defitype
families — this technique can be readily reused in Meta-Berfhtively, the functions can be defined using recursiond gtermination
check (as, for example, in Alfd_152]) conducted before thections are admitted by the system. The latter is currehigydase,
although our implementation of the termination check ishattime, based on a rather simple syntactic criterion.
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case | of
JN el nl rnl —mknat n1 rnl

Note that even though modifiezlal uses a helper functiommknat ) to convert a representation of a
natural type to a natural number, in practice, we see no fueddal reason to distinguish the two. Iden-
tifying them, however, requires the addition of some sgettipport for syntactic sugar for this particular
representation type.

The remainder of the functicval , together with other parts of the implementation usingespntation
types is given in Figure2.8. It may be surprising to note diher than the changes mentioned above, there
are no further modification to the text of the programs thatdseto be made to the ones presented in the

pure non-representation type setting.

2.6.3 typeCheck with Representation Types

The full definition oftypeCheck is given at the bottom of Figufe2.8.

Let us first examine the type signature of the new versiagméCheck .

fun typeCheck (e : Env) (re: R(e))
(s : Exp) (rs: R(s)) : (It : Typ] (R(t),I(e,s.t) = . . .

Three things are worth noting:

1. The function still returns a sum result consisting of ajeoblanguage type and a proof of the judg-
ment that the argument expression has that type. HowevesubeTyp has been promoted to an
inductivekind, the sum returned is more like an existential type than am#gratly typed strong sum.

In Meta-D notation, both are written the same way.

2. Note also, that the result, in addition to the proof of thégment, contains a runtime representa-
tion of the object-language typRB(t) , wheret is the resulting object-language type. This is nec-
essary in order to compare the object-language types eztibn different recursive invocations of

typeCheck since thaycase constructrequires bothtaand aR(t) to compare types at runtime.

3. Similarly, the arguments typeCheck are not onlyEnvs andExps, but their respective represen-
tations. Again, this is necessary because oftyisase construct cannot examine the structure of

the argument expressions or type assignments withoutriingime representation.
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2.7 Conclusion

In this chapter we have shown how a dependently typed pragmgilanguage can be used to express
a staged interpreter that completely circumvents the needuhtime tagging and untagging operations
associated with universal datatypes. In doing so we havaigiged two key practical issues that arise
when trying to develop staged interpreters in a dependéyyld language. First, the need for functions
that construct the proofs of typing judgments that the prietation functiorshouldbe defined over. And
second, the need for representation types to avoid paijtitie type language with the impure terms of the
computational language.

To demonstrate that staging constructs and dependentdgpdse safely combined, in the next chapter
we shall formally develop a multi-stage computational laage typed by Shao, Saha, Trifonov, and Pa-
paspyrou’s TL systeni [116]. This allows us to prove type tyaife a fairly straightforward manner, and
without having to duplicate the work done for the TL system.

A practical concern about using dependent types for writitgrpreters is that such systems do not have

decidable typénference which some view as a highly-valued feature for any typedleage.

In terms of programming, we have first started witB@gimplementation of a tagless interpreter. Next,
we explored a dependently type programming language. We wgeided by the idea of designing the
meta-language that would be more accessible to a prograthareto a logician. We did not find that the
explicit type annotations and new constructs were an exeebarden, and some simple tricks in the im-
plementation of the meta-language could be enough to aweideed for many such redundant annotations.
However, representation types do seem to complicate ogramms somewhat.

In later chapters, we shall explore how much of the style eftéigless interpreter implementation could

be implemented in a more main-stream setting of Haskell.
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ero : nat | succ : (nat —nat)

inductive nat : *1 = z
= Z : Nat | S : (Nat — Nat)

inductive Nat : *2
inductive Typ : *2 = Arrowl : Typ —=Typ—Typ | NatT : Typ

inductive Exp : *2 = El : Nat —Exp | EV : Nat —Exp
| EL : Typ —Exp—Exp | EA : Exp —Exp —Exp

inductive Env : *2 = EnptyE : Env | EXtE : Env —Typ —Env

inductive J : (Env, Exp, Typ) —*1 =
JN :(el : Env) —(n:Nat) —(n : R n) —J(el,El nNatT)
| JV (el : Env) —(t1:Typ) —JI(ExtE el t1,EV Zt1)
| JW:el : Env) —(1: Typ) —(t2 : Typ) —(i : Nat) —
J(el,EV itl) — J(ExtE el t2,EV (S i), t1)
| JL (el : Env) —({1: Typ) —(t2: Typ) —(s2: Exp) —

J(EXtE el t1,s2,t2) —J(el,EL t1 s2,ArrowT t1 t2)
| JA (e : Env) —(sl : Exp) —(s2 : Exp) —(@tl: Typ) —(2: Typ) —
J(e,s1,ArrowT t1 t2) — J(e,s2,t1) —J(e,EA sl s2,t2)

val typEval : Typ — *1 =
cata Typnat (fn__c:* —fn d:*1 —(c —d))

val envEval : Env @ — *1 =
cata Envunit (fln__ r:*1 —fn t:*1 —(rt))

fun cast (n : Nat) (rn : R(n)) : nat = tycase n by m of Z—zero

| S n2 —succ (cast n2 (rep__ n2))
fun eval (e : Env) (rho: envEval e) (s : Exp) (t : Typ) (i : J(e,s,t)) : (typEval t) =
case j of

JN el nl rml —cast nl rnl
| JV el t1 —#2(rho)
| JW el t1 t2ij1 —eval el (#1(rho)) (EV i) t1 j1
| JL eel etl et2 es2 ejl —fn vi(typEval etl) — (eval (ExtE eel etl) (rho,v) es2 et2 ejl)
| JAesls2tlt2ijlj2 — (eval e rho s1 (ArrowT t1 t2) j1) (eval e rho s2 t1 j2)

fun_typeCheck (e : Env) (re: R(e)) (s : Exp) (rs: R(s)) : ([t : Typ] ( R(1),J(e,s,t)) =
tycase s by rs of

El n—[t = NatT] (NatT’,(JN e n (rep n)))
| EVn— o

(tycase n by (rep n) of Z—(tycase e by re of ExtE ee t2 —[t = t2](rep t2, JV ee t2))
T | Sn—(tycase e by re of ExtE (e2) (t2) — -
((fn x : ([tTyp] (R(), J(€2,EV n,p)) —
case x of [rx : Typ]j2 —(t = rx]
#1 j2, IW e2 rx t2 n (#2 j2)))
(typeCheck e2 (rep e2) (EV n) (rep (EV n)))))

| EL targ s2 —
((n_ x : ([t : Typl(R(),(J(EXE e targ,s2,t)))) =>
case x of [t: Typ] j2 —

[t = ArrowT targ t] (rep (ArrowT targ (#1 t))), (JL e targ t s2 (#2 j2)) )
(typeCheck (ExtE e targ) (rep (EXtE e targ)) s2 (rep s2)))
| EA sl s2 — - -
((fn__ x1 : [t1 : Typ](R(t1),(J(e,s1,t1))) —(fn x2 : [t2 : Typ](R(t2),(J(e,s2,t2))) —

case x1 of [t1 : Typ]j1 —case x2 of [t2 : Typ]2 —
(tycase t1 by (#1 (j1)) of
ArrowT tdom tcod —
[t = tcod] (rep tcod, (JA e sl s2 tdom tcod jl
T (cast_ [assert  t2=tdom,J(e,s,tdom),j2]))) end)))
(typeCheck e (rep e) sl (rep_ sl)) (typeCheck e (rep ) s2 (rep_ s2)))

Figure 2.8: Tagless interpreter with representation typ&setaD




Chapter 3

Staging and Dependent Types: Technical
Results

3.1 Introduction

This chaptg is intended as a technical prolegomenon to the explorationeta-theoretic properties of
the meta-language MetaD used in the previous chapter. Licpiar, we are concerned with type safety
properties meta-languages such as the language Meta-DreEbkt we report here is type safety for a
formalized core subset of Meta-D. This result shows thatirstdige programming constructs can be safely

used, even when integrated with a sophisticated depengensystem such as that of TIL [116].

Let us first explain what is meant by “a formalized core sulpééileta-D.” Formalizing a rather large
programming language in which our examples in Chdpter 2 beee written seems somewhat impractical:
many details would overwhelm our ability to (a) manipuldte tormal constructs effectively; and (b) clearly
demonstrate the most essential features that we are tyistgdy. Thus, we shall cut down the formalism

to its bare essentials, illustrating the following points:

1. The meta-language we present includes singleton (repiagton) types. Instead of general inductive
family definitions, the language has a couple of “built-ifrigleton types such as natural numbers
and booleans. Later, we shall expound on how the formaheat can be extended to more complex

data-types.

2. The meta-language is designed to supgtagingwith code-brackets and escape. With this we intend

to show that staging can safely interact with other featureker consideration.

3. We shall formalize thassert/cast expressions used in Chapier]2.6 and show that they, too, can

be integrated into a meta-language in a type-safe way.

1This chapter is based on previously published materiall [TOZ].
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Another interesting feature of the presentation is the fisieeoT L [116] framework in our formal devel-
opment. Essentially, the idea is to obtain a powerful typseay for the programming language by simply
reusing a general theoretical framework for such langudgesloped by Shaet al as a part of the FLINT

project. This allows us to reuse many of their technicalltesuithout having to prove them from scratch.

3.2 The Language\y

In this section we will define and discuss the Ianguag@H which is a formalization of the ideas described
above. First, we review some of the properties and defindgfdhe TL framework which is used to define
Aro. Second, we define the syntax and static semantics of thedaeg Third, we define a small-step

semantics oAy, and, finally, prove the type safety 8f.

3.2.1 Review: TL

TL is a general framework intended for designing sophigtidayped intermediate languages for compil-

ers [116]. The basic architecture of the system is as follows

1. Differentcomputational languagesan be defined. These are typed programming languages or
calculi intended for writing executable programs. As suittey can have effects such as non-
termination, state and so on. However, the types for thesgpuatational languages are provided
by the commorntype languagd L. Several computational languages are presented by &haloln

this chapter we implement our own computational language thie features enumerated above.

2. The type language TL is a typed specification languageérspirit of the Calculus of Inductive
Constructions. This language supports dependent typgisehorder kinds and inductive families. It

is intended for two purposes:

(a) Todescribe the behaviors of computational/runtimgmms in a pure, logical way, to represent
logical properties of these programs and encode the prédisse properties in a type-theoretic
way.

(b) A set of the computational language types is defined agdurctive kind in TL. Many different
computational languages share TL as their type/speciitéinguage. The advantages of this

are again twofold:

2A brief note on the namgg: Ago (pronunced “lambda H-circle”) is derived from the name @& dalculus) g7, of uncertain
provenance defined by Shabal. [L1€] The circle has been appended to the name to indicatddiition of staging constructs, similar
to Davies’ naming of the calculusO [29]).
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i. Many computational languages can be put together intoglesimeta-theoretical frame-
work, where translation between them can be expressed adi@dt In particular trans-
formations from one language into another can be writtenway that, in some clearly
defined sense, preserves (or transforms) types betweer]iiéimn

ii. TL promotes reuse in defining and proving properties @lsomputational language, since
meta-theoretical properties of TL are established once@mall. Such properties include
“subject reduction, strong normalization, Church-Ro¢ard confluence), and consistency

of the underlying logic”[[1165].

The definitions and basic properties of TL that we reuse hexexaailable in the Shaet al technical
report [115]. Using the TL framework, we can arrive at an adageous division of labor. In this chapter,
we formally define and prove properties of a new computatiamguagel(ll), while most theoretical work

for the type languagé€l(2) can be simply reused from existtagalture.

3.2.2 The language\y

We follow the same approach used by the developers of TL, aitd & computation languagey -~ that

uses TL as its type language. Integrating our formalizaitibo the TL framework gives us significant

practical advantages in formal developmenhgf:

1. Important meta-theoretic properties of the type languag use, TL, have already been proved[116].
Since we do not change anything about the type languagé idlethese results (e.g., the Church-
Rosser property of the type language, decidable equalitiypa terms) are easily reused in our

proofs.

2. Ao is based on the computational language[L16]. We have tried to make the difference between
these two languages as small as possible (essentiallthgistddition of staging constructs). As a
result, the proof of type safety ofy is very similar to the type safety proof fory. Again, we
were able to reuse certain lemmata and techniques develbyp®ldao and others fory in our own

proof.

The Syntax and Static Semantics oA

Figure[31 defines.;» computational types, and is the first step needed to inegnat, into the TL
framework. The set of types for the computational languaggmply the inductive Tlkind Q©, which is

comprised of the following:
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inductive Nat : Kind := 0,1,2,...
inductive Bool : Kind ::= true | false
inductive Q© : Kind == snat : Nat — QO
|  sbool : Bool — QO
| — 100 - Q0 - 0O
| tup : Nat — (Nat — QO) — QO
| Vi : 1Tk : Kind.(k — QO) — QO
| 3k : 1Tk : Kind.(k — QO) — QO
|  Vks : Tk : KScheme.(k — Q©) — QO
| 3Jks : Tk : KScheme.(k — Q©) — QO
| O 100 — QO
| EQ : Nat — Nat — QO

Natural number operators

@ : Nat — Nat — Nat
Se{+, - x,...}
©® : Nat — Nat — Bool
©®ei{,>=..}

Figure 3.1: The TL definition of the types A

1. Singleton typesbool andsint. These types illustrate the central conceptin the type sysfe\ .

They take an argument of the TL inductive kit (or Bool) a Ax type (of the inductive kind

00) that classifiesndividual natural number (or boolean) valuasthe computational language.

We shall write a hat over natural number literals in the computational langualgere necessary to
disambiguate between them and TL natural numbers of Kiatd For example, an integer constant
100 in the computational language has the typeat 100). Similarly, the) -, expressiori 1 has
the type(snat 1 + 1) which is equal (in TL) to the typésnat 2).

. Arrow types. These are simply the types of functionsig. For example, the computational-

language addition operator has the following arrow typeafoym, n : Nat:

F : (snat m) — (snat n) — (snat (m +n))

. Tuple types.Tuple types are represented by two pieces of informatiost, fthe natural number
argument representing the size of the tuple, and, seconthcidn that, given a natural numbgr
returns the\y type of thei-th component of the tuple. For example, the pair tyjpe B would be
represented by

(tup 2 (An.casenof0 - A|1— B |- — Va.a))
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4. Universal and existential typesUniversal and existential types are essentiahjp. They can

quantify over TL inductive kinds, such ast, including the kind© itself.

We use the syntactic following syntactic sugar for writingmersals and existentials , omitting the
sorts where it is clear from the context:

VsX:A.B =V, AMX:AB)

s X:AB =3, A(MX:AB)

A brief note on terminology: the soKind is a (in TL terminology)kind schemawhich classifies
kinds. The sorKScheme is a singleton sort that classifies kind schemas. The reasdhi§ termi-
nology is that in TL all levels are lifted up by one: types pthg role of programs/proofs, kinds play

the role of types/propositions, and kind schemas play theeafkinds.

The universal quantifier allows us to form types that are palgphic insingleton valuessuch as
the type(VX : Nat. (snat X) — (snat X)), which is the type of the identity function over natural
number values i . It also allows us to use a standard notion of polymorphison eikample, the
type (VX : QO.X — X) is the type of the polymorphic identity function Xy .

Existential quantifiers are very important as well. Reaallihat inA - each natural number has a
different type, we can use existential types to representtbre usual type dadll natural numbers

For example, the following definition is such a type of allurat numbers:
CompNat : Q© = 3n : Nat. snatn

. Similarly, we can "lift” the addition operation to work ohé CompNat type as follows:

plus : CompNat — CompNat — CompNat
plus = Az : CompNat. A\y : CompNat.

open x as M,m inopenyas N,nin (r = M + N, m+n : (snat r))

The functionplus works by first opening its arguments, adding them, and pactiiem up into a
new existential package. Note that two addition operataresused: one at the type levet) and

one and the computational level).

5. Code type.Code type is the type of (homogeneous) object program. Itadaied on the circle
modality of Davies[[29]. Intuitively the typ&O(snat 1)) is the type of computational language

program that, when executed, would yield the result 1.

6. Equality type.We will also add an equality type over natural number84o. Intuitively EQ m n
is a type of proofs that, equalsn. We use these types to type thesert/cast constructs in the

computational language.
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Level-indexed syntax. The syntax of the computational language. is given in Figur§312. Instead of

a single inductive set of expressions, we give a family of sétexpressions. This family is indexed by a
natural number representing tleel of the expression. A set of values is defined similarly. Taghhique

of presenting syntax of staged language, cdieél-indexed familief29,[128] has become a standard tool
for defining reduction (and small-step) semantics of sté@eguages. Intuitively, the level-indexed families
are designed to prevent certain unsafe operations. Théyfdifliis defined to exclude top-level escapes,
for example. Thus, the reductions such3aare restricted only t&° expressions; code operations such as
escapesan be performed only oB' expressions. Without these restrictions, the reductiomaseics of
staged languages is unsound [129].

The language\r contains recursion and staging constructs. It containgiedefined representation
types: naturals and booleans. Tiheconstruct, as iy [I1€], provides for propagating proof information
into branches (analogous to theease construct of MetaD); full implementation of inductive digtees
in the style of MetaD is left for future work. Since arbitratgpendent types are prohibitedip o, we use
universal and existential quantification to express depraigs of values on types and kinds. For example,

the identity function on naturals is expressed i~ as follows:

(An : Nat. Az : (snatn).z) : Vn : Nat. (Snatn) — snatn

In Ago, we also formalize thessert/cast construct, which requires extending the language of
computational types with equality judgment types. Sinllawe add the appropriate constructs to the

syntax ofAg .

Remark 1 (Level-indexed syntactic families) 1. Vn € N.E" C E"Hl,

2.¥neNn>1=V"=FE"1

Proor. Proof of [A) is constructed easily by induction on the judgteec E™. Similarly for {@). O

Typing Judgments. The typing judgment oz~ (Figure[33) has the form\;T" " ¢ : A. It has two

type assignments

1. A € Sequence (X x N x A) is a type assignment that maps TL type variables to TL exjmess
Also, each mapping carries a natural number indicatindethel at which the variable is bound. A
level-annotation erasure function|,() is used to converAg typing assignmenta into a form
required by the typing judgment of TIL[1116]. This interfateeh allows us to reuse the original TL
typing judgment in the definition of the typing judgment fof .
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type variables of TL

type expressions of TL

variables of\

:C|n|tt|ff|f0|fiX:v:A.f0|e |e[]|{X Ay, el Ag)

opene’as X,zine’ | (ef,...e% 1) |sel[A](e),ed) | ef @ eI

if [Al,AQ](eo,Xl.e(l),XQ.eg) | <€1

asserte : A; =eJ: Ay | cast (e}, A, ¢e9)

AX i Ae™ | Az : Ae”

x| m |t ff| foF | fixz: Ao ent ent | ent 4]

(X = Ay,e™ 1 Ag) | open et as X,z in et

(e "ot [ el LAIe]t 5*) | e @ et | (et | e

if [Al,Ag](€n+ X1. €1+ Xo. 62 )

assertef : Ay =ej : A | cast (ef ,A es)

w70 fixa: A0 | (X = Ar,o0: Ao} | (00,08, | (1)

assertv’: A=":B

x| n|tt]ff] fol |fixe: A fop | vl ot |0l [A ]|[X Ap,vl: Ag)

open vy as X,z inv! | (vd,...,0l,_;) | sel[4;1](v!,nt)

vt @ ol |if [Ar, A2](v!, X1.0f, Xovd) | (v?)

x| m|tt]ff| fol |fixz: A fop | onF2 0?2 [0 FHA] | (X = Ap, 0" T2 0 Ag)

open v™ 2 as X,z in v™+? | (vf 2 02 | sel [A] (v T2, nH2)
n+2 @anrQ | if [Al AQ]( n+2 Xl vn+2 XQ vn+2) | < n+3> | ~vn+1
Azt Av™ | AX A fon

o
I

0 e VO

eVl

2 e Yyt

fom o

Figure 3.2: Stratified syntax ofg

2. T' € Sequence (W x N x A) is a type assignment that mapgvariables to their types. Again,
each mapping is annotated by the natural number repregehérevel at which the variable is bound.
Intuitively, a type assignmeiit is well-formed (writtenA +" T) if for each(z,n, A) € T', we have
Al FA:QO,

The type judgments are indexed by a natural number repiegeht level at which the typing is per-
formed. When typing an expression surrounded by the coaééts, this number is incremented; similarly,

when typing an escaped expression, the number is decrednente

In what follows we shall examine the syntax df;~ terms from Figuré3]2. We will introduce each
kind of term, and present its typing rule. First, note tharéhare two sets of object-level variables used in

Figure{3.P anf3 4:

1. A setX type variables. This set ranges over TL types. Individuakdes are written aX, v, .. ..
These are basically type variables in the System F and othgmprphicA-calculi.

2. AsetW of Agpvariablesy, y, . . . that range ovel ;- values.

Also, we will use meta-variabld, B, . . . to range over type expressions (i.e., expressions of TL).
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1. Variable expressiong ::= z | ---. The typing rule for variables is a rather standard comimnat
of features of\ g [[L16] enriched by the MetaML-style level annotations. Tasticular formulation
supports cross-stage persistence by stating that therdéatalevelm of a variable’s use need not
be exactly the same as that of its usea variable declared at an earlier stage can be used at a later
stage. Changing th€ into = would give a system without cross-stage persistence simoildnat of

O [29], and would not fundamentally change our results.

AF'T (z:A™) el m<n

A;TFrx: A var

2. Constantse ::=n | tt | ff | - - -. The standard natural number constants, as well as Booteestants
are included in the language. Their typing rules are intergsa Boolean or an integer constant has

asbool (or sint) type directly describing it:

AF'T me{0,1,2,---}

NatConst
A;TE?m: (snat m)

AF"T | AN IFal
BoolT! BoolF
A;T B tt: (sbool True) oorirue A;T Bn ff : (sbool False) ootraise

3. Function and universal abstractions:

e u=fleelerex|e[A]] -

f s=AX:Ae|Xx:Ae

Functions bind\yvariables, while type abstractions bind TL variables. ‘Bhame, symmetrically,

two application forms, one for functions, and the other jquet abstractions.

Unlike simply typed\-calculus, these rules have some important side conditions

e The A-abstraction rule has a requirement that the explicit typegiven to the variable is an
QOtype. This is done by invoking the typing judgment of TA}, - A; : QO.
¢ In the typing rule for the type abstraction, the type annoteis required to be of one of the

sortsof TL: A|,F B : s. The same condition is imposed by type application as well.

¢ Note that the type variable environment restrictidlp, is used to convert the type environment

A into a form that the typing judgment of TL can accept.

A;Fl—"el 2A1—>A2
Al Ay QO A;I‘,x:A’fl—"e:AgA AT R eqt Ay

Ab Al
A;T E7 (/\$ZA1.€)2A1—>A2 S AT Frepex: As PP
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Al,F B:s Al,-A:B
AX:B"wTHF'f: A b AT HF'e: VX :B.As
(AX :B.f):VsX : B.ATA S AT Er e[A] 1 Ag[X = A]TApp

4. Existential expressions. Existential types are creasddg a(X = Aj,e : As) expressions with

create an object of typ@X.A,. The corresponding elimination construcbisen e; as X, x in ez

which deconstructs existential objects.

e u=(X=A;,e: A))|opene;as X,xines|---

Typing rules for existential types are given below. Note tha same side conditions apply as for

universal quantification.

Al,F A B AT HF'e:3,X' : B.A;
Al,F B :s Al Ay - QO
AT e A[X = A4] A, X :B"Tx: AP X = X]|F"eq: A

Unpack

Pack .
AT (X =A5,¢:4):8.X:BA T ATr" (opene, as X,zines) : Az
5. Fixpoint definitions
e u=fixx:Af]---

The fixpoint construct allows for recursive definitions. Ty offix is syntactically restricted to

function or type abstraction, since the language is intditdde call-by-value.

Al,F A QO
ATy A"E™ f 2 A

- Fix

AT (fixe s Af) - A

6. Tuples. The tuple formation expression is the fairly demd ey, . . ., e,,).

e u=(eo,...,en) | sel[A(er,e2) | -

0<i<mA;TH" ¢ : A;

AT E" (eg, ...y em—1) : tup m (nth [Ay, .. -’Am—l])Tuple

The elimination construct is a little less standard. It takeee arguments:

1. The typeA, which encodes the proof that the index being projectedsstlean the size of the tuple.
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. The tuple expression itself.

. The index of the element of the tuple we are trying to pitojec

A;T F"eq : (tup As B)
A;T F" ey : snat Ag
AlpF A LT AyAs

A;T Hm sel [Al(er, eq) : (B As)

. Arithmetical expressions. Assorted arithmetical, canigpn and other primitive operators are

Select

present wholesale as:

e n=e1Pex|eg@ey|--- whered e {+,—,%,...},0e{<,>=..}
@ : Nat — Nat — Nat © : Nat — Nat — Bool
A;TF" ey : snat A A;T'F" ey :snat Ay
A;T F" ey : snat Ag ) A;T F" ey : snat As )
= Arith = Arith2
A,F Fn (61@62) : (Snat (A1 D AQ)) A,F Fn (61@62) : (SbOOl (Al © AQ))

. Conditional expressions.
e u=Iif [Al,Ag](e,Xl.el,Xg.eg) | T

The conditionals are again rather less conventional. litiaddo the discriminated boolean expres-
sione, it takes two type arguments; and As, whereA; is a proposition over booleans at type level.
The second one is the proof dfi A5. In each of the branches of the conditional a type variable is

used to which the proad; true (resp.A; false) is bound and thus available in the body of branch.

Al,+ B : Bool — Kind Al A (B Aj)
Al A - QO A;T F™ e: (sbool Aj)
A, Xy (Btrue);T'F" ey : Ay A, Xy : (Bfalse)”; T F" ey : As

C
AT P (T [B, Al(e, X1.c1, Xa.62)) : Aa Cond

. Explicit staging constructs. Brackets create a pieceodégcwhile escapes splice in a piece of code
into a larger code context:

e n=(e)| el

A;I‘l—"+1e:AB ) A;I‘l—"e:OA:
ATF () OA K ATt =e, 4 02Pe
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7. Finally there are assert/cast constructs that are usaahgiruct/discharge equality proofs.

e u=asserte;: A=ey: B|cast(e;,B,eq) |-
A;T " e : snat Ay A;TH"e: (ID A B)
A;T F" ey s sSnat As A;T F™ eq : (snat A)
Asrt Cast
A;THm asserte; : A =ep: As : (ID Ay As) A;T k7 cast (eq, B, es) : (snat B)

Ol =)

A7X:Am|n — A|n,XA m:n.
Al otherwise

0 iy

T,z AT =Ttz A

O =
(A X : AN = At X Anf?

Figure 3.3: Typing restriction and type assignment proooti

3.3 Semantics

The semantics we shall consider here is the small step seEméDefinition[2 and FigurE_3.5). The small

step semantics depends on the notion of reductions (Defilllj which relates valid redexes to their re-
spective contractums. The small step semantics is exprasse level-indexed family of relations between
Auo terms (DefinitiorR) i.e., it describes the single-step-bghvalue evaluation strategy, at a particular

level, with respect to the notions of reduction.

Definition 1 (Reductions) The notions of reduction ing~ are expressed by the relatior defined in
Figure[3.3.

Definition 2 (Small-step semantics)The small step semantics bf; is defined in Figur€3]5 as a rela-
0 0
. n € — ey . . C o 1
tion_ — _ C E™ x E™. Therule 0 4 S intended to omit the reduction(v') — v, since the
61 L 62

levels are not correct for the redex. Rather, a separate isigEided to——.

In terms of levels, the reduction relations can be divided three groups:
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AF'T (z:A™) el m<n AF"T OK AF"T OK AF"T OK
AT A A;T'F*m:snatm A;I'F7tt: sbool True A, T F~ ff : sbool False
Al A: QO A;TH e1: A — Ay

Ak A1 : QO AT,z : AT F" e Ay AT eg: Ay

ATz A" f: A
A;T e ex @ As

A;T R (fixz: Af) + A AT (Ax s Are) : Ar — Az

Al;F B:s Al.-A: B
AX:B"TH'"f: A ATH"e:V,X : B.As ATH'T e A ATH'e: DA
A;THY (AX : B.f) : VoX : BA AT E7e[A] : Ax[X := A] A;TE? (e): QA A;TEnHL "e: A
Al A: B
A;T F" ey : snat A Al-B:s

A;THE" e A[X = A4
AT R (X =A,e: A): 3. X B.A
A; I'F"eq: tUp A:; B
A;TF" ex : snat As
A|7LF A LT Az Ag
A; T sel [A](er, ez) : B Az

A;T E" eq : snat As
A; '™ e; @ es : sSnat (AléAz)

ATHF"e:3, X' : B.Ay
Al Ag : QO
AX BT z: A X = X]F" es: Az
- X €A
A;T'Fr opene; as X,x inez : As

Alnt B : Bool — Kind A;T F" e : shool A3
Al.;- A: B As A, X :Btrue;T'F ey 1 As
Ak Az : QO A, X, : Bfalse;T'Fes: Ao 0<i<m.ATF e :A;

A;F Fnoif [B,A](e,Xl.el,Xg.eg) : As A;F Fn (60, .. .,€m71) : tup m (nth [Ao, .. .,Am71])

Al =As AlFA2:QC0 AT Fe:snatA A;T " ey : snatB

AT e: Ay =
AT Hre: As A;T'Fm asserte; : A=e2:B:IDAB

A;THFY e :IDAB A;T'E" ep : snatd
A;T - cast (e1, B, ez) : snatB

Figure 3.4: Type system ofx

1. Most active reduction steps, such as beta and delta iedscbccur at level 0)—@)). The rule for
bracketed expressions forces the reduction of the expregsside the brackets to be reduced at a

n+1
€1 —— €2

higher level: ——.
(e1) — (e2)

2. Atlevel 1 (L>), escapes are performeds————.

'“Ul — ’Ul
3. At leveln > 2 expressions are simply rebuilt. Escaped expressions dueed at a lower level,

n+1
€1 —— €2

~ 2 ~
entl ,7i> e

Definition 3 (Termination) Lete € E™ be an expression.

n

1. Terminationee " iff v e V*.er— v

2. Non-terminatione {}" iff Ve'.e — ¢/ = Je”.¢/ — €.
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0 0 n+1 ntl n41 n n. o n n n.o.n n, " _n
e} — ey er T FS el e} —— e} e} — eh el Vel
0,9, 60 ~(pl) i 1 g™t P apentl el el s el el v eg o v el el [A] — eD[A]
e — ej (vl) — v x.ef — Azx.ej 1 €2 3 €2 1 2 1 2
. ntl .p n +1 n+l g n+1
jn+l j2n+ e;z e;l e;z+l eg+l €1l+1 e;t+1

fixz : AP B fixg s AP (X = Aref 1 Ag) o (X = Arel s Ao) (entl) W (ep ) mentl PER - on

1
en L en 6;+1 n+t 6§+1
- B - - - 1 .
open e} as X,z in e — open e as X,z ine open v}t as X,z in el 5 open v as X, @ in e

n
e — e

if [B, Al(em, X1.e}, Xa.e?) = if [B, A](e, X1.e}, X2.€})

n
3

n+1
6;L+1 6§+1

if [B, AJ(vn+1, Xq.eP 1, Xo.e2t) P if (B, AJ(vn 1, Xyl T, Xp el tY)

n+1
e;+1 e§+1

if [B, AJ(vn+1, X107t Xo.e2 T B i (B, AJ(vn 1, Xpof Y Xo.el T

n n n n  n n
€1 €2 €1 €2

sel [A] (e}, eB) — sel [A](eF, e}) sel [A](vm,e}) — sel [A](v™, e})

1
f{l+1 n+ f2n+1 en Ly o/
T ™
AX Bt B AX  Bptt (0ol st e s (0,0l e L en)
el s e el s el
assertel : A=el : B —- assert ef":A=el: B assertvy : A=el : B — assert vl A=el": B

n n m
€1 > €1

cast (e}, B, ez) —— cast (e}, B, e2)

Figure 3.5: Small step semantics)of

A Note onassert/cast The construcassert e; : A = ey : B introduces a term of equality type
ID A B provided thate; ande, are A and B snats, respectively. The semanticsagsert is perhaps
the most difficult one to understand: there is only one fornasdert value,assertv : A = v : B,
i.e., only that where its argument values are equal. Otlsenwi the two values are not equal, the assert
expression reduces to the non-terminating expresQigrn g. H This is done in order to preserve the
progress property, i.e., even if the asserted values arequatl, the system will not get stuck: rather failure
of assertion is modeled by non-termination as embodied &ptterm. (This should not be confused with
the name of\ ;7 typesQ©.)

Similarly, the semantics afast (e1, B, e2) must first evaluate its first argument (which is presumed

to be anassert ). Only if a value is obtained (i.e., assertion has not fgilékde reduction rule simply

eliminates the cast and proceeds$o

SIncidentally, this is why the types must be carried with as$e order to instantiate th@ expression to the appropriate type.
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Az : A.e%) v — ez ="

(AX : B.f9)[A] — fOIX := 4]

sel [A1]((vY,...,v2),m) — vy ifm <n

open (X; = A;,0% : Ay)as X,zine® — eV[X = Ay][z := "]
(fixx : A.f0) 00 — fOlz = fixz : A.f0] °
(fixx : A.f0)[Ag) — fOx = fixz : A.f0] [A2]
maon — mén

if [B, A](tL X1.€17X2.€2) — el[Xl = A]

if [B, A](ff, X1.81,X2.62) — 62[X2 = A]

(') ol

assertv): A=19:B — Qp a g ifv) # 08

cast (v°, B, e%) — e

Qa=(fixf:()—Ax:0-fy) ()

Figure 3.6: Reductions ofy

3.4 Properties ofA o

In this section we will sketch out and develop the proof ofrien technical result we report here, the type
safety ofQ© (Theorenfll). For this proof, we adapt a standard syntaatimigues of Wright and Felleisen
[44].

Theorem 1 (Type safety)If A; T+ F" ™ : A thene —" v™, andA, T+ F* v : A, ore 1.
PROOF. First, we establish the subject reduction property of tileictions ofA ;. (Lemmé&®). This can
easily be generalized to the subject-reduction of the satefl reduction relation. Secondly, we establish

the progress property of the small-step reduction relati@mmall). Type safety property follows quite
easily from these [145]]

In proofs of critical lemmas, we shall need a property of TlelfRarkd2) typing judgments observed by
Shao&al. [115

Remark 2 (Judgment normal forms [116]) Due to transitivity of conversion, any derivation &fI" "
e : A can be converted into a normal form such that

1. The root node of the derivation is a CONV rule.
2. lts first derivation ends with a rule other than CONV.

3. All of whose term derivations are in the normal form.

4We omit the proof (by transitivity of=g,,, of TL and induction on the structure of typing judgments).



70

Lemma 1 (Progress)If A;T't " e : A, thene™ € V™ or Je’.e — €.

PROOF. Proofis by structural induction on the judgment E™, and then by examination of cases on the

typing judgmentA; T " e : A. We show some of the relevant cases.

1. Variable case¢™ = x. There are two cases on

(@) Casen = 0. If n = 0, then—=(A; T+ 0 2 : A), since the levels of all variables in* are

greater than 0.

(b) Casen > 0. Then, by definition o V™, x € V™ for all n > 0.

2. Constant casez € m, tt, ff. This follows trivially, by definition ofe V™, since all the constants are

already inV™, for all n.

3. Function abstraction cases = Az : A.e. Let us consider the normal form for the derivation
AT B (Az 2 Ae) : (A — A’). The derivation ofA; T+ F" Az : Ae™ : A — As has a
subderivatiom\; T'", z : A?“ Fm e™ : As,whereAs = A,. By the inductive hypothesis there are
again two possibilities:

e ¢" € V", Then, easily\x : Aj.e™ € V.

e Je’.e™” 5 ¢. Then, by definition o, 3¢” = Az : A;.¢/ ande — ¢”.

4. Fix casee = fixx : A.f™.
In the premise of the root of the derivatidg '™ F" (fixz : A.f™) : A must have been derived by
the Fix rule, with the hypothesi&; T+, z : A™+L 7 7 . Ay (whereA, = A). We can apply the
inductive hypothesis to this sub-derivation and have twssfilities:
(@) f™ e V™, from which it immediately follows by definition df ™ thatfixz : A.f™ e V"
(b) Je’.f.f* > ¢/, from which it follows by definition of" thatfix z : A.f™ — fixxz : A.f™.

5. Code-bracket case, = (e"*!). Then an antecedent df; 't " (e"*!) : (A must have been

A;TH vt entl s A (whered; = A). We apply the inductive hypothesis, and examine two cases

(@) e™ € V", then(e™) € V™ by definition of V™.

(b) 3e’.e 3 ¢’ Then, by definition of——, (e"*+1) s ().
6. Escape atlevel Ig' = "e°. The type derivation looks as follows(in normal form):

D
ATTHOY - OA _
AT+ EL 70 Ay Esc A1=4
A;T+H L 70 4

CNV
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The induction hypothesis applies to the result of the caioluof the subderivatio®. There are
two possibilities:
(@) €° € VO Itis easily shown (by examination of cases and the type jiefgmules) that the only
value at level 0 that could have tyge 4, is of the form(v'). Then, by definition o V!,
“(vh)y e VL

(b) Fe'.e® % ¢’. Then, by definition of-=, ~e® —— ~¢'.

7. Escape at higher level casg! ™2 = ~ent!,

D
C
AT+ EHle: QAL oo
ATHE 2 "e i Ay Av=A"" \y
AT+ ERT2 "¢ A -
We can apply the induction hypothesisaoI't F"+1 e : (O A;. There are two possibilities now,

NV

(@) e"*! € V+L. Then, by definition of " +2, e+l g Y42
(b) 3e’.en*+! 2L ¢/, Then, by definition of—, ~en*1 143 ~¢/,

8. The assert case,” = assert e’ : A = e} : B. The typing derivation can be put into following

normal form
Dl DQ
CNV CNV
AT+ Erel o A AT Er el B ASSRT
A;T+Fn (asserte} : A=e}:B): (IDA'B') A=A'AB=DB"" CNV

A;T+ Fn (asserte}: A=eb: B): (ID A B)

Dy

i 1 1 i < C
Now, we can apply the induction hypothesis to subjudgment.,A;FJr er A,VNV and

Dy

AT Er el B
We examine the cases that arise one by one.

CNV to obtaine} € V" Vv Jef.e} — e} andel € V™V Jely,. — e} — €h.

(a) Cases; € V™ andey € V™. If n > 0, then triviallyasserte; : A = ey : B € V™. Otherwise,
if n = 0, there are two possibilities. First = e, in which caseasserte; : A =¢e;: B € VO

by definition. If they are not equal, however, there exi$ts= Qp 4 5 to whichassert e; :
y y q
A = ey : Breduces.
b) Casee; € V™ and3e,,.eo — ¢),. Then by definition of—, Je” = asserte, : A =¢), : B
2 2 2
such thabsserte; : A = ey : B — ¢”.
c) Casede).e; — ¢} andes; € V™. Then, as in previous case” = asserte| : A = e, : B
1 1 1

such thabsserte; : A =es : B — ¢”.
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(d) Casede).c} % ¢} and3ely. — el + ¢. Then lete” beassert ¢} : A = e; : B and by

definition of—-, asserte; : A = e : B — €.

9. Cast case¢™ = cast (e, B, e}}). This case is more interesting. The typing judgmentfocan be

put into the following normal form:

Dy Dy

CNV CNV
AT+t kFnre :IDAB A; T+ F7 el s snat A

CAST
AT+ (cast (e, B,e})) : (snat B'Y) B =B’ CNV
A;T+ Fn (cast (ef, B,el)) : (snat B) ~
Dy
We can apply the induction hypothesis to subderivations and

A;T+t e ID A B
Dy

. We examine the cases that arise.
A;T+ Fnm el - snat A

(a) Cases; € V™ ande; € V™. First, if n > 0, then triviallycast (e1, B, e3) € V™. Otherwise, if

n = 0, thende’ = e, such that by definition of reductiarast (e, B, e2) e
(b) Cases; € V™ and3e’.e5 — ¢’. Then, same as above by definition of the reduction relation.

(c) Casede].e; —— e} andey € V™. ThenJe” = cast (¢}, B, e2) such thatast (e, B, e) ——

e” by definition of—-.
(d) Casede).e; — ¢} andIeh.eo —— ef. Similar as above case.
(]

Lemma 2 (Level Increment) If A;T F" e : A, thenA; T+ F*tle: A,

PRoOOF. Proof of Lemmd3M} is by induction on height of type deriva@fA; T F" e : A. O

Lemma 3 (Substitution 1) If A;T, 2 : A™ IV F"* e : BandA; T, IV F™ ey : A, thenA; T TV " e[z :=
62] : B.

Lemma 4 (Substitution 2) If A, X : B*; T F" e : Ay andA|,F" Ay : B, thenA;T[X := Ay F" e :
Al [X = AQ]

PROOF. Proof of Lemmd is by induction on the type derivation. Alkemma3d is used to prove the

base case.

Similarly, Lemmd® is by induction on type derivations.
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Lemma 5 (Subject Reduction) Vn. if A,T't F"* e: Aande — €/, thenA, Tt F" ¢’ : A.
PRrRoOOF. Proof is by examination of cases of possible reductions ¢’

1. Betareduction(\z : A.€?) v — €%z :=0"].

Consider the normal form of the typing judgment for the redex

Dl D2
ATHO (Az: Ael): A— Ay ATHI 0 A
ATH oA 0 A, A=A, PP
AT HO (Az: Ae0) 00 : Ay

CNV

. . . A,F I—O 60[$ = ’UO] : Al Al = A2
Applying substitution lemma 1, we have AT 0 = o A4, CNV .

2. (AX : A.f9[A2] — f°[X := A5] The derivation for the redex can be put into following normal

D,
A, X:A;THFO f0: By Do
AT (AN AJO) VX ABy AT Ay Ay,
T 0 A0 : —
form: AT F0 (AX : A f9)[Az] : Ba[X = Az] conY

AT FO (AX : A.f0)[A3] : B[X := Aj]

Applying the substitution lemma (Lemrith 4) we obtainl'[X := A] F" fO[X := A] : By[X :=
A]. Butthen A, T[X := A] " fO[X := A] : B[X := A], sinceB = Bx.

SinceA, T F0 (A X : A.f% : VX : A.By, then and is well formed, then we must conclude
thatX ¢ F'V(T'), and so the substitutioRi[ X := A] = I'. Then, from this we easily conclude that
AT F f[X := A]: B[X := A].

3. sel[A]((v, ..., v2),m) — vy, if m <n

The proof of this case is essentially unchanged from thefproff16]. The type derivation of the

redex can be put into the following normal form:

D
Vi<m.Fov Al &
AT T wpn AY A; T+ Emn:snatm F

A;THE (0) :wpdy A” A; T+ B om :osnat Ay A;THE A Ay A
A; T+ E sel[A]((vo, - - -y 0n),m) : AVAL A"AL = A
A;TH E7 sel[A]((vo, - - - vp),m) = A
Here, A =3, A” A;,A7 = A”, andA; = m. By examining the reduction, we hawe < n. The

redex reduces to the valug,. A7 m = A, andA; T+ +" D,,, : AY m, we obtainA; " F" v,, : A.

4. open (Y = A;,0%: Ag) as X,z in e’ — [ X := A;]x := v°] (check)

The derivation of the redex term (taking into consideratonversion and normal form) [e.p. too
large to fit in here]: IFA; T F0 open (Y = A;,0Y : Ay) as X,z in e’ : C, then
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o B AT HO 00 1 Ap[Y := A4
oA X: BT x: Ay = X|F0e: C
e @ Alp-C : QO
Applying the substitution lemma for types[ib 4, we obtain:
A; T,z A[Y := X)X := A1) FO [X := A1) : C[X = A)]
SinceA ok C : QO, it can be easily shown thaf ¢ FV(C). Thus the above expression can be
simplified to (by definition of substitution):

A;(Tyz: Ao[Y = X])[X = A1) FO eO[X := A4 : C
AT[X := A, o Ao X := Ay F0 (X = Ay]: C
AT w: Ag[X i= Ay FV e[X = Aq] : C

Now, we apply the substitution lemma for terms (using thé ¢4 to obtain the typing from the

contractum:
AT Y e[ X == Ay]w =" : C

. (fixz s A f9) 00 — fOlz := fixx : A.f°] 00 By substitution lemma for terms.
. (fixz s A.fO)[As] — fOfx := fixx : A.f°] [As] By substitution lemma for types.

. m®n — mdn

D
A;THO i@ j:snatidy

By the adequacy of TL representation of arithmefic ([116frima 1) it easily follows\; T -0 iT; :
snat idj.

if [B, A](tt, X1.€9, X2.€Y) — e[ X7 := A] (proven in the pap€r[115]. same proof)
if [B, A](ff, X1.€{, X2.€)) — €[ X5 := A] (proven in the pap€r[115]. same proof)
(v') — v! The type derivation for the redéxv!) can be put into the following normal form:

D
AT HL ol Ag
Br
A;T RO (vly - OA3
A;THO (vl) - QA
A;T H es(ul) @ Ag
A;THL (vl 0 A

Az = A3z
CNV

CNV
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Immediately, from the conclusion of subderivatibrit follows that

CNV Az = As

A,FI—”Av.F.lﬁljl.A CNV Ay =A
) vt A2 CNV
A;THLpl A

11. Reductiorassert v : A = v : B — Qpp a p if v1 # v2. Immediately, we can construct a

derivation oflD A B for Qp 4 g as follows:

A;Fl—(fixf:()—>|DAB./\y:().fy):()—>|DABFIX ATH() ()

ATHfixf:)—=IDABMN:().fy) ()

12. The case of the reducti@ast (v°, B, ") — €° is the most interesting one. The normal form of the

derivation for the subject term is as follows:

@1 D2

A;THO¢ :IDAB A;FkoegzsnatA{\NV
A;T FO cast (v, B, e) : (snat B) -

We must show that\;T" 0 e : snatB. At first, this would seem very difficult because we have no
proof thatA reduces taB. However, since is a value of typdD A B, its first argument must have

been of typesnatB.

Now, by adequacy on equality of values, we know titat : snat A.Vv, : snat B.v; = vy =

A =g, B. Then itis possible to use CNV to construct the derivatioi’ F9 ¢ : snat B.
d
Lemma 6 (Subject reduction(——)) Vn € N.A, Tt F* ¢ : Aande — ¢/, thenA; Tt " ¢ : A.

PROOF. Proof follows easily from Lemmi@5 and induction on the heigfderivations of—. [J

3.5 Conclusion

In this section we have presented a calculus that combimpestheoretic features such as singleton types
and equality assertions with staging. While this languageot identical with Meta-D, we conjecture that
its extension to full Meta-D features is possible (thoughegtedious in practice). However, having proved
type safety of such a language we have, in principle, showatit is plausible to combine a form of

dependent typing and staging in a programming language.
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Furthermore, we believe that the route we took in our exatitinaf A ;7 could have important practical
benefits. Namely, sincky o is defined as one of the computational languages in the FLibfiéwork, it
should, in principle, be possible to use any future FLINT iempentation to provide a general infrastructure
for the implementation of programming languages with fesgsimilar to\ ;. We have not experimented

with addingA i to the FLINT compiler, but we consider it an interesting dtien for future work.
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Chapter 4

Equality Proofs

4.1 Introduction

In ChaptellR we have explored the practice of heterogeneetia-ptogramming with dependent types.
In this chapter we shall develop the ideas presented eauliardifferent setting: we will show that a
heterogeneous meta-programming framework can be impleaiém a functional language with higher-
rank polymorphism. The meta-language under consideraiatrikingly similar to current dialects of

Haskell, but with a few key extensions.

Outline of this chapter. This chapter is organized as follows. First, we describechrtigjue for imple-
menting equality proofs between types in Haskell-like laages (Sectioi4.2). Then we illustrate how
equality proofs can be used to encaltenain valuesand predicates in Haskell's type system. We develop
an example that defines arithmetic operators on natural euhiimain values, and encodes a couple of

interesting predicates over over natural numbers (Seldi@n

4.2 Type Equality

One can view a language such as Haskell from the perspedétiie €urry-Howard([6l0, 45] isomorphism:
types are proposition in a logical language (where typedaraulas); programs that inhabit particular
types are proofs of the propositions that correspond ta@ thpes. For example, the function: : Int. x is

the proof of the rather simple, tautological propositiosnh— Int. Of course, since Haskell allows us to write
non-terminating programs, every type is inhabited by the-msminating computation. This means that
the Haskell types, viewed as a logical system, is unsoung; tthen encoding a proposition as a Haskell
type we should keep in mind that in order to preserve soursjmes must ensure that no non-termination

is introduced.
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In this section, we focus on one such kind of propositiort, tfiaquality between types. The first key idea
of this approach is to encode equality between types as agiaighe constructor. Figule4.1 implements
an encoding of such an equality. Thus, in Haskell, we can defitype constructdfqual * —* —*,

which states that two types are equal

data Equal a b = Equal ( Vy. (¢ @) — (¢ b))

cast :: Equal a b —(p a) = (¢ b)
cast (Equal f) = f

This rather elegant trick of encoding the equality betwegresa and b as a polymorphic function
Vo.(p a) — (¢ b) has been proposed by Baars and Swier§ira [4], and descrioker én a somewhat
different setting by Weirich[[143]. The logical intuitionehind this definition (also known as Leibniz
equality [96]) is that two types/propositions are equalifd only if, they are interchangeable in any context.
This context is represented by the arbitrary Haskell typestructorp. Another explanation, elaborated
in [4], is that sincep is universally quantified, the function with typea — ¢ b cannot assume anything

about the structure af, and so the only terminating function with typea — ¢ b is the identity function.

Given a proof of(Equal a b) , we can easily construct functioagb::Equal a b —a—b and
b2a::Equal a b — b — a which allow us to “cast” between the two types. These casijperations
act as elimination constructs on equality types. In additicasting, we define a number of equality proof

combinators that allow us to build new equality proofs frdneady existing ones.

The general overview with type signatures of these combisas given FigurEZ]1. One can see these
combinators as operations on an abstract data-type: maonpler equality proofs can be derived from

simpler ones algebraically through the use of these cortiisia

4.2.1 Proof examples

We now give a small example of how equality combinators camded in constructing new proofs of
equality out of old ones. A simple theorem that can be deralsalit equality can be stated as followsr
anya, b andc, if a = b then ifa = ¢, thenb = c.

We can show the proof in natural deduction style. The leat#éiseotree are discharged assumptipns
andps. Using symmetry (for historical reasons callggm), and then transitivity on the two premises of
the root, we derivé&qual b c.

[p1 : Equal a b]

Equal b a (Sym) [p2 : Equal a c]

Equal b ¢ (Trans)
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The same proof can be illustrated by a diagram below. Thesddittes (e.g.,, p ) represent

the premises, wherg, :: Equal a b. Equality lines (, —2—. ) represent derived equalities, where

e :: Equal b c.
p1
a :::> b RAURA

S! <> i
ym pi N\/

C
How do we prove this theorem in Haskell? As we view Haskelktyps propositions, we will first state

the above theorem formally as a Haskell type. Under thisreehe¢he equalitys = b becomes the type

(Equal a b) . Implication is simply the Haskell arrow type.

Equals a b —Equals a ¢ —Equals b ¢

Proving this theorem now becomes simply constructing anftexting) Haskell function that has the

above type. We shall call the functitineeoremO , and give its definition below:

theoremO ;> Equals a b —Equals a ¢ —Equals b ¢
theoremO pl p2 = sym pl <> p2

We now show another proposition and its proof. The propmsis: Ifa = b andc = d, then(a — ¢) =
(b—d).

In programming, as we will see, the proofs are most freqyargéd tocastbetween types that can be
proved equal. Consider the following example. Supposevtkeatiave a functiofil of typea — ¢, but we
need a function of typb — d. Fortunately, we can prove that typeequalsh andc equalsd.

This leads us to state another theorem:
Equal a b —Equal c d —(a —c) —(b —d)

The proof of this proposition is the functisgheorem1 which is defined as follows:

theoreml :: Equal a b —Equalcd - (a—c) — (b —d)
theoreml pl p2 f = a2b (subTab pl p2) f

-- pl = Equal a b

-- p2 = Equal ¢ d

-- subTab pl p2 :: Equal (a —c) (b —d)

-- a2b (subTab pl p2) : (a —c) — (b —d)

We start the proof with two premises:
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pl :: Equal a b
p2 :: Equal c d

Then, we use the combinator (see Fidure 4.1)

subTab :: Equal a b —Equal c d —Equal (f ac) (f bd)

with the premises to obtain the equality prdedqual (a —c) (b —d). The casting operat@2b is

then used with this combinator to obtdan —c) — (b —d) .

4.2.2 Implementing Equality Proof Combinators

In Figure[Z1 we show a number of functions that manipulat®fsrof type equalities. They can roughly

be divided into three groups:

1. Proof construction combinators. The types of these coatbis correspond to standard properties of

equality: reflexivity, symmetry, transitivity and congnee.

2. Casting operators. These functions act as eliminatitas rior equality. The majority of these op-
erators use the proof that typasandb are equal to cast from the tyfpga] to F[b] , whereF is
some type context. In the Calculus of Constructions (andairtype theories) this conteXt can
be described as a functidh : *->* | and equality elimination can be given a single type such as
(f* —* —(Equal a b) —(fa —(fb) . InHaskell, however, we are not allowed to
write such arbitrary functions over types, and have to inmaet a separate combinator for every

possible contexE[-]

3. Axioms. The axioms allow us to manipulate proofs of edigiof compound types (e.g., pairs) to

derive proofs of equalities their constituent parts.

Proof construction

Here, we describe the implementation for each of the condriaéhat are used to construct equality proofs.
We will give definitions of the combinators whose types astelil in Figurd_4]1 and comment on the
implementation of each one of them. The set of proofs preseln¢low is not complete, even though it
seems to be sufficient in practice. New theorems may need defdeed either algebraically by using the
existing set of combinators, or, if that proves difficult, &yyplying the techniques for implementing proof

combinators outlined below.

e The simplest of the proof combinators is the reflexivity gdroedl
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data Equal a b = Equal ( V. (¢ @) —(p b))
cast :: (Equal a b) —ta—thb
cast (Equal f) = f

-- Al gebra for constructing proofs

- Reflexivity

refl : Equal a a

-- Transitivity

trans :: Equal a b —Equal b ¢ —Equal a ¢
-- Synmetry

sym - Equal a b —Equal b a

-- Congruence
subTa :: Equal a b —Equal (f a) (f b)
subTab :: Equal a b —Equal c d —Equal (f ac) (f bd)

-- Casting functions

b2a 2 Equala b —b—a

a2b 2 Equal a b —a—b

castTa :: Equal a b —Cca — Ccb

castTa_ :: Equal a b —cad—cbd

castTab : Equal al a2 —Equal bl b2 —f al bl —f a2 b2
castTa__ :: Equal a b —wcade—cbde

-- Equality Axions

pairParts :: Equal (a,b) (c,d) — (Equal a c,Equal b d)

Figure 4.1: Representing type equality in Haskell

1 -- reflexivity
> refl :: Equal a a
s refl = Equal id

Although this proof seems trivial, it is often quite usefnlprogramming with equality proofs, as

many combinators are derived by manipulatiai (see below).

e Transitivity of equality is implemented by the combinatians

-- transitivity
trans :: Equal a b —Equal b ¢ —Equal a ¢
trans x y = Equal (cast y . cast x)

infix| <>

X <>y =trans X y

The function trans takes two equality proofs,Equal a b  andy::Equal b ¢ , and applies

cast tothem. This results in two functions,
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cast x :: Yo.p a—¢p b
cast y Yo.p b—p C

One should note that both of these functions, by definitiokE@fial , must be identity functions
(instantiated at their particular types), since they argmorphic in . The composition of these
functions yields another function which is polymorphicypé constructop (and therefore must be

an identity function):
cast y . cast x Yo.p a—p C

This function can then be wrappedHligual obtaining a proof object of typEqual a ¢ .

We shall often write the transitivity combinator as in infiperator €>), taking two equality

proofspl :: Equal a b ,andp2 :: Equal b ¢ ,andproducinga proofdqual a c :

p1<>p2
A
a P1 b P2 €
Symmetry is implemented by the combinatym. This combinator has the simple definition we

give below, following the development afi[4]:

newtype Flip f a b = Flip {unFlip :: f b a }

sym :: Equal a b —Equal b a
sym p = unFlip (cast p ( Flip refl)

The functionsym implements the proof that equality is symmetric: given agptbatEqual a b

it constructs the proof th&qual b a . To implemensym, we use an auxiliary data-tyfpdip . In

functionsym, we first start with the proafefl  (that equality is reflexive) which has tyj§Equal

a a) . We then apply the constructéiip to refl to get a value of typd(Flip Equal

a) a) . Recall that the expressidoast p) has the typ&/p.0 a — ¢ b. In particular,p can
be instantiated t¢Flip Equal a) . Thus, whertast p is applied to(Flip refl) , we get
a value of type((Flip Equal a) b) . Finally, we applyunFlip to it to obtain a proof of

Equal b a . We can illustrate this diagrammatically:

p:Equalabd Equal a a _ P (Flip Equal a) a

T symp
cast p

N
Equal b a mp(Flip Equal a) b
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Resorting to this auxiliary data-typ€l{p ) definition is necessary, because Haskell's type system

cannot correctly infer the appropriate instantiation @ tfigher-order type constructer

The combinatosubTa::Equal a b — Equal (f a) (f b) (Figure[411, linam) constructs

a proof that equality is congruent with respect to applaratunary) Haskell type constructors.

newtype C fa x = C {unC :: Equal (f a) (f x) }

subTa :: Equal a b -> Equal (f a) (f b)
subTa p = unC (cast p (C refl))

We start with the premisp::Equal a b . Next, we apply the construct@to a reflexivity proof
refl , resulting in a value of typéC f a) a . The expressionast p is applied to this value,
obtaining(C f a ) b . Finally, unC projects a proof of typ&qual (f a) (f b) from this

value. Diagrammatically, this looks as follows:

p:Equalab Equalaa#(Cfa)a

....._____s_L_J.l.)Tap lcastp
Equal (fa) (6) <— (C fa) b

The functionsubTab is an instance of congruence of type equality, generaliadinary type con-

structors.

newtype C2 fabxy =C2 { unC2 :: Equal (f a b) (f x y) }

subTab :: Equal a b -> Equal ¢ d -> Equal (f a ¢) (f b d)
subTab pl p2 = unC2 (castTab pl p2 (C2 refl)

It relies on the functioncastTab:: Equal a b —Equal cd —-(fac) —(fbd)
(Figure[Z1, linem) whose definition will be given below. First we obtain an esgsion
of type (C2 f a b) a b by applying the constructo€2 to refl . Then, we apply the
function castTab pl p2 to C2 refl . The result has the typéC2 f a b) c d . Fi-
nally, projecting from C2 by applying unC2 produces a proof of the desired proposition
Equal (f a b) (f b d)
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It is worth noting thasubTab andsubTa are very similar. IrsubTab , the auxiliary data-typ€2
plays the same role as the auxiliary data-tghie subTa . In fact, their definitions are also similar,

except thaC2 works on a binary type constructbr

Similarly, subTa usescast :: Equal a b — fa — f b, while the definition of
subTab usescastTab , which is merely a generalization chst to a binary type constructor
f.

: Equal a b
priEd Equalaa#(CZfac)ac
p2 : Equal ¢ d

subTab P1 P2
castTab p; p2

Equal (f a ¢) (fbd) <= (C2 fac)bd

Casting operations

Casting operators are elimination rules for equality ps&afual .

e The simplest of thesea2b andb2a take proof of typeEqual a b and return a function that

converts froma to b (and back, respectively).

newtype Id x = I1d { unld :: x }

az2b :: Equal a b —a—b
a2b p x = unld (cast p (Id x))

b2a :: Equal a b —b—a
b2a = a2b . sym

The construction of2b follows a familiar pattern. First, we inject the argumentf type a into
the auxiliary (identity) type constructdd . Then, we applcast p to obtainld b . Finally, we

project usingunid to obtain ab object. To defind2a we simply invert the proof object and apply

azb.
Id sym
a——=|da Equal a b—— Equal b a
! N b2a p
| a2b p cast p > a2b
y S

bmk’jb b—a



e The functioncastTa_ is a form of casting-congruence.

castTa_ :: Equal a b —cad—cbd
castTa_ p x = unFlip (cast p) (Flip x)

Starting with a proofp:Equal a b and a valuex of typef a y , we first applyFlip
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to X,

obtaining a value of typé-lip f y) a . Then, we applyast p , obtaining(Flip f y) b

Finally, we applyunFlip togetf y b .

fay—FLip(F"pfy)a

|

| castTa_ p lcast p
\V .

fby mp(F“p fyb

e The functioncastTab is simply the composition of functiorastTa_ andcast .

castTab :: Equal al a2 -> Equal bl b2 -> f al bl -> f a2 b2
castTab pl p2 = castTa_ pl . cast p2

Starting with an argument of tygleal bl , castTa_ pl transformsitintof a2 bl

cast p2 finally returnsft @2 b2 1 f o, e oy SE2 0y

e The functioncastTa__  further generalizes casting to ternary type constructors.

newtype Flip3 f a b ¢ = Flip3 {unFlip3 :: f b ca }
castTa__ i Equala b ->caxy->cbxy
castTa__ p x = unFlip3 (castTa_ p (Flip3 x))

A Note On Strategies for Implementing Equality Operations

. Then,

From the previous examples, we can observe a more genetadrpaf programming with equality proofs

and deriving equality combinators. Usually, one starthwitme equality progb of type Equal a b

and the goal is to produce a function that transforms sonmer dgpe R[a] ) to typeR[b]

For example, if we have a typat — Bool and an equality typ&qual ¢ Bool , one should be

able to derive the typtnt — c from it. Haskell’'s type checker, however, is not designednizke this

conclusion automatically. Instead, the programmer mugisdea type constructd®, so that applyindR

to Bool produces the typnt — Bool) and applyingRto ¢ to produce(int —c) . Then, casting

1The can be thought of as a tyRecontext with one hole.



87

operations on (i.egastTa ) that type constructor allow the programmer to defec, from R Bool ,

which is the same dat —c.

More generally, the implementation of many equality conabans usually proceeds as follows: the first
step is to take apart the propusing thecast combinator to obtain a functiofi of typeVe. ¢ a — ¢ b.
Note that the polymorphic variable can then be instantiated to any unary type constructor. €kegtep

is to define an auxiliaryn + 1)-ary type constructor.

data Ttl ..tnx=T (R X
unT o Tt l.tnx->RX

The type constructdr is a function of the contexRin which we want to substitute for a. Then, a value
of type (T t;...1t,) ais created. When the functighis applied to this valugy becomes instantiated to
Tt ...t,, and the resultis of typ€l' ¢; .. .t,) b. Finally, the functiorunT is used to project the desired

final result in whicha has been replaced iy We can show this pattern diagrammatically:

p:Equalab Ra—I(Ttl...tn)a

|
| ? lcast p

A
R b<—unT(T t1 tn) b

Axioms

A number of “equality axioms” are also postulated. The axmost commonly used in the examples that

follow is pairParts

pairParts :: Equal (a,b) (c,d) —(Equal a ¢, Equal b d)
pairParts = -- primitive

These axioms specify how Haskell type constructors (ergdycts, sums, and so on) behave with respect
to equality. ThepairParts  axiom allows us to conclude that if two products are equaintso are their
constituent parts.

It has been argued that axioms suchpagParts  cannot be defined in Haskell itself ]19]. In our
framework, they are introduced as primitive constants. Wfgecture that this does not compromise the
consistency of the overall Haskell type system, but we céer oo proof at this time. In practical terms,

one possible impIementatH;of pairParts  would be

2HereunsafeCast s the function with the typa — b. Strictly speaking, this function should not exist in starsiHaskell, but
it can be written in most Haskell implementations using d-kebwn “unsafe 10 reference trick.”
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pairParts :: Equal (a,b) (c,d) —(Equal a ¢, Equal b d)
pairParts (Equal f) = (Equal (unsafeCast f), Equal (unsafeC ast f))

4.3 Proofs and Runtime Representations in Haskell

How do we use equality proofs? In this section, we will ilhasé this by developing a small implementation
of operations on natural numbers. Natural numbers are dbfigeictively as the least set closed under the

rules:
neN

zeN sneN
The type of natural numbers in a functional language can beght of as a logical proposition. This

type is inhabited by an infinite number of distinct proofssteaf which can be identified with a particular

natural number. For example, the Haskell data-f\pé is such a type:

data Nat = Zero | Succ Nat

Note that each expressions of typlat is an equally valid proof of this proposition. For example,

Zero : Nat , butalsoSucc Zero : Nat

As we have seen, individual natural numbers cannot be disished from one another at the level of
types. There are, however, interesting properties of idda natural numbers that can be useful in types.
For example, we might want to know that the type of an arragximy function takes an index which is
provably less than the size of the array. If this property lsarspecified and proved statically in the type
system, then we can dispense with runtime array bounds tigeekthout compromising safety of the
program.

To make assertions about particular natural numbers irsfygg., asserting their equality, we need first
to represent natural numbeasthe level of typesvhere each natural number corresponds to some type.

Thus, we define the following two data-types

data Z = Z
newtype S x = S X

The typeZ has one constructor, also nam&dand represents the natural number zero. The successor
operation is represent by the type constru@or * —*. The intended meaning is that the expression
S (S 2): S (S 2) representsthe natural numtieat the type level.

One should note at this point, that the two tygesndS are not by themselves enough to encode natural

numbers at type level. In fact, we could refer to thenpesnumbersone could apply type construct8r
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to any Haskell type. Thu§ "X":(S String) clearly does not represent a natural number. How can

we enforce the requirement that the naturals are well-fdfine

The solution is to use equality types to define a Haskell typestructor corresponding to the inductive

judgmentn € N.

data IsNat n = |IsZero (Equal n 2)
| Va. IsSucc (IsNat «)
(Equal n (S «))

n €N
zeN SneN

The data-typésNat:* — * isjust such atype constructor: we rdablat n asn € N. In defining the
data-typdsNat , we define a data-constructor for every derivation rule efitfductive judgment € N.
Thus, inhabitants dSNat n act as proofs that € N: for every derivation of the judgmente N, there

is a value of typdsNat n

1. The constructolsZero implements the base case of the proof of the judgmeatN, JEN It

takes as its single argument a proof that the argument tygguial toZ.

neN
2. The constructoisSucc is the inductive stem: as its first argument it takes the proof of the
n

antecedent judgmemgNat «. Its second argument is the proof thmaequals to the successor of

this o, wherea is some existentially quantified type representing a natunaber.

Smart Constructors. Recall that the type constructtsNat has one argument, a type representing the
natural numben, such thatsNat n means that € N. We shall call this type argument tledex of
IsNat .

In the definition of the inductive judgment € N, we use pattern matching to specify the shape of the

index. For example, the base case rule forces the index terbem. In Haskell data-types, however,
we cannot pattern match on the index. Rather, we use equatifs as additional premises to force a

particular “shape” on the index type argument.

Hence, Haskell gives the constructeZero the typeEqual n Z —IsNat n . WhenlsZero is

applied torefl::Equal a a , the type variabla is unified withZ, obtaining the typing:

IsNat refl :: IsNat Z

This pattern is captured by the valmeand functions whose definition is given below:

SWith the usual caveat that such values do not contain neniteting computations.
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z .. IsNat Z

z = IsZero refl

s  IsNat n —IsNat (S n)
s n = IsSucc n refl

The functions ands are called “smart constructors,” since they correspontieadaita constructors of

IsNat , but also do some useful work. Note that the type:dENat Z  corresponds now exactly to the

judgment form .
Jueg zeN

Similarly, the constructotsSucc has the typdsNat m —Equal b (S n) —lIsNat b . The
smart constructos takes an argument of tydeNat n . Then, it applies the constructteSucc to it,

obtaining

IsSucc n :: Equal b (S n) —IsNat b

Finally, the resulting function is applied tefl . This forces the type variableto be unified withS n,
obtaining the result of typ® n.

Note the use of existential types in defining constructosgstential quantification and equality do not

n €N
appear in the rulm. However, the type of the smart constructaisNat n —IsNat (S n)
n

n €N

again directly corresponds to the judgment——.
sneN

Runtime values. Another thing to note is that there is a one-to-one corredpnece between natural num-
bers (at the value level) and elements of the data-gidat . The isomorphism is easily constructed by in-
duction over natural numbers and judgments &f N. For example, the expressienz : IsNat (S 2)

is the only (if we ignore the bottom element in Haskell sertahtelement of the typesNat (S Z)

This property is quite useful, since it implies that we caae tiee values of type IsNat n to represent indi-
vidual natural numbers asintime valuesas well as proofs that a particular typés a representation of a

natural number.

The IsNat type also bears a strong resemblance to the notigingfleton types[11€,[58]. In the
FLINT [114,[116] compiler framework, a data-type for nalurambers (for example) is representgdhe
level of kinds as an inductive kindNat . This kind classifies a set ¢§pes{0,1,2,...}. However, there is
also atypesnat : Nat —*  which classifiesuntimenatural numbers . Each runtime natural number

valuen has the typsnat n . The typing rules in such a system might look like:

AFn:Nat AT'Fer:snatm A,I'Fes:snatn
— (Literal) =
AT Fn:(shatn) A, T+ ej+es: (snat(m +n))

(Plus)
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In our implementation, type constructdsandZ play the role of natural numbers at the type level; the
type constructotsNat plays the role ofnat , values of type¢sNat Z , IsNat (S Z) , and so on,
play the role of runtime naturals. The only difference withIRT is that there is no way to represent
theinductive kindNat itself — the well-formedness of naturals at the type levestrhe enforced by the

inductive definition ofisNat .

Predicates

IsOdd andIsEven are two mutually inductive predicates on natural numbezéndd as the least rela-

tions that satisfy the rules:
IsOdd n IsEven n

IsEvenz IsEven (sn) 1sOdd (s n)
Here, we will show how those predicates can be encoded usjngliy types in HaskeH. First, for
clarification, let us tentatively assign a “type” to thesedicates. In a dependently typed system such as

Coq [43, for the same example], predica®&ddd andisEven would be given a type:

IsOdd, IsEven : (n : nat) — Prop

In our Haskell encoding, we collapse this distinction: bo#turals and propositions are types of kind *.

Thus, we define two type constructés&ven andlsEven which have the kind — *:
data IsEven t = Z Even (Equal t Z2)
| vn. S Even (Odd n) (Equal t (S n))

data 1sOdd t = vn. S (Cdd (Even n) (Equal t (S n))

We also define the corresponding “smart constructors” whitdhw us to easily build proofs of these

predicates:
z_even :: Even Z
z even = Z Even refl

s_even :: 1sOdd n —IsEven (S n)
s even X = S Even x refl

4While we shall refer to the language as “Haskell,” it is imtpott to remember that we use more features than availablasket
98 [64] (higher rank polymorphism, existential types, andogs). All of these features are available in the most popHiaskell
implementations.
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s odd :: Iseven n  —IsOdd (S n)
s odd x = S Odd x refl

The first example we present is the functmatdOrEven . This function proves the property of natural

numbers thatn € N.IsEven n Vv IsOdd n.

The disjunction of two propositions is represented usingkei's Either  data-type:

data Either a b = Left a | Right b

In the implementation below, we will represent the propositlsEven »n) Vv (IsOdd n) by auxiliary

data-typdsOddOrEven::* —*,

This is not strictly necessary, but it enables us to expessiesired property of being odd or even as
an application of a unary type constructor. This, in turnkesathe implementation less verbose, since
the equality proof and casting combinators are more comneisan working with unary constructors. We

examine the functionddOrEven in more detail:

newtype IsOddOrEven n =  CE (Either (IsOdd n) (IsEven n))

| = OE . Left
r= CE. Right

oddOrEven :: IsNat n — |sOddOrEven n
oddOrEven ( | sZero p) = castTa (sym p) (r z_even)
oddOrEven ( I sSucc n p) =
case oddOrEven n of
CE (Left op) —castTa (sym p) (r (s_even op))
CE (Ri ght op —castTa (sym p) (I (s_odd op))

Linemis the base case of this function:
oddOrEven ( | sZero p) = castTa (sym p) (r z_even)
-p > Equal n Z

-- r z_even .. 1sOddOrEven Z

-- castTa (sym p) (r z_even) :: IsOddOrEven n

If a runtime representation of the natural numlzeis given, then we construct a base case for
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even number: the expressi¢n z_even) has type(IsOddOrEven Z) ; then, the proofsym p)
:Equal Z n isthen used to cast back tsOddOrEven n)

Similarly, in the inductive step (linesandm), first construct a proof recursively, and then, dependimg o

whether the recursive proof is odd or even, construct théewen or odd proof, respectively.

oddOrEven ( I sSucc n p) =
case oddOrEven n of _
CE (Left op) — castTa (sym p) (r (s_even op))
CE (Right op) — castTa (sym p) (I (s_odd op))

A similar and important function is one that constructs theop of equality between two naturals. This
function is an instance of a common pattern in programmintt) wguality proofs: two values whose
types are judgments indexed by typesnd b are compared structurally to possibly obtain a result of
typeEqual a b (hence theMaybe type in the range ofqualNat ). This is, in effect, a runtime check

which allows us to convert between typeandb.

equalNats :: IsNat a —IsNat b — Maybe (Equal a b)
equalNats ( 1sZero pl) ( IsZero p2) = return ( pl <> (sym p2))
- pl o Equal a Z
- p2 2 Equal b zZ
- pl <> (sym p2) :: Equal a b
equalNats ( 1sSucc nl pl) ( IsSucc n2 p2) =
do { p3 <- equalNats nl n2

; return (pl <> (subTa p3) <> (sym p2) }
- pl : Equal a (S _1)
- p2 ;> Equal b (S _2)
- p3 ;o Equal 1 2

-- subTa p3 :: (S _1) (S _2)
-- pl <> (subTa p3) <> (sym p2) :: Equal a b
equalNats _ _ = Nothing

Example: Arithmetic

As our next example we implement addition of natural numb&he addition function in the encoding of
natural numbers presented above has the following pr@geriti takes two arguments, integerandm,

and returns an integet such that = n + m. So, what type do we give our function in Haskell?

plus :: IsNat a -> IsNat b -> IsNat (? a b)
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The only valid thing we can give in place of the question maokild be a type function of kind — x —
x. However, such functiodsare not permitted by type systems of most practical progrengitanguages
including Haskell. Thus, we must encode addition at the tgpel indirectly. First, although we do not
have computation and functions at type level, ve@ use type constructors to simulate relations between

types. Thus, we define addition as an inductive relaBlusRel m n i, wherei = m + n.

PlusRel n m ¢

—————— JieN
PlusRelzmm < PlusRel (sn)m(si)

We encode this relation as a ternary Haskell type constructo

--  PlusRel :: * —*
data PlusRel m n i =
Z Pl usRel (Equal m Z) (Equal n i)
| VaB. S PlusRel (PlusRel (5 n «) (Equal m (S f)) (Equal i (S @))

zPlusRel :: PlusRel Z i i
zPlusRel = Z PlusRel refl refl

sPlusRel :: PlusRel m n i — PlusRel (S m) n (S i)
sPlusRel p = S_PlusRel p refl refl

Now, we are ready to define the addition function. There acestwps to creating this function. The first,

intermediate step is the functiqh .

pl :: IsNat m —lIsNat n —PlusRel m n z —IsNat z
pl _nr=pnr where

p :IsNat n —PlusRel m n z —IsNat z

p n (RPZ pl p2) = (cast p2 n)

p n(RPSr plp2) = cast (symp2) (s (p nr)

This function takes three arguments: two natural numbeendn, and a proof thain + n = z. Itis
defined in terms of the functiop, which is defined inductively on the structure of the proofdflition
relationPlusRel m n z : from PlusRel m n z , and the representation of p is able to construct
the proof of the judgmerisNat z . In computational terms, this is equivalent to construgtite natural

number representing the resulting sum. Of course, thistimmés not all that useful since it requires the

5As opposed tdype constructors
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proof of the judgmen®lusRel as one of its arguments. Itis possible to construct thisfayabof m € N

andn € N.

What would the type of such a function look like? One posiibib

constructProof :: IsNat m —IsNat n —PlusRel m n z

However, the type variable appears only on the positive side of the arrow type above wvculd
mean that &@lusRel m n z can be constructed fall typesz. This is patently false. The problem is
that of quantification: given any two natural numbersandn, we can construct the proof that feomez,

m + n = z. Thus, we need to existentially quantify the type variahl&@ he type ofconstructProof

would then look like:

constructProof :: IsNat m —IsNat n —3Ja.PlusRel m n «a

The functionplus defined below (linesm) performs the actions aonstructProof andpl simul-
taneously, yielding a result of typgy.(PlusRel m n «) x (IsNat «). Slightly complicating the notation
below is the fact that in Haskell existential types can omyibed in data-type definitions. Therefore, we de-
fine an auxiliary data-typExists . This type constructor takes a unary type constructand implements

the existential typéla.f a.

-- Exists ¢ = Ja. o(a)
data Exists f = Va. Exists (f «)
data Pl xy z = Pl (PlusRel x y z) (IsNat 2)

plus :: (IsNat x) —(IsNat y) — (Exists (Pl x y))
plus ( IsZero pl) m =
Exi sts ((( Pl (castTa__ (sym pl) (zPlusRel)) m)))
plus ( IsSucc n pl) m =
case plus n m of
Exists (Pl pjy) —
Exi sts (( Pl (castTa__ (sym pl) (sPlusRel pj) (s y)))

Example: Putting | sNat into the NumClass

In thelsNat encoding, each natural number has a different (and incdbigptype: the number one has
the typelsNat (S Z) , the number two has the typeNat (S (S Z)) , and so on. Is there a type
that represents the entire set of natural numbers? Natutedreis such a type and it iS«. IsNat «.. Thus,
we can finally implement a traditional Haskell addition ftino by declaring Exists IsNat) to be an

instance of the claddum
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instance  Num (Exists IsNat) where
(+) (Exists m) (Exists n) =
let Exists (Pl prf z) = plus m n

in  Exists z

Example: Encoding the Ordering Relation

Another interesting relation on natural numbers is ordgrirhe relationn < n on natural numbers can be

defined by induction on as the least relation that satisfies the rules

m<n

— n(LEQ-RefI ) m<sn n(

LEQ-Succ)

The implementation in Haskell consists of the data-typ€::* —* —* and the corresponding pair

of smart constructors.

data LEQ m n =
LEQ Refl (Equal m n)
| Va. LEQ S (LEQ m «) (Equal n (S «))

leg_refl :: LEQ a a
leq_refl = LEQ Refl refl

leg_s :: LEQ a b -> LEQ a (S b)
leg_s s = LEQS s refl

With the Haskell implementation f, we can begin to construct interesting proofs.

compLEQ :: (IsNat m) —(IsNat n) — Maybe (LEQ m n)

compLEQ (I sZero pl) ( IsZero p2) = return (  LEQ Refl (pl <> (sym p2)))
compLEQ (z@(I sZero pl)) ( IsSucc n' p2) =

do { r «—compLEQ z n’; return ( LEQ S r p2) }

compLEQ (I sSucc m pl) (IsZero p2) = Not hing

compLEQ (I sSucc m pl) (lIsSucc n p2) =

do { r «—compLEQ m n; return (castTab (sym pl) (sym p2) (theoreml r)) }

newtype Thl x y = Thl {unThl :: LEQ (S x) Sy }

theoreml :: (LEQ m n) — (LEQ (S m) (S n))
theoreml ( LEQ Refl pl) = unThl (castTa_ (sym pl) ( Thl leq_refl))
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The functioncompLEQ presented above, takes two natural number represergdtibtypedsNat m
andIsNat n ), and returns the proof that < n, if such a proof can be constructed. We will examine this
function more closely to familiarize ourselves with thegiree of programming with these encodings. The

construction oLEQ m nproceeds by induction on the structure of the two numbers.

The base case (limeassumes that both numbers are zero.
(m) compLEQ (Zero pl) (Zero p2) = return (LEQ_Refl (p1 <> (sym p2 ))
The proofspl andp2 have typesEqual m Z andEqual n Z , respectively. The combined proof

pl <>(sym p2) has the typeEqual m n. This is exactly what the base case constructor 6@

requires, and is used to build the proof th&Q m n

The second case (linga) is the case when the first argument is zero, and the secoonthisucc n’ .

(g compLEQ (z@(Zero pl)) (Succ n' p2) =
do { r «compLEQ z n’; return (LEQ_S r p2) }

This proceeds by constructing the pramfmpLEQ z n’ of the typeLEQ Z n’. Then, the proof
p2 :: Equal n’ (S n) is used to construt¢tEQ Z n

The following case always returidothing , since no non-zero nat is less than zero.
compLEQ (Succ m pl) (Zero p2) = Nothing

Finally, the inductive step where both numbers are non-{igresgn) is the most interesting one:

(g compLEQ (Succ m pl) (Succ n p2) =
do { r «—compLEQ m n

; return (castTab (sym pl) (sym p2) (theoreml r)) }
- m o IsNat 1
-n o IsNat _2
- pl ;> Equal m (S _1)
- p2 > Equal n (S _2)
-- sym p2 2 Equal (S _2) n
- r o LEQ _1 _2

-- theoreml r :: LEQ (S _1) (S _2)

The two arguments are taken apart and variaibksdn have typesn :: IsNat _1 andn : IsNat _2
There are also two proofpl :: Equal m (S _1) andEqual n (S _2) . The recursive call to

compLEQ sl s2 produces an inequality proof of typd=Q 1 2, and the function

6We use the notationl, and so on to indicate types of Skolem constants in Hasksdl thecking of existential type eliminations.
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theoreml :: LEQ m n -> LEQ (S m) (S n)

is used to obtain the proof of typeEQ (S _1) (S _2) . Finally, proofsmandn are used to cast back
totypeLEQ m n



Chapter 5

Language Implementation Using Haskell Proofs

In SectiofZB we have familiarized ourselves with basibmégues of encoding judgments and their proofs
in Haskell, and with programming using these proofs. Nex,imtroduce our first heterogeneous meta-
programming example utilizing these techniques. This ldgraent proceeds in a number of steps: first,
we define an object language; then, we introduce a runtimeseptation of types of the object lan-

guage(Sectioi d3.1); then we introduce an encodingeif-typed termdor the object language defined

in Sectio5.R. The implementation consists of a type of etdnguage typing judgments, an interpreter
that evaluates the proofs of those judgments to meta-laygyualues, and a type-checker that constructs

typing judgment proofs.

5.0.1 The Languagel,

First, we present is the languadie. The languagé; (Figure[5.1) is a small, simply typed functional lan-
guage. We explain the relevant definitions in some more ldetéire proceeding onto the implementation

of Ly.
Syntax of L;. The syntax ofL; consists of three inductively defined sets.

Te€Tu= int|m 57|71 X7
reGa:= (|I,r
ecEu= n|lelerex|Varn|e @es|(er,e2)|mpo1}e
First, there is a set of types, which includes natural numbers (or some other base typasjtion
spaces®; — 72), and binary products{ x 73). Second, there is a set of type assignmdntsyhich are
sequences of types. The typeén a type assignment df at positionn assigns type to the free variable
Var n. Third, there is a set of expressions which contain the andbda calculus constructs presented in

Church style (domains of abstractions are explicitly typ&#ériable binding is expressed in the positional

99



100

style, counting the number of intervening binding site®pto the binding of the variable itself [ILB,114].

Support for integer literals, and arithmetic operateis® es) is also included.

Static semantics. The type system of; is also shown in Figule.1: the presentation is that of alsmal

applied simply typed\-calculus.

T'kep:int FFeQ:int’ H T'tn:7
—(Lit - Arit — (V.
FFn:Int(I) I'Fel @ey:int (Arith) F,TFVarn:T( ar)
Irhke:7 Ab I'key:7— 1 Fl—eng(A
S
THAMe:T— 1" ) '-ejex: 7 (App)
I'kFe:m F"@gZTQP_ I‘l—e:T1><7'2P_l Fl—e:7'1><T2P_2
alr —_—F (P —_—(FI
Tk (e1,e2) : 11 X T2 (Pair) I‘l—(me):ﬁ( ) F"(?TQG)ZTQ( )
varz I'tn:7 \ars
—F—F—F (Vvar ar
I‘,TI—O:T( ) L7 E(n+l):rm )

The typing judgment is fairly standard. It is defined by stawal induction onL; expressions. Type
assignments grow when they encounter Xhabstraction. When a free variablar n is encountered, an
auxiliary judgment F n : 7is used (rule¥arS andVarZ). This judgment is defined by induction over the
variable index: if the variable index is greater then zeanis fudgment weakens the context and decrements

the index until thev/arZ rule applies.

Semantics ofL;. The semantics af; presented in Figufed.1 are given in the denotational <td& [50].
The semantic functions are set-theoretic maps from syintsets to the corresponding semantic sets. There

are three such maps:

1. First, types are mapped into semantic sets. The type afalatis mapped to the set of natural
numbers. Arrow types are mapped into function spaces, ptdagpes into products of underlying

sets.
[e] : 7 — Set

[int] =N
[ — 7] =(nl— (=]

[[7'1 X 7'2]] = [[7'1]] X [[7'2]]
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2. The semantics of type assignments is a “nested” produbediypes in the assignment:

[e] :I' — Set
[0r =1
[T =[] > [7]

3. Finally, the semantics df; programs is defined in “categorical style,” by induction iothee typing
derivations ofL;. The semantic functioﬂp]}ﬂ takes a proof of a judgmeifit+ e : 7 and produces
“an arrow,” i.e., a function from the meaning of the type gasients to the meaning of the type of
the expressioan. In its variable case, the semantic function relies on thdiary family of semantic
functionsL[e] : (T Fn: 7) — ([I'] — [r]) , which for some integenr, performs the look-up of

then-the element of the runtime environment:

Lle] c(CFn:T) = (0] = [r])
L[0] (-, v) =0
Lln+1] (p,-) =Ll p

The semantic function is defined as follows:

[e] c(Tke:rr) = ([T = [7])

[T+ Varn] p =L[n] p

[CEAme:m —=w]p =(x:[n])— (T,nte:r](px))
[Theiex:7]p =[Ckte:7 —>71)p([TFex:7]p)

[TF(er,e2):mixm]p =(Cker:n],[TFes: ]
[TEm,e:m]p =m, [TFe:m X7]

Basic Properties ofL;. For the sake of completeness of our presentation, we state Basic properties
of the languagé.;. These are fairly standard (e.d., [5]), but will be usefyListifying some design choices

in the latter implementation af ;.

Proposition 2 (Generation lemma forL;) The following implications hold:

1.THFVarn:7r=T'Fn:71

10ne should note that the semantic functjm is actually afamily of functions indexed by,I" and 7, and as such is given a
dependent type
Mece,rer,rer(TFe:7) =[] — [7]
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2.TkFejey:7=3I7The 7 -7 andTFeq: 7’
3THAne):7T=3Inr=m—->m andl,nte:m.

4. Tk (e1,e0):7=3Im,m7=71x7 andlke :m,They:m
5.T+Fme:r=3I7TFe:Tx7

6. Fme:T=3ITFe:7TxT1

7., 7H0: 7

8.I,7"+F(n+1):7=Tkn:7
PRrRoOF. Proof is by induction on the height of derivations, adin [5].

Proposition 3 (Uniqueness of derivations)Forall e € E,7 € T,T"' e T', if I' I e : 7, then there is only
one derivation tree that is the proof bf- ¢ : .

PRrRoOOF. Proof is by induction on the height of derivatibrn- e : 7 and using the generation lemnia.

5.0.2 Implementation ofL;: an Overview

The implementation of.; in many ways mirrors the definitions in Section 510.1, in sods it, too, L,
consists of three “artifacts.” One could view the threefacts assyntax, semanticandpragmaticsof the

languagéd,, respectively:

1. Adata-type representing typing judgmentd.ef The inhabitants of this type represent typing deriva-
tions of L. This data-type, which we will call (well-typednegajflgmentsis similar to the induc-

tively defined types and relations from Sectiad 4.3.

2. An interpreter which defined over proofs of typing judgnseof L;. The interpreter is a (total) a
mapping from well-typed judgments to the meanings of typestfose judgments, and thus directly

corresponds to the family of semantic functidm.

3. Atype-checking function. This function takes syntatiot necessarily well-typed), pre-terms and
constructs a proof of.; typing judgment or raises an error. This function has noatlicerrespon-
dence to the semantic definitions given from (Fidure 5.1th&ait implements a well-formedness

condition onL, typing derivations that is assumed implicitly by those dé&éins.
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Syntax Type System
I'kFn:7
Types o= int|T -7 | T X T F'klitn:int 'Varn:7
Assignments T[':= ()|, 7 T,rhe:7 Tkter:7—7'Tkex:T
Expressions e:x= mn|Ar.e|eirex|Varn|er ® ez Tk Me:T— 7/ TFepeg:r
(e1,e2) | mgo,1) € Tbn: s

Iy7HO:7 T,k (n+1):7

SEMANTICS
Assignments Judgments
W ey ECren-m-b
’ n ’ [CEVarn:7] p=Ln] p
CEXxe:T—=T]p=(:[r])— (T, 7Fe: 7] (p,z))
Types _ [Creirex:]p=(Tker:7—7]p)([I'Fex:7]p)
[[znt]] = Int LIIOH (_7,0) =

[t1 — t2] = [t1] — [¢2] n — oV
(] = e =L

Figure 5.1: The languagg,

5.1 Runtime Representations of Object-language Types

As we have seen in Sectibnl.3, values of interesting donfi@imghich we encode properties and predicates
(e.g., natural numbers in the previous section) are encastygesin the meta-language. We will call such
types in the meta-languagl®main value typesFor example, the typeS, Z, IsNat, PlusRel are
such types (and type constructors). Domain value types @réommally different from any other meta-

language types — the distinction of purely one of converdios use.

5.1.1 Types

The set ofL; types is represented by a subset of Haskell types thems@lkesemantic functiofe] : = —
Setgives the appropriate mapping frain types to the types in the metalanguage, in this case Ha3kwdl.
typeRep t defines which Haskell types are permitted to be useb,agpes: if, for some Haskell type,

we have a value of typRep t, then this is a proof that there exists Bntyper, such thafr] =t .

We will call this typeruntime type representationfor repg a value of data-typRep t represents type

t (Figurea:R).

data Rep t

= Rint (Equal t Int)

| Runit (Equal t ())

| VaB. Rarr (Rep o) (Rep () (Equal t (  a—pf))
| Vap. Rpair(Rep «) (Rep ) (Equal t ( « , [))
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rint :: Rep Int
rint = Rint refl

runit :: Rep ()
runit = Runit refl

racr : Repa —Rep b—Rep (a —b)
rarr r1 r2 = Rarr r1 r2 refl

rpair :: Rep a —Rep b—Rep (a,b)
rpair r1l r2 = Rpair rl r2 refl

The constructoRint :: Rep t (linem) contains the proof that the typeis equal to the typént .
Similarly, the constructoRarr (linem) contains representations of the domain and the codompésty
andg together with a proof that typte equals tax — 3. The domain and codomain types are existentially
guantified. The equality proof allows us to cast betweeabjects and the function space— 3 whenever

we deconstruct the representation itself.

The important feature afuntime type representatiorfienceforthReps) is that they can be compared
for equality. The functionestEq compares to typReps (of typesl andt2 ) at runtime and if they are
equal, constructs a proof of that equality. This proof cantbe used to cast from values of tyfie to

values of typd?2 .

testEq :: Rep tl — Rep t2 — Maybe (Equal tl t2)
testtq ( RUnit pl) ( RUnit p2) = return (pl <> (sym p2))
testtq ( RIint pl) ( Rint p2) = return (p1 <> (sym p2))
testtq ( RArr dl cl pl) ( RArr d2 c2 p2) =
do { p3 <- testEq dl1 d2
; p4 <- testEq cl c2
; return (pl <> (subTab p3 p4) <> (sym p2)) }
testtq ( RPair dl cl pl) ( RPair d2 c2 p2) =
do { p3 <- testEq dl1 d2
; p4 <- testEq cl c2
; return (pl <> (subTab p3 p4) <> (sym p2)) }
testtq _ _ = Nothing

The base cases are quite simple. For example, the case ¢ogipar representations of unit type
testEq ( RUnit pl) ( RUnit p2) = return (pl <> (sym p2))

The proof objecpl has the typd&equal t1 () , and the proof objeqi2 has the typd&qual t2 ()

These proofs are easily combined to construct the fEgoal t1 t2 : 3 L. 0 SYMPZ s
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The other cases work by deconstructing the Raps in parallel, comparing their subparts for equality,

and combining them into proofs of equality between the adgReps. We examine the case f&Arr

(linesamn).

testEq (rl@( RArr dl cl pl)) (rR2@( RArr d2 c2 p2)) =
do { p3 <- testEq d1 d2
; p4 <- testEq cl c2
; return (pl <> (subTab p3 p4) <> (sym p2)) }

We start with proof objectsl:: Equal t1 (-1 — _2) andp2:: Equal t2 (_3 — _4). The first recursive
call totestEq computes the proof objepB:: Equal -1 _3, and the second recursive call computes the

proof objectp4:: Equal _2 _4. The proofg2 andp3 are combined bgubTab to obtain the proof
subTab p3 p4 :: Equal (_1 — 2) (3 —_4)

The final result is obtained by combining these proofs (ufiegproof combinatorsans andsym),

which we show graphically:

pl

t1 (L1—_2)
testEq rl rZH subTab p3 p4
t2 o pg_?) — _4)

Type representations are a powerful programming tool. Ahae seen before, domain value types
encode interesting values in the system. Programming kgegisuch as Haskell, however, do not allow
computation to take place at the type level. Runtime comsparof type representations can be used to
simulate this kind of computation. At runtime, a value oféyRep t, can be compared to some other
valueRep t' . If they are equal, then we know that the domain value typealuates td' , and can use
the resulting equality proof to cast between the two. If theadity test fails, that means that the domain
value typet would not evaluate t6 and the expression was not correctly typed in the first plaegjng
the user the ability to gracefully exit the program. Thidteique has also been used to implement dynamic

typing in a disciplined and type safe manrier [4].

To demonstrate the use of the functiestEq , consider the following small example:

increment :: Rep t —t — Maybe Int
increment rt i =
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do { p <- testEq rt rint -- p:: Equal t Int
; return ((@2b p1 i) + 1) }

The functionincrement  expects two arguments: a representation of typand a value of type. If
the representationis an integ@crement increments the integer by one; otherwise, it retiNpghing

This function relies ontestEq (line@) to compare the argument representatioep Int . If the
comparison succeeds, the prgotan then be used to convert aobject into an integer and perform the

addition. Otherwise, the monad simply propagates failure.

5.1.2 Expressions

Following the method demonstrated in Secfiod 4.3, we cantimapemaining syntactic definitions df;
into their corresponding Haskell data-types. First, we deéffine a number of types and type constructors

that correspond to syntactic pre-termggf

newtype ABS t e = ABS (Rep t) e
newtype VAR x = VAR x
newtype APP el e2 = APP el e2
newtype LIT i = LIT i

We call them “pre-terms” because up to this point there is ap to ensure that these types are combined
in a syntactically correct way. For example, the followingeession does not correspond to any valid

term:

VAR (VAR (LIT String)) :: VAR (VAR (LIT String))

Now, we return from our digression and define an inductivgidntisExp::*  —*. This judgment
defines what it means to be a well-formed syntactic exprasside intuition is that if we have a value
of typelsExp t , thent is a domain value type representing some syntactic expressat the type
level. Furthermore, there is again a one-to-one correspualbetween values of typgExp t and the

expression represented by

data ISExp t =
vn. IsVar (IsNat n) (Equal t (VAR n))
| Vel e2. IsApp (IsExp el) (IsExp e2) (Equal t (APP el e2))
| Vidom e.lsAbs (Rep tdom) (IsExp e) (Equal t (ABS tdom e))
| wvn. IsLit n (Equal t (LIT n))
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isVar :: IsNat n -> IsExp (Var n)
isVvar n = V n refl

iSApp :: ISExp el -> ISExp e2 -> IsExp (APP el e2)
isApp el e2 = IsApp el e2 refl

iSAbs :: Rep t -> ISExp e -> ISExp (ABS t e)
iSAbs t e = IsAbs t e ref

isLit :: a -> IsExp (LIT a)
isLit n = IsLit n refl

The type constructdsExp plays the same role for expression, as the type constrisitat for the

naturals. For example,

expl :: ISExp (ABS Int (ABS (Int —Int) (APP (VAR Z) (VAR (S 2)))))
expl = isAbs rint
(isAbs (rarr rint rint)
(isApp (isVar z) (isVar (s 2))))

Well-formed type assignments can also be represented kvibleof types.

data IsGamma gamma =
IsEmpty (Equal gamma ()
| Vg t. IsGammaExt (IsGamma gamma) (Rep t) (Equal gamma (g,t))

isEmpty :: IsGamma ()
iISEmpty = ISEmpty refl

isGammaExt :: IsGamma g —Rep t —IsGamma (g,t)
isGammaExp g r = IsGammaExp g r refl

The purpose of this section has been to demonstrate thataoorplex domain value types (e.g., those
representing expressions, type assignments etc.) carplesemted and manipulated in the paradigm we
propose. In what follows, we will not use this particular eding as it is not needed — it has been presented

here just for completeness’ sake.
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5.2 Judgments: representing well-typed terms

We begin with a few preliminary observations. First, we tettat there is a set of derivations of the
judgmentl’ + e : 7. This set is defined inductively by the rules in Figlitel 5.1.wWiNwe examine the

correspondences between definitions of various sets @gd) and the Haskell implementation.

The set of types, is encoded by Hasketipesthemselves. For example, thg typeint — Intis
represented by the Haskell typyet — Int . Thus, the semantic function in Figureds.J7]) is then
simply the identity function, since the meanings of terma akrtain type will be mapped into exactly the
same type agaHu.SimiIarly, type assignments (contextd), are represented in Haskell using the Haskell
product type. For example the type assignmgnint, Int — Int is represented by the Haskell nested
product(((),Int),Int —Int) . The underlying semantics of these types, in turn, is pexbidy the
semantics of the underlying language, namely Haskell. Neavare ready to present the actual encoding
of type judgments and their proofs.

The judgment’ |- e : 7isimplemented by a Haskell type construdtap g t ofkind* — * — *.
Each derivation rule from the top of Figureb.1 is represgiig a constructor of th&Exp data-type. We
can read the type :: Exp g t as “Under the type assignment there is an expressianthat has
typet " Figure[522 summarizes the relevant definitions for thekgfi®ncoding.

We have shown how the syntactic expressionsotan be encoded at type level as a judgmsBkp
(Sectiodf&.IP). Following the pattern described in theirmumbers example (Sectibnl4.3), one might
expect that judgments would be encoded bgmary type constructor of kind —* —* —* so that
I'Fe:7correspondst&xp g e t.

Instead, in our encoding, we will opt for an encoding of thetyping judgment that does not require the
L, expressions to appear in its type. This is because the thressipn part of the judgment is uniquely
determined by the type assignment, the type of the expresaial the structure of the typing derivation
(See Propositionl 3).

How is the set of typing judgments encoded in Haskell? Eactstcoctor ofExp corresponds for a

derivation rule of the static semanticsbf. We examine each data-constructoExp in detail below.

Variables. If we examine the judgments of FigUrelb.1 for variable casesyill notice that the two cases
for variables are defined inductively on the natural numbat tepresents the distance of the variable from

its binding site. To simulate this induction on the boundafale indices, rather than on the structure of

2This is due to the fact that types in Haskell and type inare very similar. For some other language whose types ditfen
Haskell's, one must find a less trivial mapping into Haskghets.
SAnother way of saying this is that the type judgment is symfiascted.
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data Exp e t
= Lit Int (Equal t Int)
| V (Var e t)
| Vap. Abs (Rep «) (Exp (e, «) () (Equa
| Va. App (Exp e ( a—1t) (Exp e Q)
| VaB. Pair (Exp e «) (Exp e [) (Equal
| VaB. Pil (Exp e ( «, B) (Equal t Q)
| VYap. Pi2 (Exp e ( o, B)) (Equal t 5)

data Var e t

=Vy. Z (Equal e ( v,t)
| Vva. S (Var ~ t) (Equal e (7, @))
data Rep t

= Rint (Equal t Int)
| Runit (Equal t ()

| VaB. Rarr (Rep o) (Rep ) (Equal t (
| VYap. Rpair (Rep o) (Rep p) (Equal t (

Figure 5.2: Haskell imple

It ( a—p)
t( op)
a—f3))

a, B)

mentation Bikp.

expressions, we define an auxiliary data-tyfae of kind *

data Var e t
= Vv. Z (Equal e (
| Vya. S (Var

7.1))

7 1) (Equal e (7, q))

O

We show the derivation rule and the definition of the constnuside by side:

| Vv. Z (Equal e ( ~,1)

vt FO:t

YyEn:t |
v,abF(n+1):t

Vya. S (Exp « 1)

(Equal e (v, q))

Just as in the judgment of Figure®b.1, there are two cases:

1. First, there is the constructdr This constructor

translates the inductive definition clise as its

argument it takes a proof that there exists some environmsnth that the environmentis equal

to~ extended by .

2. The second constructd@,takes a proof thafvar
proof that the environmemt is equal to the paify,
fied.

~ 1) , and as its second argument it takes the

«), where bothy anda are existentially quanti-
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The name$ andZ are chosen to show how the proofs of the variable judgmerstaueturally the same
as the natural number indices. Finally, the sub-proofsfenariable case are “plugged” into the definition

of Exp e t using the constructo.

Finally, for theVar data-type we define the two smart constructors:

z :: Var (a,b) b
z = Z refl
s i (Var e t) — (Var (e,a) t)

v = S v refl

n

INate:p
Abstraction. The typing rule for abstraction % Y 5 Translation of this derivation into
a.e . —

Haskell is as follows:

data Exp et = . . .
(Va 8. Abs (Rep a) (Exp (e, «) B) (Equal t ( «a—f)))

Intuitively, we can create a typing derivation using #as rule if there exist some Haskell typesand

(G such that

a. We can provide a representation of the typ& his part directly corresponds to the requirement that

the syntax of the lambda expression carry the type of thenaggtivariable.

b. We can provide a proof of the judgmelBxp (e, «) (. This is equivalent to the proof of the
antecedenk, o F e : 3: the abstraction is well-typed if the body of the abstrati®well-typed in

an environment extended with the domain tyfee ) and has the codomain tyge

c. And finally, if we can construct the proof that the argumigipet is equal to the typex — £.
Haskell's system of data-types forces each data constriumation to return éExp e t . This
equality proof argumentallows us to work around this restm, since the proof thatequalsy —

allows us to cast & into the typex — 3.

The smart constructor for abstraction is defined as follows:

abs :: Rep t1 —Exp (etl) t2 —Exp e (11 —1t2)
abs typ body = Abs typ body refl
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Application. The definition of the data constructor for application isegivoelow.
| Va. App (Exp e ( a—t)) (Exp e Q)

It takes two arguments: first is the proof of judgment of thechion expression — this expression has an
arrow typea — t ; the second argument is the proof of the judgment for theragi to which the function

is applied. It's type must be identical to the typef the function domain.

Since this constructor does not contain any equality prdbése is no need for a smart constructor. For

syntactic uniformity with other smart constructors, aithsmart constructor is defined for this case:

app :: Exp e ({1 —t2) —Exp e t1 —Exp e t2
app = App

Examples. We show a couple of examples &f typing judgments in Haskell and their proofs. First
thing to note is that the proofs are constructed using thetaase smart constructors; the use of these
functions forces the Haskell type system to automaticailfgrithe correct shape of the arguments to the

type constructoExp whose value is being constructed. First, we define the \@taenplel .

examplel :: Exp e (Int —(nt —Int) —Int)
examplel = --  Ax. AMf. f X
abs rint

(abs (rarr rint rint)
(app (V 2) (V (s 2))

The definitionexamplel corresponds to the followingy; type derivation:

O,Int=0: 1 tO/arZ)

Al . (Vars) (Varz)
O,Int,Int — Int+ 1 : Int (van) O, Int, Int — Int =0 : (Int — Int) (Var)
O,Int,Int — Int-Var1:Int O,Int, Int — Int - Var 0 : (Int — Int)

(A
O, Int,Int — Int - (Var 0) (Var 1) : Int Aop)

¢, Int = Alnt — Int. (Var 0) (Var 1) : ((Int — Int) — Int)
¢ F Alnt. Alnt — Int. (Var 0) (Var 1) : (Int — (Int — Int) — Int)

(Abs)

(Abs)

Also, note that the following definitiorexample2 , shows how to write proofs dExp judgments for

open terms.
example2 :: Exp ((a,b),(Int,b) — ¢) (Int — C)
example2 = -  Ax2. f1 (x0, x2)

abs rint

@pp (V (s 2)) (pair (V 2) (V (s (s 2))))
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Variable indices 1 and 2 are used in the body of the abstraclibis forces the type of the environment
argument tdExp to grow to accommodate a correct type assignment for thevigables. The definition

example2 corresponds to the following; typing derivation:

(Varz)

<o ((Int x b) — ¢) FO0: ((Intxb) — c)
(Nt x b) — o), It 1: ((Int x b) — o) oy Va0t e varg )
0,b, ((INt X b) — ¢), It Var 1: ((Intx b) — ¢) -k (Var0,Var2) : Int x ¢ '
O, b, ((Int x b) — ¢), Int+ (Var 1) (Var 0, Var 2) : (Int — ¢)
O, b, ((Int X b) — ¢) F Alnt. (Var 1) (Var 0, Var 2) : (Int — c¢)

(VarS)

(Var)

(App)

(Abs)

One should note that type variables that occur in the tygxafple2 arenotpart of the type system of
L4; rather, they are meta-variables. Intuitively, this cepends to a wholéamily of L, judgments, where

arbitrary L, types can be substituted for meta-varialblendc.

5.2.1 Interpreter

The interpreter function is, in a way, the simplest of all #hgfacts of the language implementation in this

style. Itis a function of typ&xp e t — e —t, whose definition is shown in Figufeh.3.

In this function the equality proofs that proofs of judgneobntain become essential.

(m) eval ( Lit i p) env="b2a p i
-- p :: Equal t Int
- i Int
- b2api it

In lineg, theeval function must return a result of typie but all we have is the integér. However, we
also have the progé :: Equal t Int . Now we can use the functid?a to obtain(b2a p i)

which has the type.

The the variable case (limesimply passes control to the auxiliary functiewalVar

eval ( V v) env = evalVar v env

evalvar :: (Var e t) — e — t
evalVar ( Z p) env = snd (a2b p env) - p :: Equal e (1,0
evalVar ( S v p) env = evalVar v (fst (a2b p env))

-- env te

-V oVar 1t
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-p ;o Equal e (U1, 2)
- azb penv : (1,2

This function performs the appropriate projection fromémgironment: in linga, we first use the proof
objectp :: Equal e ( ~,t) tocastthe environmestinto type(v,t ), and then to project the second
element of type . Linemimplements the weakening case for variables. Again, thalégyproofp is used

to cast the environment to a pair, and pass the sub-envinortmée recursive call tevalVar

The case for application is defined as follows (in ke

eval ( App f x) env = (eval f env) (eval x env)
- f o Expe (1 —1)

- X = Expe_1
--eval fenv: 1 —t
- eval x env i 1

(eval f env) (eval x env) :: t

First, the function part of the application is evaluatediagting a function value of type —t ; next,
the argument is evaluated obtaining a value of typ&inally the resulting function is applied, obtaining a
result of typet . It is worth noting that in this case the functiemal is called recursively at two different

instances, namelgxp e ( a—t) andExp e «, requiring the use gbolymorphic recursion

eval 1 (Exp e t) — e — t

eval ( Lit i p)env=>hb2api

eval ( V v) env = evalVar v env

eval ( App f x) env = (eval f env) (eval x env)

eval ( Abs r body p) env = b2a p ( \ x — eval body (env,x))
eval ( Pair x y p) env = b2a p (eval x env, eval y env)

eval ( Pil e p) env = b2a p (fst (eval e env))

eval ( Pi2 e p) env = b2a p (snd (eval e env))

evalVar :: (Var e t) — e — t

evalVar ( Z p) env = snd (a2b p env)
evalVar ( S v p) env = evalVar v (fst (a2b p env))

Figure 5.3:L+: the interpreteeval

Other cases aéval are similar to the ones already discussed above, and wileetaborated in detail.
The general pattern could be summarized as follows. Theifimeval takes apart a proof of a judgment
(Exp or Var) to produce a value: the type of the value produced is coedihin the type index of the

judgment. The proof of the judgment must contain sufficieptadity proofs that can be used to circumvent
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typing problems that arise by casting. The inductive nadfithe judgment proofs often requires tiea@al

be called recursively at different types, so the use of polyrhic recursion is essential.

5.2.2 Type-checker

type Name = String

data E
=1 Int | AEE | LamName T E
| Var Name | PE E | P1 E
| P2 E

data T = Va. T (Rep «)

tint,tunit :: T

tint = T rint

tunit = T runit

tarr o T - T - T

tarr x y =

case (x,y) of ( TaThbh — T (arr ab)
tpair x y = T - T = T

Figure 5.4: Syntactic pre-expressions and types

In Section[5.2 we have shown how the data-tfpe e t encodes only well-typed termsH In
Section 5. 211 we have presented an interpreter which majpsywed L, terms of typeExp e t into
corresponding values of tyge One part that is missing in this language implementatiosoizie kind
of parsingor type-checkingunction. Such a function must take as its arguments eittniexgs, or simple
pre-expressions df,, and produc&xp e t values if the input terms are well-typed (or if they are tektu
representations of well-typeld, terms).

We make a small digression here to make an observation a®stntactic pre-termi (Figure[2.%).
For increased human readability the pre-expressions dageotle Bruijn style of variable representation.
Thus the type-checking function converts these terms waitiatale names to the nameless notation of
Exp judgment proofs. This is easily accomplished by simply kegm@ history of binding occurrences
of variables as we descend down the term, then computingoggign in the list at variable use sites.
Second, pre-expressiofscarry type annotations on bound variables\iabstractions. For this we need
some syntactic representation of types. We resort to a v&fuliand concise trick: a type of syntactic

representations df; types will simply be the data-type, whereT' = Ja.Rep a. This way, converting the

4To be precise, values of this data-type encode proof damebf the typing judgments dt,, but since for each well-typefi;
expression in a given context there is only one such deoivative can treat the proofs as standing for their correspgngirms. We
will use the term “well-typed expression” for such a proofes the correspondence is clear from the context.
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syntactic typeg into Reps is accomplished by simply “unpacking” existential paakagpeT.

Having defined syntactic pre-terms, we encounter a proliiemever, when we try to give a type to the

type-checking function:
tc o E —Exp 71 7

The problem is that types to be used in plac€po&nd?, are different depending on the values of the
E argument, which means that the function could not return a single type, but rather a whole family of
types. For example, for an input terk : Int. z it must returnExp e (Int  —Int) , while for the input
term4 it must returrExp e Int

Fortunately, using existential types we can indeed givepa tp the functioric used above. This type
is:
tc . -.- — Maybe (Jap. (Rep p7), (Rep «),

(Exp o )

One thing to note is that in Haskell we must encode existetyjies as data-types. This is why we define
the data-typd f , which takes a binary type construcforand encodesag. (Rep 3)(Rep a)(f « 3).
Then,f can be instantiated either wiktxp to obtain the range type ¢ , or with Var to obtain the range

type oflookup (shown later). The full implementation of the functitn is given in Figurg515.

data J f = VaB. J (Rep B) Rep o) f «a 0)
tc :: [Name] — E — T — Maybe (J Exp)

The first argument to the function is a list of variable nanvasich is used to compute the appropriate
variable indices. The second argument is, of course, theexpeession for which a judgment will be
constructed. The third argumenttaf is the initial type assignment giving types for free varébin the
input expression. Conceptually, this is a list of types esponding to the types whose indices are listed in
the first argument. However, we will use a single nested yai to encode this list in order to make our
definitions more compact.

The Maybe type of the codomain represents the possibility that thetimpay not be well-typed and
therefore ndExp can be produced. In addition to dBXp « () it is necessary that the function return a
runtime representation of the types of the environmentheddsult as well, so they too are included in the

type ofJ above.

The typel Exp (linem) is defined as a representatiordeft.(Rep t) (Rep €) (Exp e t) and
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J Var for Jet.(Rep t) (Rep e) (Var e t) , since Haskell allows the use existential types only
in data-type definitions.

Now let us examine some of the cases for which the fundtions defined. The case for literals (lige
is quite simple: the type environment argument is unpacketstored as the type representation of the

environment.

(&) tc vs (I i) (T env) = return (J rint env (lit i))

Type representationint  is used to encode the type of the expression itself. The mbtife typing
judgment itself islft i ). These three values are packed up together and returnedeaslftof type
J Exp.

Next case is the abstraction (linas).

(8 tc vs (Lam name t e) gamma =
do { J rcod (Rpair renv rdom pl) j — tc (name:vs) e (tpair gamma t)
(m) ; return (J (rarr rdom rcod) renv (lam rdom (castTa_ pl j))) }

Here we first recursively construct proof for the typing jutent of the body of the\-abstraction in
the type assignment extended by the domain type. Then, enp#tkage is constructed as a proof of
the judgment for the abstraction. In ligethe combinatorcastTa _ is used to cast, which has the
typeExp _e cod to Exp (env,dom) cod , whererdom :: Rep dom ,rcod ::Rep cod and
renv :: Rep env . Such use of casting and other equality combinators is sacgso ensure that

existential variables do not escape the scope of their wipgc

The case for application (linesm) is more complex.

(m) tc vs (A f a) gamma =

do { J rf envl f «— tcvs fgamma --rf i Rep f
;Jry env2 y «— tc vs agamma --ry @ Repy
; Rarr a b pl  « return rf
; p2 <« testEq ry a -- p2 :: Equal y a
; p3 «— testEq env2 envl
(m) ; return (3 b envl (app (castTa pl f) (castTab p3 p2 y))) }

ItusestestEq in a number of places to ensure that the representation tfples returned by the recur-

sive calls match. For example, the type of the domain of thetian must be equal to the representation of
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the type of the argument. Then, various casting operatarshesproofs of equality returned by those tests
to correctly type the resulting judgment. The functiestEq ensures that if any of these equalities fail,

the entire type-checking function fails as well.

Finally, we show the variable case.

(g tc vs (Var str) gamma =
(8 do { Jtej <« lookup str vs gamma
(@) ;retun Jte (V) }

(e lookup :: [Char] — [[Char]] — T — Maybe (J Var)
lookup nm [] env = Nothing
lookup nm (n:ns) (T (Rpair a b pl)) =
if eqStr nm n
then return (J b (rpair a b) z)
else do { Jty rgamma j <« lookup nm ns (T a)
; return(J ty (rpair rgamma b) (s j)) }
(m) lookup nm ns env = Nothing

As with eval , the variable case (linags) is implemented using an auxiliary function to handle the
induction on variable indices: the functida passes control to the functidookup (linesgzzs). The
function lookup constructs the sub-derivation of tyde Var , by searching down the list of variable
names and building appropriatéar index. Oncelookup returns, its result is unpacked (ligg and

repackaged asd Exp.

5.3 Pattern matching andL{

In this section, we shall extend the langudgewith sum types and pattern matching. We shall call the

language so obtaineld|. The motivation for this step is twofold:

1. Patterns are an interesting feature of most modern fumaitprogramming language. Demonstrating
that patterns can be easily and elegantly integrated intangpiementation framework is a further

demonstration of its usefulness and power.

2. Pattern matching introduces the notionfaifure into the semantics of the language. Such failure
is one of the simplestomputational effectthat can be introduced into a programming language.

Concentrating on such a simple effects will help motivatefatther forays into this area.



© 0N A WN R

WWRNNNNNNNNNRNER R B B BB e e
PO ©® N RONRP,O®©® NS ®NR O

118

data J f = VaB. J (Rep B) (Rep o) f « B)

tc 1 [Name] — E — T — Maybe (J Exp)
tc vs (I i) (T env) = return (J rint env (lit i)
tc vs (Var str) gamma =
do { Jtej <« lookup str vs gamma
;return 3t e (V) }
tc vs (Lam name t e) gamma =
do { J rcod (Rpair renv rdom p1) j «— tc (name:vs) e (tpair gamma t)
; return (3 (rarr rdom rcod) renv (lam rdom (castTa_ pl j)))
tc vs (A f a) gamma =
do { J rf envl f «— tc vs f gamma -- rf ;1 Rep f
;Jry env2 y «— tc vsagamma --ry I Repy
; Rarr a b pl «— return rf
; p2 <« testEq ry a - p2 :: Equal y a
; p3  «— testEq env2 envl
; return (J b envl (app (castTa pl f) (castTab p3 p2 vy))) }
tc vs (P x y) gamma =
do { J rx envl xexp <« tc vs x gamma -- rf ;1 Rep f
; J ry env2 yexp «— tcvsy gamma --r1y I Repy
; pl  «— testEq env2 envl
; return(d (rpair rx ry) envl (pair xexp (castTab pl refl yexp )) }

lookup :: [Char] — [[Char]] — T — Maybe (J Var)
lookup nm [] env = Nothing
lookup nm (n:ns) (T (Rpair a b pl)) =
if eqStr nm n
then return (J b (rpair a b) z)
else do { Jty rgamma j <« lookup nm ns (T a)
; return(d ty (rpair rgamma b) (s j)) }

lookup nm ns env = Nothing

Figure 5.5: Typechecking function fdr

5.3.1 Syntax ofL{

First, the definition ofL; types is obtained by extendirg types with sums:

TET = |1+ 7

Patterns. We shall first define a notion gfatternthat will allow us a more succinct and flexible notation

for eliminations of both sums and products, modeled afteilar constructs in functional languages such

as Standard ML or Haskell.

The set of patterns is defined as follows:

peEPu=e.|Inlp|Inrp]| (p1,p2)

Patterns can either be variable bindingg)(which are annotated by the type of the values they bind gtte |
or right case of the sum constructor, or pairs of patternghértext that follows, we shall omit the explicit

type annotations whenever they are discernible from théegbn
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I'kp:m =Ty

(Var) (Inl)

Il'te.:7=1,7 T'Finlp: 7 +7m7 =15

FFpZT2:>F2 . ) FFp12T1:>F2F2Fp227'2:>F3
Inr
\

(Pair
Tklinrp:m+m =15 ' )

Lk (p1,p2) 11 X172 =13
The intuition behind the pattern checking relatibn - p : 7 = I'y is: “under the type assignment

T'y, the patterrnp deconstructs an expression of typeielding an extended type assignméht” The

positional style for naming variables that we have adopedughout this chapter means that variables
bound in patterns do not have names. Since more than ondkacin be bound in pattern, we must make
a decision as to what numerical indices those variablesbgilteferred to: we chose that the “furthest”
binding site is the leftmost-bottommost variaHIEhe picture in FigurEXl6 illustrates the binding structure
of the term\(e, o). (Var 1, Var 0), where the curved lines point to the binding site of varialiethe body

of an abstraction.

I'ep:Int=T,Int T, IntF e : INt =T, Int, Int — Int
Tt (ont, ®nt—int) : (Int x (Int — Int)) = T, Int, (Int — Int)
‘ L F Inl (e, ®jn—int) : (INt x (Int — Int)) + Int = T, Int, (Int — Int)

App

N

Var 1 Var (

Figure 5.6: Binding multiple variables in patterns.

The definition of the pattern checking relation (case forgaieflects this — left sub-pattern bindings
precede right sub-pattern bindings in the augmented tygigraments. For example, the Figlitel5.6 gives
the derivation rules for proofs of the pattern judgment (e ., ®|nt_int)-

The next step is to extend theabstractions of_; to work with patterns. Note that the patternsiin
abstractions do not admit alternatives, and we will delaydiscussion of the semantics of pattern matching
failure until later section when we discuss the case exjmessThe syntactic form for the nekvabstraction
is as follows:

e€E =] Ape
The typing rule incorporates the new pattern typing judgtsien

Fl—p:T1:>1—‘2 I'sokFe:m
(Abs)

I'HXpe:m — 7

5Alternatively, we could say that the rightmost-uppermasiable is the one whose index is 0.
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The new-style abstractions include the old-style abstmadfirtually unchangedt' - Aejnt var o = (INt —
Int). However, now we can have more complicated abstracti@hs: A(ejnt, ®gool)-(Var 0,Var 1) :

(Int x Bool — Bool x Int).

Sums. There are two new expression forms that are used as intiodumdnstructs for sums, the two

injectionsInl andinr. A case construct is used for sum elimination:
e€cEu=---|Inl,  el|lnr, ,, e|caseeofp, =€,

One thing to note is that the case expression takes an aytitnanber of matches of patterns that are the

same as the ones introduced feabstractions: they can be incomplete and/or nested toldineay depth.

The typing rules for sum introduction and elimination areegi below:

I'Fe:m In I'Fe:m .
In Inr
THINl, ., e:(m+m) ) THInr, ., e:(m +m) )
I'tey:mm Thpy:mm=1, I'yFe,:m
(Case)

I'tcasee; of p, = €m : T2
5.3.2 Semantics of; with Patterns

The semantics of sum types is easy to give in the categotigial we have used in Sectign 50.1. The

meaning of a sum type is the disjoint sum of the meanings dftbesummands:

[ + 7] =[]+ ]
[THInle:m1+7] =Inl [TFe:n]
[THInre:m +7] =Inr [['Fe: 7]

The addition of pattern matching o, introduces a notion gbattern matching failureéo the semantics

of L, programs. The notion of failure may manifest itself in tweléted) ways:

1. Global failure. Pattern matching may fail when no pattern can be found tomistnact a particular
value. This may occur, for example, kxexpressions (or incompletmase expressions), such as

(A(Inle).Var 0) (Inr 10). In case of such a failure, the meaning of the program is unelefi

2. Local failure. Pattern matching may fail as one of a number of alternativesdase expression.
Local failure may, or may not, be promoted into a global fagluf one of a number pattern matches
in a case expression fails, the control should be passethéo otatches, until one of them succeeds.

If there no such succeeding patterns, a global failure shiaie place.
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The problem posed by introducing effects such as failuetim: semantics of programming languages is
that the entire semantic definition must be “overhauledgriter to properly propagate the effect of failure
throughout the meaning of the program. We note here that faitare is more benign in this sense then
global failure — it is possible to statically ensure thapalttern matches are complete, so that local failure is

never promoted into a global failure. Encoding such a stastriction in the type system is an interesting

problem for future work.
One way to structure denotational semantic definitions $o bs able to manage effects in a more clean,

generic and modular way is to usenadq[84,183,72]).

The denotations of; programs augmented by pattern matching are the meaninge 6f ttypes aug-
mented by a special valueail indicating failure of pattern matching somewhere in thegpam. Thus,

definition of the monad\ for our purposes would be

MA = A+ {Fail}
returnyc e =Inl e
(Inr Fail) x»¢ f =Inr

(Inl v) xn f =fw

Two non-proper morphism&il  and [[(pronounced “fatbar”), are also defined.

failyy = Inr Fail
(Inr Fail) | m =m
mi I] mo =m

The first,fail, represents a failing computation. The secdnds a biased (left) choice operator (also called
“fatbar”): given two computations, its value is the first paaless it fails, in which case it returns the second

computation. (For a detailed discussion of semantics ¢épat in Haskell, and of “fatbar”, see 156]).

Finally, we can define the meaning of types/gf in a new monad-based framework.

[Int] =N

[ +7m] =I[n]+ ]

[n = 7] =[n]—M[r]
Sums inL]" are mapped to the (set theoretic) sums in the meta-lang@rgenotable difference from the
semantics of.; types is that the function space has been changed so thaniidisM [r2]. This reflects
the fact that functions suspend computations and theictsffafter a function is applied, computing the

result of the range typrz] may also result in effects that the morfsidhides.
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The semantics of patterns is defined as follows:

[CEp:7 =17 7l =[] — ™[]

[THe :7=T7]vp = returny (p, v)

[CEINlp: (1 +72) =T (Inl v) p =Tkp:mn=TTvp
[CEInlp: (11 4+7) =TT (nr v) p = faily

[CEInrp: (1 +72) =TT (nr v) p =[Ckp:m=T]vp
[CEInrp:(m+72) =T (nl v)p = faily

[TF (p1,p2) : (1 X 72) = T3] (v1,v2) p= ([CFp1:71 = T1] v1 p) *m Ap1.

([Ty Fp2: 1o =T v p1)

The meaning of patterns is defined by induction on the deoiwatof the pattern inference judgment
'+ p: 7 = T'. The meaning is a function that deconstructs a value of fypend produces a runtime
environment transformer that either augments the runtinv@@ment with bindings for variables in the
patternp. Note that deconstructing a sum value, if there is a mismattine injections between the pattern

and the value, may result in failure. Hence the type
[CEp:r=T7:[r] — [T - M[']
Now, let us consider the semantics of functions with patteatching:
[CEXp.e:mi—=m]p =X(Crp:m=TTvp) v M .([IVFe:m]p)

The meaning of functions consists of two parts: first, meguihpattern deconstructs the function ar-
gument. If this computation succeeds, a new runtime enmeip’ is constructed and the body of the

function is evaluated in this new environment.
Finally, we consider the meaning oése expressions.
[T'+caseeofp, = e,:7]p= [T'Fe:n] xn Av.
[CEpr:7=T1]vp*m dp1.[T1ter:7] p1
| [CEp2:7=T2]vp*n Ap2.[T2t ex: 7] p2

[

| IChpn:7=Ta]vp*xm Aon[Tnten:7] pn
5.3.3 Implementation ofL; with Patterns

The data-typ@at t gin gout  corresponds to the well-typedness judgments on patigfnsp : 7 =
FOUI-
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data Pat t gin gout =
Pvar (Equal gout (gin,t))
| VYap. PInl (Pat « gin gout) (Equal t (Either a ()
| VYap. Plnr (Pat [ gin gout) (Equal t (Either a ()
| VaBy. PPair (Pat « gin ) (Pat ( ~ gout) (Equal t ( a, )

Note that we omit the actual encodings of patterns in the Bgie since it is unnecessary to the de-
velopment presented here. The case for variable-bindittigrpaPVar carries the proof that the type of
the target type assignmegout is equal to the source type assignmgint paired with the type of the
pattern itself Equal gout (gin,t) ). The left injection patterInl takes as its argument the proof
of a pattern judgmerRat « gin gout ,together with the proof thatequalsEither o (. The most
interesting case is the pair pattern. Its first argument iafof the pattern judgmeat « gin §.

The target type assignment of the first argumenis then given as a source type assignment to the second
argumenPat [ ~ gout , thusimposing a sequence on type assignment extensioaifsr ginally, this

constructor also needs a proof that the type of the pattemqualy «, () .

Below, we give the definitions of the smart constructors faitding proofs of pattern judgments.

pvar :: Pat a b (b,a)
pvar = PVar refl

pinl :: Pat a b ¢ —Pat (Either a d) b ¢
pinl pat = Pl nl pat refl

pinr :: Pat a b ¢ —Pat (Either d a) b ¢
pinr pat = Pl nr pat refl

ppair :: Pat a b ¢ —Patd ce —Pat (ad) b e
ppair patl pat2 = PPai r patl pat2 refl

The next step is to extend the definition of expressions t&kwath patterns.

data Exp e t
= Lit Int (Equal t Int)
| V (Var e t)
| [Vapy. Abs (Pat a e 7) (Exp 7 B) (Equal t (  a—p)) |
I
I

Va. App (Exp e ( a—1t) (Exp e Q)
Vap. Pair (Exp e «) (Exp e 0) (Equal t (  «, f))
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abs : Patabc —Expcd-—Expb (a —d)
abs p e = Abs p e refl

The only change from the previous definition (Figlird 5.2h&X-abstraction case (Ling: the abstrac-
tion constructor takes as its first argument a pattern jusigmbich, given an argument of the domain type
«, produces an extended type assignmenThen, the judgment for the body of the abstraction is typed
under the the extended type assignmenith the codomain types. Note, that with the introduction of
pair patterns, we have dispensed with the need for sepdmaieation constructsRil andPi2 ) for the

product types.

Example We list an example well-typed term with patterns:

- swap = (e, e).(Var0,Var1)
swap :: Exp a ((b,c) — (c,b))
swap = abs (ppair pvar pvar) (pair (V z) (V (s 2))

The function swap uses the pattém) e) to deconstruct a pair, and returns a pair with the order of its

elements reversed. Note that the variable index 2éra, refers to the rightmost variable in the pattern.

Case expressions Case expressions are used to eliminate sum types. We ekieityping judgment for

expressions with the construciGase:

data Exp e t =
| Va. ECase (Exp e «) [Match e « f{]
data Match e t' t = forall e'. Match (Pat t' e e€') (Exp €' 1)

A case expression consists of a discriminated expressitypeExp e «, and a list ofmatches The
data-typeMatch is a ternary type constructor: its first argument is the tygpggmmente; its second
argument is the type of the discriminated expressionits third argument is the result type of the match
t . Since each pattern in a match may bind a different numbeanébles, the type assignment that the
right hand side expression of each of the matches in a casdendifferent. Thus, an existential type is
introduced in the definition of the matches. A match is a plérjpattern and an expression, where for each

match there exists an output type assignneenproduced by that pattern, in which the expression is typed.
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An Interpreter for L

There are a number of design choices to take when implengetita interpreter for the language with
pattern-matching. The first is how to handle local and gldadlire. For the interpreter we will present

here we have opted for the following:

1. Global failure is modeled by a non-terminating Haskethpaitation. This diverges somewhat from

the set-theoretic model we have outlined above, but it makesefinitions more concise.

2. Local failure is modeled by computations in the Haskédlybe monad, as outlined in SectiGn 5.18.2.

In case expressions, after alternatives to the local fslare exhausted, global failure is raised.

The first step is to implement the evaluation function fortgrats.

fatbar :: Maybe a — Maybe a— Maybe a
fatbar ( Just x) e = Just X
fatbar Nothing e = e

evalPat :: (Pat t ein eout) —t —(ein — Maybe eout)
evalPat ( PVar p) v = \e—return (b2a p (e,v))
evalPat ( PInl pt p) v= \e— case a2b p v of

Left x —evalPat2 pt x e
Ri ght _ —Nothing
evalPat ( Plnr pt p)v= \e— case a2b p v of
Left _ — Nothing
Ri ght x — evalPat2 pt x e
evalPat ( PPair patl pat2 p) v = \e —
let v =a2bpyv
in do { e <- evalPat2 patl (fst V') e
; evalPat2 pat2 (snd V') €’ }

The functionevalPat takes a proof of the pattern judgmdpat t ein eout , a value of typd ,
and returns aenvironment transformdunctionein — Maybe eout , where theMaybe type in the co-
domain indicates that pattern matching may fail (localifia).

The case for variables is trivial: given a valuethe environment transformer simply adds the value
onto the initial environment.

The case foinl patterns is more interesting. First, the values discriminated to determine whether it
is the left or right injection of a sum. If it is the left injéoh, evalPat recursively deconstructs the sub-
pattern with the projection of the value. If, however, thiueshas the form of the right injection, failure is

symoked using the non-proper morphifail . The case for the right injection pattern is symmetric.
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Finally, for pair patternsevalPat first evaluates the left sub-pattern with the left elemerthefpair
value. Then, the right sub-pattern is recursively matchidte environment is threaded through from the

results of the left to the input of the right pattern match.
Having definecevalPat , we are ready to give semantics ofabstractions with patterns and the case

expressions:

eval :: (Exp e t) —e—t
eval ( Abs pat exp p) env = b2a p
(\x—
case (evalPat pat x env) of
Just env’ —eval exp env’
Not hi ng — error "Pattern match failure in abstraction!")
eval ( Case e branches) env =
case (evalCase (eval e env) branches env) of

Just v—v
Not hi ng — error "Pattern match failure"

evalCase :: tl —[Match e t1 t2] — e — Maybe t2
evalCase val [] env = fail
evalCase val (( Match pat branch):rest) env =
(do { e’ <- evalPat pat val env
; return (eval branch e’) b
‘fatbar’
(evalCase val rest env)

The case okval for abstraction (linesm) creates a function value whose argumentjs passed to
evalPat in order to create an extended runtime environnggt . In case of failure okvalPat , an
error is raised. If the pattern matching succeeds, the bédyeofunction is evaluated in the augmented
runtime environmengnv’ .

The case oéval for the case expressions first evaluates the expressiondistréminated, and passes
the resulting value to the functievalCase . If evalCase succeeds, its value is returned as the final
result. In case of failure afvalCase , a pattern matching error (global failure) is raised.

The functiorevalCase (linesmm) performs the evaluation of a case expression. If there@meaiches
left to examine (lingz), failure is raised. Otherwise, for each of the matchesptitéern is evaluated with
evalPat against the value of the discriminated expression. If thteepamatch succeeds, the augmented
environment is passed on éval of the right hand side of the match. If a local failure occuong the

way, evalCase re-tries with the next match.
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Example As a more comprehensive example, we implement the factomation. This function uses a
few more syntax building combinators than has been intredurt the previous text. These are additions to
L7 that support recursive definitionfiq ), arithmetic and integer comparison operations. Theiratigres

are given below:

data Exp e t = . . .

| Fix (Exp (et) t)
fix :: Exp (et) t —Exp et
fix e = Fix e
eval ( Fix e) env = eval e (env, eval ( Fi x e) env)
Ite :: Exp e Int —Exp e Int —Exp e Bool
times,minus :: Exp e Int —Exp e Int —Exp e Int
fact2 :: Ext e (Int — Int)
fact2 = fix

(lam

(ecase (lte (V z) (lit 0))
[ Match (pinl pvar) (lit
, Match (pinr pvar) body
where body = times (V (s z)) rcall
all = (V (s (s 2)) ‘app* (minus (V (s z)) (lit 1))

Note that we use lines and arrows to connect a use site of ablanvith its binding site. Note also that

fix binds a variable which is used in the recursive call to theofzal.

5.4 Staging

The technique for encoding and interpreting languagespted in the previous sections may at first ap-
pear untagged. The interpreter functiewal has the typeexp e t —e —t: instead of injecting all
possible types of its result values into a single value dairthe interpreter returns “untagged” values: in-
tegers, functions, and soH)rHowever, instead of tagging with injections into the umséa# domain, these
interpreters exhibit another form of tagging, as can bellet&rom the following part of the definition of

eval :

60ne should note that a number of programming language &satame together to make this possible. The use of equatisty
has already been explained in considerable detail. Funibrer, parametric polymorphism and polymorphic recursimweus to type
functions likeeval .



128

eval :: (Exp e t) —e—t

eval ( Lit ip)env= |b2ap]i
eval ( Pair el e2 p) env = (eval el env, eval e2 env)

Note that the boxed casting operations in fact play the saeeas injections and projections of the
universal value domains in more traditional implementadiof interpreters in Haskell. In this section,
however, we will point to a crucial difference between tagguntagging operations with an universal value
domain and the casting and equality operators we use. Tsiimiction becomes visible and practically

useful only when we adstagingto the meta-language.

5.4.1 Staging: Interpretive and Tagging Overhead

We will first make a small digression to introduce and motvidite notion and techniques stiaging
Consider the following interpreter fdt". We use typing judgment as usual, but the range of the eval is a
universal domain of value&/{ which is a sum of functional values (t&), integers (tag/I ), pairs (tag

VP), and tagged sums (tafS). The interpreteeval0 contains uses of tagging and untagging operations

(i.e., the operations which inject or project into/out of tmiversal value domain), which are highlighted.

data V.= VF (V—=V)| VI Int| VPV V| VS (Either V V)
unVF (VF f) = f

eval0 :: Exp e t —[val] —Val

eval0 ( Lit i _)env=[VI]i

eval0 ( V var) env = evalvarQ var env

eval0 ( App f x) env = (evalo f env) (evald x env)
eval0 ( Abs pat e ) env =

[VF](\v—evalo e (unJust(evalPat0 pat v env)))

evalvVarO :: Var et -> [V] > V
evalVarO ( Z ) (vivs) = v
evalVarO ( S s _) (vivs) = evalvar0 s vs

evalPatO :: Pat t ein eout -> V -> [V] -> Maybe [V]
evalPat0O ( PVar _) v env = return (v:env)

An examination of the interpreteval0 reveals two sources of inefficiency:
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Interpretive overhead. Interpretive overhead [67] is the main reason why integatgirograms are as
a rule less efficient than compiled programs. The overheatkesdrom the fact that the interpreter must
spend considerable computation time and resources tozmnatyd interpret a prograat runtimeof the
program it is interpreting. For example, the functieval0 calls itself recursively in the body of ¥F
value when it interprets afibs expression. Moreover, these recursive callewal0 arelatent: they are
not symoked until the function valléF f is untagged and applied at run-time. If the functional vasue

applied many times, the latent recursive calls will be perfed each time.

A more efficient implementation can be obtained by spedrajizhe interpreter with respect a given
object program (the first Futamura projectidnl[38, 67])stim effectunfoldsthe interpreter “statically,” at
a stage earlier than the actual execution of the prograngheiarpreted, thus removing from the runtime
execution of the program all the operations on its sourcéasyperformed by the interpreter. This means,
among other things, that latent recursion present ilvlRease can be removed by “evaluating under the

lambda” of the tag/F. For example, instead a value

[VF](\v—evalo (V z) (v:env))

we obtain the equivalent, but more efficient

(\v— V)

Traditionally, partial evaluation has been used to perfeinia kind of specialization of interpreters.
Meta-programming bystagingoffers a particularly elegant way of removing this intetjwe overhead
(e.g., [117]).

Following MetaML [137/136], we will introduce into our metanguage a type afode , (here written
(Ot, taking the syntax from Davieb [B0,129]) which indicatesrfquutation oft deferred to the next com-
putational stage.” An introduction construct for this cdgee are thecode bracketse), which delay the
expressiore of typet , obtaining a value of typé)t . Code can be “spliced” into a larger code context by
theescapexpressiofie . When an escape expression appears inside code bracketsctiped expression
is computed at the earlier computational stage. The resités computation (which itself must be a code
value) is then “spliced” at the same spot in the delayed comibere the escape had first appeared.

We consider adding staging constructs to Haskell as a caatser extension relatively uncontroversial.
Combining staging constructs with a call-by-name languslgmuld be no more difficult than combining
them with a call-by-value on& [129]. We have implementedderpreter for a Haskell-like language with
staging[124], in which the subsequent program examplewatten.

We will now stage the example interpre®vral0 , obtaining a two-stage versioryal0S . The ex-

ecution of the functiorevalOS is divided into two distinct computational stages: in thstfstage, the
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interpreter is unfolded over a particular expression,qrenfng all the interpretive operations on the syntax
of the program itself; in the second stage (properly a roretstage of the interpreted expression), only

computation pertaining to the object program on which therpreter was specialized remains.

eval0S : Exp et —(Q[val] —Qval

evaloS ( Lit i _)env = (VI]i)

eval0S ( V var) env = evalVar0S var env

evaloS ( App f x) env =  ((unVF] “(evaloS f env) “(eval0S x env) )
eval0S ( Abs pat e ) env =
(VF](\v—"(evaloS e  (unJust “(evalPat0OS pat (v) env) ))

evalvVar0S :: Var e t —[QOV] = OV
evalVarOS ( Z _) env = <(head env)
evalVarOS ( S s _) env = evalVar0S s (tail "env )

evalPat0OS :: Pat t ein eout —V—=[QV] — O(Maybe [V])
evalPatOS ( PVar _) v env = (return (vienv) )

Applying the functioreval0S to an example expression yields the following result:

exl = eval2 ( Abs (Abs (App (Var 0) ( Var 1)) ]
- (VF (\x = VF(\y — unVF (head [y,x]) (head (tail [y.x])))) )

vl = run exl
vl .V

MetaML also has aun operation which takes an expression of typé and runs the delayed computa-
tion now, yielding a value of type. Itis importantto note thaun ex1 returnsa/from whose evaluation
all recursive calls t@val0OS have been removed: even though it is easily provable thatataML [129]
(evalo e []) is semantically equivalent fgun (eval0S e [])) , the latter expression executes

potentially considerably faster then the first (dee 62 fa6ome experimental measurements).

Tagging overhead. Another kind of overhead introduced into interpreterdagging overheadfor a
detailed explanation see Sectlon211.1). Tagging overbeaurs in certain situations when both the meta-
language and the object-language are strongly typed, buyfie system of the meta-language forces the

programmer to “sum up” the values of the object-languaggnamos purely in order to make the interpreter
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type-check[[102]. If we only consider interpreting welpgd object language programs, these tags are
unnecessary — the strong typing of the object language emshat no tag mismatch occurs at runtime.
This is the case with the interpreteval0 given above, since evaluating proofs judgments restrigts t
function to evaluating only well-typefl| expressions. When such an interpreter is staged, the taggah

untagging operations are inherited by the residual program

For example, the residual program first shown above has thgggng operations (shown boxed):

(VF] (\x —=[VF](\y — (head [y.x]) (head (tail [y,x])))) )

When interpreting large programs, these tags can proldeand cause considerable run-time perfor-

mance penalty [133].

5.4.2 Staging the Interpreter for L}

We will proceed with staging of the interpreter fbf in a couple of steps. First, we will make the most
straightforward (naive) staging modification to the ipteter we have already presented. Then, we will
discuss how certaibinding time improvemen{4] can be made to the original interpreter to make staging

even more efficient.

First Attempt

The simplest way of staging an interpreter is to begin withttxt of the original (non-staged) interpreter,
and simply add staging annotations to it, separating tteepnéter into two phases: the static (staging time)
and dynamic (run-time) phase. In this operation we are glimetypes: we shall add a single circle type

to the types of values we expect to be performed in the dynphase.

Thus, the type of theval functionis changed frofExp e t) —e—t to
(Exp e t) — (Oe — (Ot, meaning that the runtime environment binding values téabées, and the

value returned by the interpreter are dynamic. The solifggrogram itself Exp e t ) remains static.

We now examine the annotations and changes that need to etttk definition okval .

evalS : Expet —0e—-Ct
evalS ( Lit i p) env = castTa (sym p) (i)
evalS ( V v) env = evalVarS v env
evalS ( Abs pat body p) env = castTa (sym p)
(\x — (let_ env2 = unJust “(evalPatS pat (x) env)
in_ “(evalS body (env2 ) )
evalS ( App el e2) env = ("(evalS el env) “(evalS e2 env) )
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evalVarS :: Var e t —-0Qe—=0Ot

evalVarS ( Z p) env = (snd “(castTa p env) )

evalvVarS ( S v p) env = (let  env2 = fst “(castTa p env)
in_ “(evalvarS v (env2)))

evalPatS :: Pat t ein eout —0O t =0 ein —O(Maybe eout)
evalPatS ( Pvar p) v ein = (Just (castTa (sym p) (Cein,"v) D)
evalPatS ( PInl pt p) v ein =
( case “(castTa p v) of __

Left x —"(evalPatS pt (x) ein)

Ri ght _ — Not hi ng)
evalPatS ( Plnr pt p) v ein =
(case “(castTa p v) of

Left _ — Nothing

Ri ght x — “(evalPatS pt (x) ein) )
evalPatS ( PPair patl pat2 p) v ein =
(let_ (vi,v2) = “(castTa p V)

in do { eoutl <- “(evalPatS patl (vl) ein)
; “(evalPatS pat2 (v2) (eoutl )) })

The simplest case is evaluating integer literals:

(o) evalS ( Lit ip)env= [castTa (sym p) | (i)

The integer valu€i ) is returned in the next stage. Note that the casting operaiehanged from
b2a p :: Int —t tocastTa (sym p): Olnt  — Ot — which reflects the fact that cast must be
“pushed through” th&) type constructor. Similar changes to casting operatiomsake them work in a

code context are made throughout the interpreter.

Next, we examine the variable case:

(s) evalvarS :: Var e t —-0Oe—- 0Ot

(m) evalvarS (Z p) env = (snd “(castTa p env) )
(m) evalVarS (S v p) env = ( let env2 = fst “(castTa p env)
in “(evalvVarS v (env2)))

The auxiliary functiorevalVarS is similarly annotated to ensure that the environment ifegted from
at runtime of the object program. Thus, evaluating varigble) with some environmenfe) results in
(snd (fst e) ). Note that projection of the appropriate value from the emvinent is thus completely

delayed to the runtime.
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Example

Let us now consider staging a samgleprogram.

exl :: Exp a (Int —Int — (Int,Int))
exl = abs (abs (pair (V z) (V (s 2))))

- evalS exl1 ()

(\x —=\y —(snd ((0.x).y), fst (snd ((0.x).y))) )

Two things should be noted. First, much of the interpretiwerbead has been removed from the resulting
expression.
(\x =y —(snd ((0.x).y), fst (snd ((0.%).¥))) )

However, one small piece of this overhead remains: wherewvariable is evaluated, it is looked up in
the environment dynamically. This is too dynamic, sinceabtial position in the runtime environment is
known statically and does not change for each varieH)IEhecognizing this fact and changing our imple-
mentation to take advantage of it constitutésrading time improvementyvhich we shall discuss later.
Secondall tagging overhead has been removed from the resulting cdus.iS'a significant improve-
ment over earlier implementations of staged interpreters ([117]). It was made possible by a careful use
of equality operators and casting: since code is just andyipe constructor, we were able to cast a type
“through” code — allowing us to perform the actual castingmaearlier stage. This behavior is very rem-
iniscent oftag elimination[132,[133], where a separate stage (between static andneistages) is used
to perform the elimination of tagged values in residual cofla staged interpreter. Here, the rble of this
special tag elimination stage is played by stage 0, whilgesfabecomes the run-time stage for interpreted

programs.

Binding Time Improvements

The process of (slightly) changing the interpreter to makedre amenable to staging is knownkasding
time improvemenf67]. In the remainder of this section, we will make two binglitime improvements
to the staged interpreter fdr;” with the goal of removing even more interpretive overheageeially the

dynamic lookup mentioned above.

1. Partially static environments. What the previous staged interpreter fails to take advanthis the

fact that the runtime environmentpsrtially static Namely, while the values in the environment are

7 In other words, the environment in this interpretepastially static
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not known until stage one, the actsdlapeof the environment is known statically and depends only
on the structure of the term being interpreted. We shouldlesta do away with the dynamic lookup
of values in the runtime environment. The resulting inteter should produce residual code for the

above example that looks like this:

<\X—>\f —f X>

2. Pattern matching and control flow. Pattern matching as presented in the semantics above relies
on the failure monad, and tHatbar  operator to propagate pattern matching failure. This makes
residual code rather complicated and less efficient. A stahtbchnique in staging is to rewrite such
code incontinuation passing stylelnstead of propagating failure with the monad, we will siynp
rewrite our pattern matching functi@valPat to accept a success-and-failure continuation. The
residual code produced by this interpreter is much cleamgeasier to read, implementing cases in

L by cases in the residual program.

Partially Static Environments. Recall that environments in the previous definitions of ttteripreter are
dynamic nested pairs of the form((...,v2),v1) ). The corresponding partially static environment is
a set of static nested pairs, in which each second elemelyisamic value((..., (v2)), (v1)). This
relationship between environment types and the correspgmartially static environments is encoded by

the following data-type:

data PSE e
= INIT Qe
| VaB. EXT (PSE «) OF (Equal e ( «, )

-- smart constructor
ext .: PSE a —(Ob—PSE (ab)
ext et = EXT e t refl

A partially static environment (hence, a PSE) can eitherdmegetely dynamicINIT ), or it can be an
environment extended by a dynamic value. The equality progdiment ensures that the type arguneent
is identical in form to the form of type assignment index afgments (the in (Exp e t) and(Var e

t) ). Now, we can give a new type to the interpreter, as follows:

eval2S T Expet —(PSE e —(Ot
evalvVar2S :: Var e t —(PSE e) - (Ot
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The interpreter now takes a well-typed expressfBRp e t) , and a partially static environment
(PSE e) , and produces a delayed result of typg . The largest change is in the evaluation function

for variablesgvalVar2S

evalvVar2S :: Var e t —(PSE e) - (Ot

evalvVar2S ( Z p) ( EXT _ b p2) = castTa prf b
where (_,prf) = pairParts (trans (sym p2) p)

evalVar2S ( S s p) ( EXT e _ p2) = evalVar2S s (castTa prf e)
where (prf,_) (pairParts (trans (sym p2) p))

The base case takes a derivation of the typing judgment fgahda zero, which contains the equality
proof p::Equal e (  «o,t) . Its second argument is a PSE, with ()3, and the proop2 of type
Equal e ( «, 8). The main work is performed by constructing the prpdf , which shows thag is
equal tot . A simple cast then converts the valnérom the typé O3) to ( Ot) . Note that the definition
of prf uses the product equality axigpairParts

The inductive case is similar. The pair equality axiom isiageed to obtain a proof object and cast the

sub-environment so that the recursive caktalvVar2S is well typed.

The functionality ofevalVarS can also be retained by simply providing two additional safe
evalvar2S ,i.e., whenthe PSE is of the for(iNIT dynenv)

evalVar2S ( Ssp) (INIT env) = evalVar2S s (  INT (fst “(castTa p env) ))
evalVar2S ( Z p) (INIT env) = (snd ("(castTa p env)) )

Pattern Matching and Continuations. We have seen how PSE’s are used by the new interpreter. It re-
mains yet to see how those environments are extended. Reythe functiorevalPat2S in continuation

passing style is not difficult. We start by giving it a new type

evalPat2S :: Pat t ein eout —
Ot — (PSE ein) —
(Maybe (PSE eout) — (Oans) — (ans

The functionevalPat2S takes a pattern judgme(Rat t ein eout) , a delayed value of type,
an input PSE of typein , and acontinuationfunction. The continuation takes as its argument a maybe
type which is either a new, augmented RSt , orNothing and returns a piece of code of some answer

typeans . When given th¢Just ein) argument, the continuation constructs the answer for the ita
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which the pattern matching succeeds. When gNething , the continuation constructs the code for the

case in which the pattern matching fails.

evalPat2S ( PVar p) v ein k = k ( Just (castTa (sym p) (ext ein v)))

The variable case always succeeds. Therefore, the inputsPdended by the valuext ein v ), and

passed to the continuation as succdsst ).

evalPat2S ( PInl pt p) v ein k =
(case “(castTa p v) of
Left x —"(evalPat2S pt (x) ein k)
Right x—"(k Nothing) )

ThePInl case (linegamy) creates a piece of code which first analyzes the input vajugenerating a
case expression with two branches. The first branch is generatetthé case where value is of the form
(Left x) . Itsbody is generated lgvalPat2S which calls itself recursively on the sub-patt@tn and
input value(x) without modifying the continuatiok. The other branch, however, concerns the situation
where the input value is of the for(Right x) ,i.e., a mismatch has occurred. The body of this branch

is generated by the continuati@nsymoked with failure7(k Nothing)

Finally, we examine the case for pair patterns (liaes.

evalPat2S ( PPair ptl pt2 p) v ein k =
(case “(castTa p v) of _
(vi,v2) —"(evalPat2S ptl (vl) ein (h (v2))) )
where h n Not hing = k Not hi ng
h n (Just eoutl) = evalPat2S pt2 n eoutl k

Given a pair pattern with sub-patterptl , andpt2 , and an input valug, the input value pair is first
deconstructed into its elementd andv2. Then,evalPat2S calls itself recursively with the left sub-
patternptl , the valug{vl), the input environmergin , and, most importantly, the enlarged continuation

h (v2). The continuatiom (v2) (linesmm) discriminates against its argument:

1. Ifitis Nothing , then a previous pattern match must have failed and it sysibleeinitial continua-

tion k with Nothing to propagate the failure.

2. If the previous pattern matching has succeeded with s@wmeanigmented environmeebutl , it
symokesevalPat2S recursively with the right-hand side patterns and valuésng it the new

environment as its input, and the initial continuatian
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Putting It All Together.  The full implementation of the binding time improved integter for L} is
given in Figurd5l7 on padeTU1. Combining all the improvetmshown above, we can returngeal2S .
Consider, for example, the case forabstraction (linegrm). This case constructs a piece of code that is
a function(\x — ... ). The body of this function is constructed by a calewalPat2S which is given
the pattern, the discriminated vali)e), the current environment and the continuationThe continuation

h generates the body of theabstraction using the enlarged environment construgtegl/blPat2S in

cases of success, and error raising cader “failure" in case the pattern matching fails.

For example, when run with the input prograviml e . (Var 0), the staged interpreteval2S returns

the following code:

(\x —case x of (Left y) —y
(Ri ght z) —error “failure" )
. code ((Either a b) —a)

It is also worth noting that if the pattern abstracted oveahy.; abstraction does not contain sums, the
failure portion of the continuation is never symoked, andcase expressions are generated. For example,

the input program e .Var 0:

(\x = x) :: (forall a . code (a — a))

Let us also consider how case expressions are defined: casgsatructed using the auxiliary function
evalCase2S (linesgnz).

eval2S ( ECase e matches) env =
(let value = “(eval2S e env)
in_ “(evalCase2S  (value ) matches env) )

evalCase2S :: Otl —[EE e t1 t2] —PSE e—(t2
evalCase2S val [] env = (error “failure” )
evalCase2S val (( EE (pat,branch)) : rest) env =
evalPat2S pat val env h
where h ( Not hi ng) = evalCase2S val rest env
h (Just env2) = eval2S branch env2

First, code is constructed for the discriminated expressimd bound to the variablealue . Then,

evalCase2S s called to match all the branches of the cases agauadtie ). This trick is used to
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prevent code duplication between individual matches. Maduation of each match proceeds just as with
A-abstraction. The only difference is that in case of failuhe continuatiorh symokesevalCase2S

recursively to construct further branches for all alteirrest.

We show the code generatedéyal2S for the expression

Ae.case Var 0 of
Inl ¢ —Var0

Inr e —Var 0

( \x—let v = x
in case v of (Left y) —y
(Right ) —
case v of (Left _) —error "fail"
(Right z) -z )

5.5 Conclusions

In previous chapters we have proposed and elaborated ohr@idee for implementation of strongly typed
object languages. Essential to this technique are certajpepties of the object language, such as being
strongly typed; these properties are used to justify produinterpreters which are efficient and reliable
by construction. In particular, we have used dependenstypencode inductive sets of onlyell-typed
terms. Interpreters can be defined over these well-typedstén avoid tagging overhead, and staged to
avoid interpretive overhead.

In this chapter, we have explored the extent to which sintdahniques can be adapted in the setting
of the more popular programming language Haskell. The ratitim for this is twofold. First, we wish to
explore the power and flexibility of Haskell-like type sysigin order to understand its potential for meta-
programming. The second reason is pragmatic: although #ta-programming system with dependent
types has many useful theoretical properties, such systenwes yet to develop a wider user base, and is

thus liable to gain wider acceptance.

5.5.1 Computational Language vs. Specification Language

To implement object languages (interpreters, compilgpg-checkers, static analysis tools, and so on), one

needs a meta-language. The meta-programming frameworlaveedeveloped requires the meta-language
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to betyped In such a typed language we can distinguish betweeonaputational stratunof the meta-
language which describes the programs that are executethiiine, and a statispecification stratum,
which is used to specify properties of the programs in thepaational stratum. In functional languages
the distinction between these is rather simple: programusrésult in some value-yielding computation at
runtime are the computational stratum, while types of th@rsgrams whose validity is checked statically
(at type-checking time) are the specification stratum. Tisgndtion between these two coincides with the

usual separation between static and dynamic phases of espr@xecution.

This phase distinctioffil 7] is often difficult to maintain in programming languageith dependent types
since type-checking (static phase) often requires evaluédynamic phase) because types can depend on
dynamic values. In Metal) [102] and FLINIC[116], this distiion is maintained by an elaborate stratifica-
tion: the language is explicitly divided into@mputational languagehose expressions are classified by
a type systemgpecification languageavhich itself is a highly expressive language (a versiorhef€alcu-
lus of Inductive Construction$ [28, 22]). The specificatianguage is expressive enough that interesting
domain values that exist at runtime (such as integers) canka represented at the level of types. Logi-
cal propositions are then also implemented at the levelmadiproofs of these propositions being types.
Singleton typefb/] are used to force a correspondence between runtimesand their representations
at type level.

In our Haskell implementation, this complex structure nfagstnapped into the only two levels available:
runtime Haskell programs and static Haskell types (and tgpestructors, and so on). We summarize the

main correspondences.

Domain value typesThese Haskell types that are conceptually intended to septauntime values
at the level of typesThey correspond to the elements of the inductive Kt in FLINT [L16]. One
difference between our encoding of domain-value types hadrductive kinds in MetaD and FLINT is
that we have no way of enforcirggpriori the well-formedness of such domain value types — rathenin o
Haskell implementation, they are like terms upon whom stmécmust be imposed by a disciplined use of

these terms.

Well-formedness judgmentsThese play a dual role in the Haskell implementation. Fitsty are
there to impose a structure @omain value typesthe typelsNat from Sectiol 4B is a particularly
good example of this. For example, the type(S Z) represents the natural number 2, but the type
S (S (String —Int)) should be excluded from consideration as a valid representa the domain
of integers. Type constructteNat ensures that any argumenttype given to it is well-formedgopiring
IsNat types as arguments for functions, the user can ensure thatveti-formed domain value naturals

are used in types of her programs.
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Well-formedness judgments as singleton typ&sother important consideration is to connect runtime
values to the domain value types that describe them. A stdmday that has been proposed to deal with
this is to introduce a type constructsnat : Nat —* (whereNat is the inductive kind of natural

numbers) such that

given a type ternm of kind Nat , if a computation value has typesnat =, thenv denotes

the natural number represented/hy11€].

A good example that illustrates this connection in our Hiskeplementations is the addition of num-
bers (Sectiof413). The way we speak about addition betweerauh value types at type-checking time is
by the type constructd?lusRel m n z : avalue of the typ@lusRel m n z is a proofthat equals
mplusn. However, this property must ultimately be connected toesamtimevalue and a function that
performs addition at runtime. A number of systems establighconnection between runtime values and
their representations at type level through singletongyb&,[148[ 116].

In our Haskell implementation, however, the rolesofat is played by certain well-formedness judg-
ments (e.g.JsNat ). The MetaD and FLINT the system ensures that this reprasentis correct by
construction (a meta-theorem guaranteesshat adequatelyepresents runtime natural number values),
in our framework, the user must ensure that the well-forneedijudgment corresponds to the objects that
are modeled closely enough (usually a 1-to-1 corresporeesacthat the proofs (or derivations) of these
well-formedness judgments can be ussd representation of the objects themselves.

In most interesting cases (inductively defined sets, su¢heaset of natural numbers), this is easily es-
tablished (e.glsNat n = N, for anyn). Still, it is important to emphasize that the burden of bkshing
this correspondence falls upon the programmer, and thed #e=ms to be no way to prove this adequacy

within the system itself.

5.5.2 Staging

We have also shown that staging can be successfully combiitie@quality-proof based implementations
of programming languages. In particular, the combinatiostaging and equality proofs allows us to write

staged interpreters from whig¢hgging overheathas been removeuy construction.
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data PSE e = INNT Qe
| Vap. EXT (PSE «) ( OB) (Equal e (  «, 5))

ext : PSE e — (Ot —PSE (e)t)
ext et= EXT et refl

eval2S :: Exp et —(PSE e) -t

eval2S ( Lit i p) env = castTa (sym p) (i)
eval2S ( V v) env = evalvV2S v env
eval2S ( App el e2) env = ( “(eval2S el env) “(eval2S e2 env) )

eval2S ( Elnl e p) env = castTa (sym p) (Left “(eval2S e env) )
eval2S ( Elnr e p) env = castTa (sym p) (Ri ght “(eval2S e env) )
eval2S ( Abs pat body p) env = castTa (sym p)
(\x — "(evalPat2S pat (x) env h) )
where h (Not hing) = (error “fail" )
h (Just e) = eval2S body e
eval2S ( ECase e matches) env =

(let  value = $(eval2S e env) in __ “(evalCase2S  (value ) matches env) )
evalCase2S : Otl  —[Match e t1 t2] —PSE e— (Oft2
evalCase2S val [] env = (error "fail" )

evalCase2S val (( Match (pat,body)):rest) env = evalPat2S pat val env h
where h ( Not hi ng) = evalCase2S val rest env
h (Just env2) = eval2S body env2

evalvar2S :: Var e t —(PSE e) - (Ot
evalVar2S ( Z p) ( EXT _ b p2) = castTa prf b
where (_,prf) = pairParts (trans (sym p2) p)
evalVar2S ( S s p) ( EXT e _ p2) = evalVar2S s (castTa prf e)
where (prf,_) = (pairParts (trans (sym p2) p))
evalVar2S ( Z p) (INIT env) = (snd “(castTa p env) )
evalVar2S ( S s p) (INT env) = evalVar2S s ( INT (fst “(castTa p env) )

evalPat2S :: Pat t ein eout — (Ot —(PSE ein) —
(Maybe (PSE eout) — (Oans) — (Oans
evalPat2S ( PVar p) v ein k = k ( Just (castTa (sym p) (ext ein v)))
evalPat2S ( PInl pt p) v ein k =
( case “(castTa p v) of __ Left x —"(evalPat2S pt (x) ein k)
Right x—"(k Nothing) )
evalPat2S ( Plnr pt p) v ein k =
( case “(castTa p v) of __ Left x—"(k Nothing)
Ri ght x —"(evalPat2S pt (x) ein k) )
evalPat2S ( PPair ptl pt2 p) v ein k =
(case “(castTa p v) of __
(vi,v2) —"(evalPat2S ptl (v1) ein (h (v2))) )
where h n Not hing = k Not hi ng
h n (Just eoutl) = evalPat2S pt2 n eoutl k

Figure 5.7: Staged interpreter féi~ with binding time improvements.
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Chapter 6

A Meta-language with Built-in Type Equality

6.1 Introduction

Earlier in this dissertation we looked at different ways odypding support for open heterogeneous meta-
programming. First, we used a custom-designed meta-lgyggwah dependent types. Next we devised a
methodology for supporting open heterogeneous meta-pnoging in Haskell.

However, practical experience with open heterogeneoua-preigramming in Haskell does have one
practical draw-back: it is tedious, requiring a lot of humatervention for rather simple tasks such as
equality combinator manipulation. Since the combinatonimalation is pretty straightforward, albeit te-
dious, we became interested in extending the type systemaskefl to automate the manipulation of
equality proofs as much as possible.

At this point we read Cheney and Hinze’s work on phantom tyi8% Cheny and Hinze devise a
type system that automatically propagates equalitiesdsttypes, and solves type equality congruences.
With this type system, we could easily implement all our eghas in a much simpler, cleaner nota-
tion. Furthermore, Cheney and Hinze presented a proof tiat a type system is type safe, and that
type-checking is decidable. Finally, using this type systee no longer had to resort to axioms for ma-
nipulating equality types (e.goairParts :: Equal (t1,t2) (t3,t4) — (Equal t1 t3,

Equal t2 t4) ), which could not be implemented in Haskell itself, but hadé given as primitives.

Inspired by their idea we proceeded to experiment and designctional programming language, based
on Haskell, that implements their proposals along with satier features our experimentation in the
previous chapter found might be useful. We called this lagguOmegée [124]. Omega has proved to be a

very useful vehicle for heterogeneous meta-programming,mauch of its design was directly motivated

IMaterial from this chapter was published BS1123] dnd [99].
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by the kind of meta-programming we have demonstrated irdibsertation. We will familiarize the reader

with Omega through the small tutorial offered in this chapte

6.2 Omega: A Meta-language Supporting Type Equality

The essential characteristic of programming with type étyua the manipulation of the proofs of equali-
ties between types using equality combinators. It has taotfmal drawbacks. First, manipulation of proofs
using combinators is tedious. Second, while present throuiga program, the equality proof manipula-
tions have no real computational content — they are usetiydoléeverage the power of the Haskell type
system to accept certain programs that are not typable whigemwithout the proofs. With all the clutter
induced by proof manipulation, it is sometimes difficult isakrn the difference between the truly impor-
tant algorithmic part of the program and mere equality praahipulation. This, in turn, makes programs
brittle and rather difficult to change.

What if we could extend the type system of Haskell, in a redédyi minor way, to allow the type-checker
itself to manipulate and propagate equality proofs? Thtitaddea behind Omega [1124]. In the remainder
of this Chapter, we shall use Omega, rather than pure Haskellite our examples. We conjecture that,
in principle, whatever is possible to do in Omega, it is alesgible to do in Haskell (plus the usual set of
extensions), only in Omega it is expressed more cleanly aocirsctly.

The syntax and type-system of Omega was designed to clessynble Haskell (with GHC extensions).
For practical purposes, we could consider (and use) it angecaative extension to Haskell. In this section,

we will briefly outline only the relevant differences betwme@mega and Haskell.

6.3 An Omega Primer

Omegais implemented as a stand-alone interpreted langsiaglkar to the Hugs implementation of Haskell.
Using a rudimentary module system, the user can load, tiipekcand execute source files that closely
resemble Haskell. In this section, we shall explain someraid features of Omega, informally and by
example. The language Omega has many interesting featigies.s built-in type equality, the polymorphic
and extensible kind system, support for staging. Theserfesivere motivated by the examples appearing

in earlier chapters.
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6.3.1 Data-types with Equality

Here, we shall discuss the most important difference batwizskell and Omega: the data-type definition.

First, recall the definition of a type of well-typedterms from Chaptdd5.

data Exp e t
= Lit Int (Equal t Int)
| V (Var e t)
| VYap. Abs (Rep «) (Exp (e, «) () (Equal t ( «a—pf))
| Ya. App (Exp e ( a—1t) (Exp e Q)

data Var e t
= Vv. Z (Equal e ( 7.1)
| Vya. S (Var ~ t) (Equal e (7, @)

These data-typesrely on the data-tyggqual a b) , whichis the type of proofs that the typasindb
are equal. When constructifitxp or Var values, the user must construct and supply the requirediggua
proofs.

In Omega, the equality between types is not encoded explfoising the type constructd@qual ), but,

rather, it is built-in and implicit. Let us reformulate theelivtypedA-terms using Omega syntax:

data Exp e t
= Lit Int where  t=Int
| V (Var e t)
| Vas. Abs (Rep a) (Exp (e, a) f) where t = ( a—p)
| Ya. App (Exp e ( a—1t) (Exp e Q)

data Var e t
= Vy. Z where e = (1)
| Vya. S (Var ~ t) where e = (v, a)

Each data-constructor in Omega may contaivhare clause which contains a list of equations between
types in scope of the definition. These equations play thesala as thé&qual in our Haskell examples,
with one important difference. The user is not required tavjate any actual evidence of type equality — the

Omegatype checker keeps track of equalities between tyyjsraves and propagates them automatically.

Cheney and Hinze formally define a type system with equalipes [19]. We will quickly sketch out
such a type system here, omitting most of the details. Flgdtsummarizes the Cheney and Hinze’s typing
judgments: a standardcalculus typing relation is augmented with equality catea’, which keep track

of known equalities between types. An additional judgmanty - r; = 75, is defined to prove equalities
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o, T = Types
€ =TI =T Type equations
)y = .| X;dataT a:r =30 : x.C 7 withe Data-type signatures
U = | T Equation contexts
e w= C[7]e|case[r]eof ms]|--- Expressions: constructors and case
ms == (C[B]T — e|ms)|- Pattern matches
AUV ET=7 Type equivalence
AU Tke: T Typing expressions
A;U;T'Fms: T7T= o Pattern match typing

dataT a-r=30:k.Cawithee X

A;WiT ke : (il /@, 7/B])
AU &[T a7/ 6] AU TkFe:TT AU TFms: TT=o0
— (Cons)

AU THCFe: T 7 A;U; T+ case[r] eof ms : o
AUTFms: TF=0 A, BV, e7/a7/8;0, Ty : on[F/a,7/B)Fe: o
AU TH(CHZT —elms): TT=0
AU, TFe:p AU ET =
A;U:TFe:m

(Case)

(Match)

7'Q(EqCOerce)

Figure 6.1: Type system for Omega-like language (based em&hand Hinze).

between types. Data-types are defined as in the Omega exaaipee: each constructor definition may

contain a set of equalities between types.

Novel typing rules for constructor application and casereggpions are formulated in the following way:

1. When applying a constructdr, which is defined to require equationsthose equations must be
proven (using the equality judgmeft ¥ + 7, = 75) to hold based on the current equality context

(rule Cons, FigurEgl1).

2. When taking apart a constructor value using case, an ppateinstantiation of the equatioafrom
the definition of the constructor are added to the equalitytexd when type-checking the body of
each case match (rules Case and Match, Figute 6.1).

3. Finally, a conversion rule that allows us to assign theetypto an expression that has the type
71, provided that we can prove that equalsr in the current equality context (rule EqCoerce,

FigureG.1).

For further details, the reader is referred to the CheneyHinde paper[[19]. The Omega interpreter
includes a a type checker for a similar type system, supmpniany Haskell-like type system features and

type inference. We briefly explain how such a type checkekwaor practice.
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The mechanism Omega uses to keep track of equalities betyees is very similar to the constraints
that the Haskell type checker uses to resolve class-baggtbading. A special qualified type [B65] is used
to assert equality between types, and a constraint solyisig® is used to simplify and discharge these
assertions. When assigning a type to a type constructogghations specified in the where clause just
become predicates in a qualified type. Thus, the construdtoris given the typere t.(t=Int) =>
Int —Exp e t. Theequation=Int is just another form of predicate, similar to the class mensitip

predicate in the Haskell type (forexamplesy a => a -> a -> Bool ).

When type-checking an expression, the Omega type chec&pshkeio sets of equality constraints.

Obligations. The first set of constraints is a setalfligations For example, consider type-checking the
expressior{ Li t 5) . The constructoLit has the typ&/e t.(t=Int) => Int —Exp e t. Since
Lit is polymorphicine andt , the type variablé¢ can be instantiated tmt . Instantiating to Int also

creates the equality constraint obligatiot=Int  , which can be trivially discharged by the type checker.

Lit 5 : Exp e Int with obligation Int = Int

One practical thing to note is that the data-constructof>qf andVar are now given the following
types:

Lit = Vet t=Int => Exp et

V & Vet Varet —Expet

Abs 1 VWVt tl t2 e. t=(t1->t2) => Exp (e,tl) t2 —Exp et
App i Vetlt Expe (t1 —t) —Exp e t1 —Exp et

It is important to note that the above qualified types cambtntiatedto the same types that the smart
constructors for well-typed abstract syntax have in Haski#é have already seen this fhit . Consider
the case foAbs. First, the type variable can be instantiated @1 — t2) . Now, the proof obligation
introduced by the constructor 1 —t2)=(t1 —1t2) , which can be immediately discharged. This
leaves the typ&xp (e,tl) t2 —Exp e (1 —1t2) .

Assumptions. The second set of constraints is a seae$umption®r facts Whenever, a constructor
with awhere clause is pattern-matched, the type equalities in the wtlerese are added to the current
set of assumptions in the scope of the pattern. These assmsipain be used to discharge obligations. For

example, consider the following partial definition:

evallist ;' Exp e t —e—t]
evallList exp env =
case exp of Lit n—]n]
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When the expression exp of tyfExp e t) is matched against the pattefinit n) , the equality

t=Int  from the definition olLit is introduced as an assumption.

The type signature advalList  induces the requirement that the right-hand side ottee expres-
sion have the typff] . However, the right-hand side of tltase expression[n] , has the typ¢int]
The type checker now must discharge (prove) the obligdtjefint] , while using the fact, introduced
by the patterr{Lit n) thatt=Int . The Omega type-checker uses an algorithm based on corgruen
closure[88], to discharge equality obligations.

In Haskell, the proof of this obligation would fall on the grammer, by explicitly constructing a proof
value of type(Equal [t] [Int]) , or using the functiocastTa :: Equal a b -> f a ->
f b to castfromInt] to [t]

evallist :: Exp e t —e — i
evalList exp env =
case exp of Lit n tint - castTa tlnt [n]

In Omega, these proofs are constructed automatically,fasdstperhaps the greatest practical benefit of
Omega.
Another interesting example of programming in Omega is tomglement, explicitly, the equality type

(Equal a b) . Consider the following definition:
data Equal a b = Eq where a = b

Note that the constructdtq requires no arguments. The type Omega assigns taitlis => Equal
a b, which can be simplified tkqual a a - the same type as the Haskell equality combinaé&di
Equal a a
Since Omega’s type system already knows how to manipulateligigs, writing equality proof combi-

nators becomes trivial. Consider the transitivity comimna

trans :: Equal a b —Equal b ¢ —Equal a c
trans (ab@Eq) (bc@Eq) = Eq

First, matching the pattermb@Eqintroduces the assumpti@sb. Similarly, the patterdbc@Eqintro-
duces the assumptidirc. The resultEq requires the proof obligatioa=c to be discharged in order to
return a value of typ&qual a ¢ . The congruence closure algorithm in the Omega type checkethen
easily discharge this obligation based on the availableragdons.

Finally, we emphasize that, even though the examples infthpters that follow are presented in Omega,

they can all be implemented in Haskell as well, with the alyealluded-to caveats that primitive equality
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proof combinators such gmirParts  may need to be used on the Haskell side. For the rest of this
chapter (and subsequent chapters that use Omega), Omed@disbeonsidered as notational convenience.
We have designed Omega to achieve a greater concisenedauatydof presentation, because the explicit
equality proof manipulation in meta-programs manipulatimore complex object-languages can become

very tedious.

6.3.2 Inductive Kinds

Let us recall the Haskell encoding of the natural numbeiisaatype level from Chapt€l 4. At the type level,
natural number 0 is represented by the tgpaumber 1 by the typ€S Z) ,2by(S (S Z)) ,andsoon.

data Z =
data S x =
data IsNat n = IsZero (Equal n Z)
| V m. IsSucc (IsNat m) (Equal n (S m))

This definition follows a standard pattern. First, each tmesor of natural numbers is defined as a
type constructarZ :: * andS ;1 * —* respectively. It is worth noting that there are vedues
classified byZ, (S Z) , and so on. This can be seen by the lack of constructor furefmr Z andS. It is
also worth noting that the type system of Haskell has no wayaifcally preventing the type constructdrs
andS from being combined with other types to construct ill-fomepresentations that do not correspond
to any natural number, such s (S (Int  — Bool)))

Second, we define a type constructongitime representationsf natural numbersNat :: *  —*.
This data-type allows us to construct values that are ¢leddiylsNat which are parameterized lwell-
formednatural numbers at the type level. In other word®at reflects the natural numbers at the type
level (comprised 08 andZ) to the value level. The type constructsNat comes with a built-in invariant:
for any value classified by the tygfisNat n) , the typen is a well-formed representation of some natural

number.

The type constructdsNat performs the role of a singleton type: there is only one vaditlie of type
IsNat n ,i.e., that which is isomorphic to the natural numbgType constructors such &Nat allow
the programmer to connect the type-level representatibnatarals with the behavior of programs. For
example, a function of the typ€lsNat m) — (IsNat (S (S m)))) takes any natural number as

its argument and returns a natural number that is greater by 2

2Note that there is no way in Haskell or Omega to check that ticpéar type constructor such &sNat is indeed a singleton
type. Rather, being a singleton is a meta-theoretical ptpeat the programmer must maintain in writing his program
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value type | kind |  sort |
5 :: Int B *0 : *1 :
Nat :: *1
VA u Nat u *1
S . Nat ~ Nat *1
IsNat :: Nat ~ *0 *1
IsZero i IsNat Z n *0 u *1 n
IsSucc :: (IsNat m) —(IsNat n) *0 " *1

Table 6.1: Classification in Omega.

In Omega, there is a simple feature that makes the encodihgitpie described above both simpler and
more user friendly. This feature allows the programmer finéenewkinds

Before we demonstrate how kind declarations work, we shalkén the classification system of Omega.
In Haskell, values and expressions al@ssifiedby types. In Omega, the classification scheme is somewhat
more general. Values and expressions are classified by, gp@sHaskell. Types themselves are classified
by thekind*0 . Kinds (e.g.*0 ) are classified byl , *1 by *2 and so on. Kinds can be combined using a

kind arrow (). TableG.1 gives an example of the classification relatio@iega.

To represent natural numbers at the type level in Omega, aledgfine a nevkind Nat :

kihd Nat = Z | S Nat

The kindNat has twotype constructors (1) Z of kind Nat ; (2) S of kind Nat~Nat. For example,
(S 2) is avalid type of kindNat . It is important to note, however, thé® Z) is nota type of kind*0 .
Now, we can define a type of runtime representations of nlaturabers. It is a type constructtsNat

Nat ~~*0:

data IsNat (n::Nat) = | sZero where n = Z
| vm. IsSucc (IsNat m)
where n = (S m)
one :: IsNat (S 2)
one = IsSucc IsZero

It is important to notice that the two versions of the exanaddeve, Haskell and Omega, are equally
expressive: using two different type constructors for egsor and zero works equally well as the Omega’s
kind declaration. The advantage of using Omega is thatinediad errors can be caught earlier, since the
kind definition facility provides an additional amount opydiscipline at the kind level which is missing in
Haskell. Thus, the user cannot even write a tf®eBool) , since that would result in a kind error. Also,

it allows us to combine all the constructors that represahtes at the type level (with the same kind) in
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Expressions and types

7T €Tu= b | n—omn
r eGa= () | I,r
e €Eu= Varn | M\e | e1 e
I'kFn:7 I'tn:7
—(Base (Weak —(Var
F,TFO:T( ) F,T’F(n—i—l):T\ ) I‘FVarn:T( )
I''nkFe:n I'Fer:mm—m T'Fey:m
(Abs (A
I‘i—/\n.e:n—w-g\ ) I'kFejer:m (App)
Substitutions a la \v [9]
o €Su= ¢/ | (o) | 1
I'kFe:r I'o: IV
———(Slash (Shift (Lift
FFe/:F,T( ) L,7H1: T i) L,7H4(o): T/, 7" i)

Figure 6.2: Simply typed-calculus with substitutions.

one single definition which makes it easier for the programmenodify and maintain.

6.4 Omega Example: Substitution

To round off the introduction to Omega we present a slighdisgér example. First, we shall define a
language of simply typed-calculus judgments, and then implement a type-presestibgtitution function
on those terms.

This example demonstrates type-presendggtax-to-syntakransformations between object-language
programs. Substitution, which we shall develop in the rewei of this Chapter, is one such transforma-
tion. Furthermore, a correct implementation of substituttan be used to build more syntax-to-syntax
transformations. At the end of this Chapter, we shall prexdd implementation of big-step semantics that

uses substitution.

The substitution operation we present preserves objagtiigge typing. Unlike the interpreters we have
presented previously, it not only analyzes object-langugging judgments, but also builds new judgments

based on the result of that analysis.

6.4.1 The Simply Typed\-calculus with Typed Substitutions

Figure[6.2 defines two sets of typed expressions. The firsbfsexpressions, presented in the top half

of Figure[&2 is just the simply typektcalculus. The second set of expressions, presented inotien
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(a) Slash(e/) (b) Shift (1) ©Lift (11 ()

Figure 6.3: Substitutions

half of the figure defines a set of typed substitutions. Thet#uition expressions are taken from the-
calculus [[9]. There are several of other ways to represdgtgutions explicitly as terms (see Kristoffer
Rose’s excellent papelr [113] for a comprehensive survaey)we have chosen the notation b for its
simplicity.

A substitution expression is intended to represent a mapping from de-Bruijn indicesxjpressions
(i.e., a substitution), the same way thaexpressions are intended to represent functions. Assinve

define three kinds of substitutions in Figlirel6.2 (see Fildor a graphical illustration):

1. Slash(e/). Intuitively, the slash substitution maps the variable vtfita index 0 tae, and any variable

with the indexn + 1 to Var n.

2. Shift (7). The shift substitution adjusts all the variable indices itelan by incrementing them by

one. It maps each variabteto the termVar (n + 1).

3. Lift (1} (¢)). The lift substitution({} (¢)) is used to mark the fact that the substitutioris being
applied to a term in a context in which index 0 is bound and khoaot be changed. Thus, it maps the
variable with the index O t&ar 0. For any other variable index4-1, it maps it to the term that maps

to n, with the provision that the resulting term must be adjustgt a shift: (n + 1) —1 (o(n))).

Typing substitutions. The substitution expressions are typed. The typing juddgsnehsubstitutions,

written'; + o : T's, indicate that the type of a substitution, in a given typegsaent, is another type
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assignment. The intuition behind the substitution typundggment is the following: the type assignmént
assigns types to the free variables that may occur in theeegjmns that are a part of the substitutign
the type assignmeiit, assigns types to the free variables in any expression teatthstitutiors may act
upon.

Example We describe a couple of example substitutions.

1. Consider the substitutigiirue/). This substitution maps the variable with the index 0 to tbelBan
constantTrue . The type of this substitution 6 - True/ : T', Bool. In other words, given any type
assignment, the substitutiofirge /) can be applied in any context where the variable 0 is asdigne

typeBool.

2. Consider the substitution = (1} (True/)). o is the substitution that replaces the variable with the

index 1 with the constarfrue.

Recall that the type of any substituti@runder a type assignmelif is a type assignmen\ (written
'+ 6 : A), such that for any expressiehto which the substitutiofl is applied, the following must

holdAF ¢ : 7andl + 0(e') : 7.

So, what type should we assignd® When applied to an expression, a lift substitution({} (True/
)) does not change the variable with the index 0. Thus, whemgyp asT' F o : A, we know
something about the shape Bfand A. Namely, for someA’, we know thatA = (A’,7), and
for somel”, we know thatl' = (I, 7). The type assignmentd’ andI” are determined by the

sub-substitutioflrue/, yielding the following typing derivation:

———— Const
I' - True : Bool Slash

I' + Bool/ : T", Bool L
Lift
I, 7+ (Bool/) : T, Bool, 7

We briefly explain the typing rules for the substitutionsyifie[6.2):

1. Slash(e/). A slash substitutiom/ replaces the 0-index variable in an expressior.byhus, in any
contextI’, wheree can be given type, the typing rule requires the substitution to work only on

expressions in the type assignmént, where the 0-index variable is assigned the type

I'Fe:T

T e/ T oS

2. Shift (). Since the shift substitution maps all variables with indeto a variable with index + 1,

this means that, whatever a type assignment assigned tadbg 0, prior to the substitution, the
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Substitution on expressions
()= -CSXExE

(0,e1) = €}
(0,e2) = € (fr(o),e) =¢ (o,n) = e
(0,(e1 e2)) = €] € (o, A.€) = Ae (o,Varn) = e

Substitution on variables
()= -CSxNxE

(e/,0)=e (¢/,n+1)=Varn (f1(0),0) = Var 0
(o,n)=e (1,e)=¢
(f(o),n+1)=¢ (T,n) = Var (n+1)

Figure 6.4: Applying substitutions to terms

substitution can be contracted because after the sulimtiistperformed 0-index variable no longer

OcCcurs.

3. Lift (¥ (0)). For any variable indexn + 1) in a term, the substitutiont (¢) applieso to n and then
shifts the resulting term. Thus, the 0-index term in the tgpsignment remains untouched, and the

rest of the type assignment is as specifiedrby

'ko: IV
D7 (o): T,

(Lift)
.

Applying substitutions. In the remainder of this Section, we show how to implemeniation (we call

it subst) that takes a substitution expressiona A-expressiore, and returns an expression such that all
the indices ire have been replaced according the substitution. In the gitgped A-calculus, substitution
preserves typing, so we expect the following property torbe bf the substitution functiosubst: if
I'Fo:AandAFe:7,thenl'substoe: 7.

How shouldsubst work? Figurd &} presents two judgmen(s,e;) = e2 and(o,n) = e, which
describe the action of substitutions on expressions andblas, respectively. These judgments are derived
from the reduction relations of thev-calculus|[9]. It is not difficult to show that this reductistrategy in-
deed does implement capture avoiding substitution, atfheve omit such proof here to avoid unnecessary

digression (see Benaissa, Lescanne & al. [9] for proofs).
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Next, we show how to implement this substitution operatio®mega, using expression and substitution

judgments instead of expressions and substitution express

6.4.2 Judgments

The expression and substitution judgments can be easilgdedcin Omega. The data-typ¥ar and
Exp encode expression and variable judgments presented ineliig. We have only added a constructor
Const for constant expressions in order to be able to write momrésting examples. Thecalculus

fragment is identical to the one presented earlier in thapbdr, and we shall not belabor its explanation.

data Var e t = Vd. Z where e = (d,t)
| vd t2. S (Var d t) where e = (d,t2)

data Exp e t = vV  (Var e t)
| vtl t2. Abs (Exp (e,tl) t2) where t = t1 —1t2
| Wwtl. App (Exp e (11 —1t)) (Exp e tl)
| Const t

Next, we define a data-construct8ubst gamma delta that represents the typing judgments for
substitutions . The type constructBubst gamma delta represents the typing judgmeht- o : A
presented in Figuled.2.

data Subst gamma delta =
vtl. Shi ft where gamma = (delta,tl)
| Wwtl. Sl ash (Exp gamma tl) where delta = (gamma,tl)
| vdell gaml t1. Lift (Subst gaml dell)
where delta = (del1,t1), gamma = (gam1,tl)

6.4.3 Substitution

Finally, we define the substitution functisabst . It has the following type:

subst :: Subst gamma delta -> Exp delta t -> Exp gamma t

It takes a substitution whose typedslta in some type assignmegamma an expression of typethat is
typed in the type assignmedélta , and produces an expression of typtypable in the type assignment
gamma

We will discuss the implementation of the functismbst (Figurd &%) in more detail. In several relevant

cases, we shall describe the process by which the Omegachgmier makes sure that the definitions
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subst ::

subst
subst
subst
subst
subst
subst
subst

Subst gamma delta —Exp delta t —Exp gamma t

s ( App el e2) = App (subst s el) (subst s e2)

s ( Abs e) = Abs (subst (Lift s) e)

( Slashe) (V2 = e

( Slash e) (V(Sn)=Vn

(Lift s)(vzg=VzZz

( Lift s) (V (S n) =subst Shift (subst s ( V n)
Shift (Vn) = V (Sn)

Figure 6.5: Substitution in simply typedcalculus.

are given correct types. Recall that every pattern-mateh ome of theExp or Subst judgments may

introduce zero or more equations between types, which areatailable to the type-checker in the body of

a case (or function definition). The type checker may useethgsations to prove that two types are equal.

In the text below, we sometimes use the type variabpfgamaanddelta for notational convenience, but

also Skolem constants likel134. These are an artifact of the Omega type-checker (they apyen

pattern-matching against values that may contain exisigntuantified variables) and should be regarded

as type constants.

1.

2.

The application case (limgsimply applies the substitution to the two sub-expresgidgments and

then rebuilds the application judgment from the results.

The abstraction case (ligepushes the substitution under th@bstraction. It may be interesting to

examine the types of the various subexpressions in thisitiefin

Abs e : Exp delta t ,wheret=tl —1t2
e . Exp (delta,tl) t2

S . Subst gamma delta

Lift s :  Subst (gamma,tl) (delta,t1)
subst (Lift s) e . Exp (gamma,tl) t2

The body of the abstractior, has the typddelta,t1) , Wwheretl is the type of the domain of
the A-abstraction. In order to apply the substituti®rio the body of the abstractiomr), we need
a substitution of typéSubst (gamma,tl) (delta,t1)) . This substitution can be obtained
by applyingLift tos. Then, recursively applyingubst with the lifted substitution to the body
e, we obtain an expression of tyfExp (gamma,tl) t2) , from which we can construct &

abstraction of théExp gamma (t1 — t2))
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3. The variable-slash case (liag). There are two cases when applying the slash substitutian t

variable expression:

(a) Variable 0. The substitutiofslash e) has the typ€Subst (gamma) (gamma,t)) ,
and contains the expressi@en:: Exp gamma t . The expressiotV Z) has the type
(Exp (delta,t) t) . Pattern matching introduces the equatimmma=delta , and we

can usee to replacgV Z) .

Slash e 1 (Subst (gamma) (gamma,t))
e » Exp gamma t
(b) Variablen + 1. Pattern matching on the substitution argument introdubesequation

delta=(gamma,tl1) . Pattern matching against the expressfoh (S n)) introduces
the equatiordelta=(gamma’,t) , for somegamma’. The expression result expression
(V n) has the typgExp gamma’ t) . The type checker then uses the two equalities
to prove that it has the typExp gamma t) . It does this by first using congruence to
prove that gamma=gamma’, and then by applying this equaditgbtainExp gamma’ t

= Exp gamma t.

Slash e ;. Subst gamma (gamma,t)
(V(Sn) : Expdeltat
4. The variable-lift case (linggg). There are two cases when applying the lift substitutioa w@riable

expression.

(a) Variable 0. This case is easy because the lift substityiaces makes no changes to the variable

with the index 0. We are able simply to ret(ivi Z) as a result.

(b) Variablen+1. Thefirst patterni(ift s :: Subst gamma delta ), on the substitution,
introduces the following equations:
delta = (d’,_1),
gamma = (g’,_1)
The pattern on the variabl®(S n):: Var delta t ) introduces the equation

delta = (d2,_2)

The first step is to apply the substitutisnof type (Subst g’ d’) to a decremented vari-
able index(V n) which hasthetypa :: Var d2 t . To do this, the type checker has
to show thag'=d2 , which easily follows from the equations introduced by tladtgrn, yield-

ing a result of typdExp g’ t) . Applying theShift substitution to this result yields an

expression of typ€Exp (g’,a) t) (wherea is can be any type). Now, equations above
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can be used to prove that this expression has the (fgpe gamma t) using the equation

gamma=(g’, -1).

5. Variable-shift case (ling). Pattern matching on th8hift substitution introduces the equation
gamma = (delta, _1). The expression has the ty(fexp delta t) . Applying the successor
to the variable results in an expressi®h (S n)) oftype(Exp (delta,a) t) . Immediately,
the type checker can use the equation introduced by therpattgorove that this type is equal to

(Exp gamma t) .

We have defined type-preserving substitution simply typeglculus judgments. It is worth noting that
Omega has proven very helpful in writing such complicateacfions: explicitly manipulating equality
proofs for such a function in Haskell, would result in codattls both extremely verbose and difficult to

understand.

6.4.4 A Big-step Evaluator

Finally, we implement a simple evaluator based on the lBg-semantics for thie-calculus. The evaluation

relation is given by the following judgment:

e1 = X' (ea/,€') =>e3 e3=e”

AXe= e r=1 el eq = e

Note that in the application case, we first use the substittiz/, ') = e3 to substitute the argument
es for the variable with indeX into the body of the\-abstraction.

A big-step evaluator differs from the other interpretensdbject languages we have presented in this
dissertation. Whereas the other interpreters map obj@gtage judgments to some related domain of
values, the big-step evaluator is implemented as the fometial which takes a well-typed expression
judgment of typg[Exp delta t) , and returns judgments of the same type. The evaluator esglic

redices using a call-by-name strategy, relying upon thst#tubion implemented above.

eval :: Exp delta t -> Exp delta t
eval ( App el e2) =
case eval el of
Abs body -> eval (subst ( Sl ash e2) body)
eval x = X

Note that the type of the functioeval statically ensures that it preserves the typing of the abjec
language expressions it evaluates, with the usual cavieattshteExps faithfully encode well-typed-

expressions.
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Finally, let us apply the big-step evaluator to a simple epgl@mConsider the expressicaxample .

example :: Exp gamma (a —a)
example = ( Abs (V 2)) * App' (( Abs (Abs (V 2)) * App' ( Abs (V 2))
- example = (A z.z) (A y. (A 2.2))) (A z.x)

The expressiomxample evaluates the identity function. Applyingval to it yields precisely that

result:

evExample = eval example
-- evExanple = (Abs (V 2)) : Exp ganma (a—a)



Chapter 7

Example: \"

Up until now, we have considered object-languages baselesimply typed\-calculus. In this section,
we shall expand our range of object-languages by first progithplementations of well-typed interpreters
for two object languages whose type systems are somewliatedif from the type-system of the meta-
language. These languages, we shall call tigfnand L, are based on the two extension of the typed
A-calculus, with modal and temporal operatoys, [B1]] and Ao [29].

Why these particular languages? First, they are inteigsfiped languages in their own right, as use-
ful formalisms for describing two different kinds of stagedimputation. Second, formalizing their type
systems in a Haskell-like language to obtain sets of welétlobject terms is a more challenging task,
allowing us to showcase our heterogeneous meta-progragmmethodology.

The calculus\" is an extension of the simply typedcalculus. This calculus was defined by Davies
and Pfenning as the language of proof-terms for propositiothe necessity fragment of the intuitionistic
modal logic S4[130,31]. The propositions in this logic (ahdnce, types in\g) come equipped with the
modal necessity (also called “necessitation”) operator

Logically, the box operator expresses propositions trahacessarily trugthe termvalid is also used).
For example[J(a — a), is such a proposition sinde — a) is always true, irrespective of the truth-value
of a.

Ao is a (homogeneous) meta-programming language. The |dgisabperator used to classify types of
objectprograms (of\g). For example, the typdnt — OString) in A\g is a type of a program generator
that takes an integer and produces a piece of code that, wieented, yields a string value. Davies and
Pfenning prove certain binding time separation propefB&$that guarantee that, for example, while the
program of typgInt — [IString) generates the residual program of type String, all comjmutgiertaining
to its integer argument is performed while the residual paogis being constructed, i.e., there is no leftover

earlier stage computation in the residual program.

In this section, we shall present a small object languadedca that is based on the type system of

160
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b eB:u= Int]--- base types
T €Tu= b|lr—>7|0r|7xT types
LA eGa= (|T,7 type assignments
e €eEu= c|O|Te|Are|erea]|(e1,e2)]|m e]|me Afragment
| Or|eT|boxe]|letboxe;in ey modal fragment

Figure 7.1: The syntax of the languagg.

AE.

7.1 Syntax of L.

The core syntax of the languade; is given in Figurd_ZJ1. Types ifi are either base types such as
Int, Bool, function types, box types or products. Expressions areeadrat non-standard and we need to

explain them.

Variables. In standard formalizations of- [31], there are usualliwo (distinct) sets of variables. The fist
is the set of variables bound byabstractions. The second set is the set of modal varididésange over
code fragments (box values), and are bound byléhbox expressions. Following Davies and Pfenning,
we shall call the former variable8g) we shall calivalue variablesand the latter ) modal variables

As is usual in examples we have presented so far, we opt folBaudp style of variable naming. The
name of each variable is a natural number indicating the murmbintervening binding sites between the
use and the definition of a variable. In Chajifier 5, variablesepresented by natural numbers. This has
required us to formulate a separate auxiliary typing judgifier variables. Here, we slightly modify the
notation for variables, following the example of Chen and8], who adopt their notation from the study
of A-calculus with explicit substitutions (See Kristoffer Hoge’s excellent tutorial [113] for more about
explicit substitutions.)

In this notation, there is only one syntactic form for vatés) corresponding to the index 0. Sincdin
we have two separate sets of variables, we shall use two spehssions), for value variables, antig
for modal variables.

Variables at higher indices are obtained by a “shift” (§/dl]) syntactic construct{(e ande T, for value
and modal variables, respectively, whéren the left or on the right, binds more tightly than applicaj.

Intuitively, the expression 1 increments the indices of all free value variables by one.

We find this notation slightly more concise in practice, amclude it here to simplify our presentation,

since it allows us to, among other things, write only awal function, dispensing with the auxiliary
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functionlookUp of Chaptefb.

In Figure[Z2 we give a few examples of programs iA“&based programming language with named

variables, and their equivalent in the formalismif.

| A term | Lo term
Az Ay (z,y) A7 0L,00)

let box u = box(1 + 2) in let box (box (1 + 2)) in

let box v = box(3 + 4) in let box (box (3 +4)) in
box (’U, u) bOX(OR7 Or T)

power :: Int — C(Int — Int) power = fix powerF

power 0 = box(Az : Int. 1) powerF = Alnt — O(Int — Int). Alnt.

power (n+1) = if (Or ==0)
let box © = power n in then box (ANat.1)
box(A\z. z * (u x)) else let box((0g T) (Or — 1)) in box(AInt.0g * (0. OR))

Figure 7.2: A comparison betweéf’ and L syntax.

Box and Unbox. The two novel expression forms iy arebox andlet box, which act as introduction
and elimination forms for the box types. The expresgibox e) acts as a form of quasi-quotation. It
constructs an object-language programThe expressiorjlet box e; in es) takes an object-language

programes, runs it, and binds its value to a box variablein the body of the expressiaon.

Products and constants. In defining Lo we shall also assume that we have a number of other, uncon-
troversial simple types such as products. Furthermore, Weassume that for various base types such as
integers, booleans and so on, we have a sufficient numbemnsfamtts (including operations like addition,
comparison, and so on) for practical purposes. We will sheerlhow such constants can be elegantly

embedded into Haskell encodingsiof; typing judgments.

7.2 Type System ofl

The type system ol is given by the typing judgment relatiof4;T - e : 1) C G x G x E x T)
in Figure[ZB. The first thing to notice is that there are twpetassignments) andI'. The intuition
behind this is that tha-fragment ofL is typed in the usual fashion using the type assignme®ince]
represents closed code, boxed expressions can be wedl-oyfpewhenl” is the empty type assignment (see
rule Box in Figurd_ZB). However, variables that range owetecfragments can still be used inside boxed

expression, and their types are recorded by the type aseigiin This allows us type-check expressions
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that combine smaller box fragments into larger ones.

The A fragment
Rvar —S LT o it
A;D,7HOR: T AT, r el T
AT, be:n ATFer:m =1 ATTker:n
Abs App
ATFAe:T1 — T A;TFepex:m
The modal fragment
L pvar 2T ik
A, THO:T A THle:T !
A;(OFe:T ATke :0Orp Am;Thes:

-
Unbox

OX -
A;T' Fboxe: Or A;T'Fletboxejines : 7

Figure 7.3: The Static Semantics bf

The A-fragment. The rules for the modal fragment are the standard rules éositihply typei-calculus,
except where it comes to the treatment of variables. A vhriekpressior), implements the start rule of
looking up its type from the rightmost position in the typasigamentl”. The rule for shift (L-Shift) im-
plements the weakening — the expressidntyped in a smaller type assignment. The rules for absract

applications, and products (not shown in the figure) are detaly standard.

The modal fragment. The static semantics of the modal fragment consists of fgping rules in Fig-
ure[ZB:

e L-Var. andL-Shiftare the lookup and weakening cases for the set of non-larbbdad variables.

They are the same as theifragment counterparts, except that they use the type ansigia\.

e Box The box takes a sub-expressigrand type-checks it in the emplyfragment type assignment.
If, under that assumption, the expressiamas typer, then the whole expressidox e has the type
Or.

This captures the modal inference rule about necessitya proof of a necessarily true proposition
7 only if 7 can be proven with no assumptions (indicated by the empty agsignment). Note,
that while type-checking we are allowed to use any variables that are typed in the type assigh
A, since the type assignment, as we will see, is augmented only with types that are therasel

necessarily true.
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e Unbox.Thelet box expression is an elimination construct for boxed expresdidakes two subex-
pressionsg; andes. Then, the expression must be shown to have some typle;. If this is the
case, we are allowed to introduce an additional assumpliowl @ variable) in the type assignment
A that has the type;. If, with such an augmentefl we can prove that the expressienhas typer,

then we may conclude that the entire expression has thertype

Note that this is the only rule in which the modal type assigntd\ is extended. Moreover, it is
extended only with a type of a closed code fragment. Inteiyidhe modal variables can occur free
inside boxed expression precisely because we know thatahlgyrange over expressions that are

themselves closed.

Examples. Finally, we give a couple of examples involving expressioith box types.

Consider the expressi@xamplel (for some type A):

examplel :0A — A
examplel = AJA. let box Og in 0

The type of this expression tells us, in terms of logic, thi@ is necessarily true, than A is true. The

typing derivation is listed below:

R-V: L-V:
00, 0AF O - 0A o A Q,0AF 0 A

(); (), A+ letbox Og in O : A
(); () F AOA.letbox Og in 0 : (A — A)

Unbox

Abs

example2 : J(A — B) - 0A —- OB
let box Ogr T in

example2 = A\O(A — B).AOA. | let box Og in
box((T 0.) Ov)
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00— B) Fog:OGA B o
)

:(O(A — B),0A) - 0 : O(A — B) A B A, OF (1000 B PP
(3; (O(A — B),0A) I box((1 0,) 0,) : OB

Box

0 O(A S B),OA) F o oA

Unbox, twice

let box O T in
();(0(A — B),0A) - | letbox Og in : OB

box((T OL) OL) Abs, twice

letbox Og T in
O; () F AO(A — B). AOA. let box Og in :(0A - B)—-0A —0OB)
box((T O.) Ov)

7.3 EncodingLin Omega

A first step is to encode the judgments described in Figukel’.3 into an Omega(or, witjhslimodi-
fications, Haskell) data-type. We shall use the technigaeghould be familiar to the reader by how of
representing the typing judgmeat I" - e : 7 by a Haskell type constructéixp delta gamma tau

Note that with Omega, there is no need to implement a setnafrt constructorsor the data-type defined

in Figure[Z%.

dataExp AT't=

v I VarR where T" = (I",t)
|VI't. ShiftR (Exp AT 1) where I'=(I",t)
| V11 t2. Abs (Exp A (T',11) t2) where t=(t1 — t2)
| V t1. App (Exp AT (t1 —1)) (Exp AT t1)
| Lift t String
|V A VarL where A=(A',t)
|V At ShiftL (Exp A'T't) where A=(A',t)
| V t1. BoxExp (Exp A ()t1) where t=(Box t1)
| v t1. UnBox (Exp AT (Box tl)) (Exp (At1) T't)

Figure 7.4: Typing judgments df; in Haskell.

The type assignments are represented by a nested prodacthiip lambda-calculus fragment is com-

pletely standard, as iy (Chaptefb).
The judgment described in Figufe—l7.4 also contains the nasier (Lift t String ::
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t - Exp a b t) . This constructor represents constants in the object Eggult can be used to in-
ject any Omega value (of type) into Exp. It also takes a string argument that represents the name of
the constant, for pretty-printing purposes. For exampie donstant plus is encoded by simply lifting the
addition operator(Lift (+) "+") @ Exp d g (Int —Int —Int)

Next, we consider the encoding of the modal fragment. ThestcoctorBoxExp is used to create
judgments of boxed terms. It has one argument, a judgmeppetixp A () t1 . This ensures that the
boxed expression is closed — any mention of free value asakill require the value type assignment to
be a pair, causing a type mismatch with the requirement Heabbdy expression have the tyfe. For
example, the judgment for thie; term(box (. Ogr)) is represented by the Omega declaratzamplel ,

given below:

examplel :: Exp a b (Box (c -> ¢))
examplel = Box (Abs VarR)

However, if we try to create the judgment for the tefibox Og), which cannot be correctly typed, the

Omega type-checker complains with the following error ragss

Lambdabox> box varr
ERROR - Type error in application

*** Expression : box varr
*»** Term ovarr
*** Type : Exp ¢ (db) b

*** Does not match : Exp a () b

The where -clause in the definition of the constructor specifies a pudaigation thatt is equal to
Box tl1 . The type constructdBox here is some, as yet undefined representation of boxed valeewill

consider how to define Box later on.

Example: Power function. Here we shall construct an examlg, well-typed program. The function
power from In Figure[ZP we show an integer exponentiation funcpower . This function can be
staged based on the situation where its exponent argumiemdven. Thus, inL, power is given the type
(Int —0O(Int —Int)) : given an integer exponent argumentpower generates a residual program

that computes™, given its argument.

Figure[Zb shows the definition of tim®wer function in the Omega encoding @&f5. We examine this

definition more closely:

e Inthe first line, we can see thpbwer is defined by using recursion. THe; constanfixpoint
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power :: Exp ab (Integer — Box (Integer — Integer))
power = fixpoint ‘App‘ (Abs $ Abs $ Body)

where body = iffun ‘App‘ cond ‘App*‘ zerocase ‘App‘ ncase
cond =eq ‘App‘ varr ‘App* (Lift 0 "0")
zerocase = Box (Abs (int 1))
ncase = Unbox reccall newbox
reccall = (ShiftR VarR) ‘App‘ (minusone ‘App* VarR)

newbox = Box (Abs $ times ‘App‘ VarR ‘App* (VarL ‘App‘ VarR))
minusone = Lift (\x — x-1) "dec”

times = Lift \x y — x *y) "times”
iffun = Lift \xy z—if x then y else z) "if”
eq = Lift (::) N=="

fixpoint :: Expd g ((a—a)—a)
fixpoint = Lift fix "fix”
where fix f =f (fix f)

Figure 7.5: The staggubwer function in L.

is applied to a functionalabs $ abs $ body) , where the first abstracted variable represents

the recursive call to the functiggower , and the second argument is the exponment

e The body of functiorpower is a conditional expression that compares the exponentdadthen

takes two cases:

1. zerocase . Ifthe exponentis equal to zero, we simply return the codefahction that, given

any argument, returns box (abs (int 1))

2. ncase . Ifthe exponentis not zero, we first recursively constrboetdode for the exponentiation
function for a smaller exponentgccall ). The result of this recursive call is a piece of code
of type O(Int — Int). Then, this piece of code is un-boxed, and a new piece of code i

constructed using the un-boxed valneywbox).

7.4 An Interpreter for L

We shall give the semantics éf; by providing an interpreter for the Omega encoding of thénypudg-
ments ofLp.

The\-fragment ofL is virtually identical to the interpreter fdt, in ChapteEb. The important question
is how to implement the modal fragment. In defining the meguoihZ 5 programs, we are guided by the

semantics oA described by Davies and Pfennifgl[31].
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First, we must decide what meaning to give to expressiongpE Box a. In a functional language
(with recursion) the simplest meaning of boxed terms, asudised by Davies and Pfenning, are suspended
computations:

[OA] =1 — [A]
Furthermore, such a semantics must respect the followergiiies [31, page 19]:

boxe = Mzr:1l.e

lethoxu = ejines = (Az:1— T.exlu:=2()]) ea

With these guidelines in mind, we can begin to devise anjinéger forL5. The interpreter (Figule_d.6)
takes a typing judgment af of type (Exp d g t) , a runtime modal environment, a runtime value
environment, and returns a Haskell value of typeAs before, the runtime value environment is simply a
value of typeg. However, we have seen that for modal of typenve use the typ§) —t, so the modal
environment cannot simply be the nested tuple of tgpeRather, it is a closely related tyg®E d) ,

defined below:

data ME"e = EMPTY
| vet. EXT (ME €) () —t) where e=(e't)
- EXT o ME a > (() -> b) -> ME (a,b)

Now, a runtime modal environment of typE  (((),Int),Int) can be created as follows:

mel :: (((),Int),Int)
mel = EMPTY ‘EXT' (\ _ -> 1) ‘EXT* ( \ - -> 2)

Finally, we are ready to give a type to the functsval :
eval : Exp d gt —(ME d) —-g—t
We concentrate on explaining the modal fragment (the boltalinof Figurd Z.b):

1. Modal variables. The modal variable lookup is fairly stard. We consider the two relevant cases:

(&) TheVarL judgment provides us with an assumption tgatnma = (x,t) . The runtime
environment supplies another assumptgemma=(y,t2) . These assumptions are combined
to obtain an equality2=t , which is induced by the type signature in relation to thaultes
(f 0:t2)

(b) Similarly, theShiftL case implements weakening. Again, assumptions introdoggzhttern

matching on the modal runtime environment are combined thighassumptions introduced by
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eval :: Exp delta gamma-+t ME delta— gamma—t
evalVarR el e2 =snd e2

eval (ShiftR exp) el e2 =valexp el (fst e2)

eval(Abs body) el e2 =\v — (evalbody) el (e2,v))

eval (App fx) el e2 = evalfel e2) evalx el e2)

evalVarL (EXT _f)e2 =(f()

eval(ShiftL e) EXT env'_)e2 =evale env' e2

eval (BoxExp body) el e2 =Box (\ - — (evalbody el ())))

eval(UnBox expb body) el e2 =
let"(Box u) =evalexpb el e2
in evalbody (ext el u) e2

Figure 7.6: The interpreter fdig.

pattern matching over theg judgment so that the weakened runtime modal environment can

be passed as an argument to the recursive caVal .

2. Box. First, we must decide how to represeoxedvalues. Here, we shall chose to define a data-type
Box a as suspended computations ogerTheeval function simply delays the evaluation of the

body of the boxed expression and returns this computatiapped up in 8ox:
dataBox a =Box (() — a)

eval (BoxExp body) el e2 =Box (\ - — (evalbody el ())))

3. Unbox. The un-boxing is performed by first evaluating tikpression to éBox value, binds the
computation inside thBox in the 0-th position in the modal dynamic environment, aratpeds to

evaluate the body of thet box expression.

eval(UnBox expb body) el e2 =
let (Box u) = evalexpb el e2
in evalbody (ext el u) e2

It is worth reiterating the point made by Davies and Pfenifigifj, that at first, there does not seem to be
any difference between the meaning of the box modality, angdle call-by-name delay. While this is true,
it is important to note that the modal type systemgf rejects certain programs that using delayed values
(i.e.,() — A) would allow us to write. The type system accepts as cormgtthose programs that exhibit

correct meta-programming properties (e.g., binding tieqmasation[[311]).
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Example: \©

Davies and Pfenning define another version of the typediculus enriched with types based on temporal
logic, called\©. The logic on which the type system faf is based is the discrete linear-time temporal
logic

The motivation for devising this calculus seems to have litsebility to express, in a simple and natural
way, binding-time analysis in partial evaluation][29]. Tinetion of “a particular time” in temporal logic

correspond to computational stages (binding times) ingdataluation.

b €B:u= Int]--- base types
7 €Tu= blr—>7|Or|7xT types
' eGau= ()|, (r,n) type assignments
e €Eu= c|0|el|Me|erea](e1,e2)|me|me A-fragment
| nexte|preve temporal fragment

Figure 8.1: The syntax of the languafeg,.

8.1 Syntax ofLc

The syntax of the languade is defined in FigurE8l1. The types bf, are the types of the simply typed
A-calculus, enriched with)-types. In logic, the formul@) A indicates thatd is valid at the next moment.
Similarly, if we regard them as types of a programming largguave can see tygént — (OBool) as a type

of a function that takes an integer argument, and returnoiehbnat the next computational stagéhese
computational stages are ordered with respect to evaiyamthat evaluation of all redices that occur at

stagen happens before evaluation of the redices at the stagé .

Type assignments are lists of types, where each type in 8 léstnotated with a natural number. This

natural number represents the “time moment” (or stage) attwthe free variable is bound.

1A “temporal logic is an extension to logic to include prodisitformulas are valid at particular time§[29].

170
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Var — T ghif
L, (r,n)F"0: 7 L, (r',m)Frel: 7

L, (rm,n)F"e:m Ab I'tle:m — 7 I‘i—"englA

IFr Ame:m — I'Frepes:m
r+rtle:r 'kre:Or
1 ext
T'Frnexte: Ot

Prev
T'krtlpreve: T

Figure 8.2: Type System dip.

The set of expressions consists of a completely stanglaalculus fragment, and a temporal fragment

consisting of two constructs:

1. next e. Thenextis an introduction construct for the circle types. Operadity, it delays the execution
of the expression until the next computational stage. In a way, it is analogoukebox expression

of L, except that, as we will see, there is no requirementehoat closed.

2. prev e. Theprev is en elimination construct for the circle types. While doasting a value at the
next computational stage, tipeev expression allows the control to pass back to the curregesta
provided that its result is a next-stage value. This nexgestalue can then be plugged back into the

next-stage context surrounding thiev.

8.2 Type System of_,

The typing judgment ol is defined in Figur&8l2. The typing relatibn-" ¢ : 7 C G x N x E x T is
indexed by a natural number which represents a particular time at which an expresstoas typer. The

typing rules fomext andprev constructs manipulate this time index:

1. At some time index, a value of type )t represents a value at the next moment. Thus, to show that

nexte has type)r at the moment, we must prove that has typer at the time index. + 1.

Trrtle: r

I'Fm nexte: O

Next
-

2. An expression can be “escaped” by usprgv only in the context of type-checking an expression
at a later (non-0) point in time, and only if the escaped esgiom is a circle type (i.e., it already
represents a computation at a later point in time). One shoote that this formulation of the rule
prevents typing oprev when the time index is equal to zero, since there can be no earlier pointin

time.
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T'kFre:Or
Prev
T'krt+lpreve: T

The treatment of variables in the type system is also somdifferent from the simply typed-calculus.
When a variable is bound by aexpression, the time indexat which it is bound is recorded in the type
assignment together with the type of the variable. The bégiaule is written in a way that ensures that

only variables bound at time indexcan be used at the same time index.

8.3 EncodingL in Omega

Recall that the typing judgments éf~ are indexed by a natural number that represents the time &itde
which the judgment is valid. Encoding this judgment as an @artgpe constructor requires us to have a
representation of natural numbesthe level of types order to represent time indexes. Thus, we first

define natural numbers at the type level, along the linesritestin Chaptell4:

kindNat = Z
| SNat
datalsNat (n :: Nat) = IsZero (Equal n 2)

| ¥m. IsSucc (Nat m) wheren = (S m)

Natural numbers at the level of types are represented by pleeconstructorg andsS of kind Nat . The
type constructolsNat n is a runtime representation of the natural nuntbefhe type signatures of the

constructors are as follows:

IsZero :: Nat Z
IsSucc :: Nat n  —Nat (S n)

The encoding of the typing judgment 6f, in Omega is shown in Figufe8.3. The type construtbqp

has three arguments:
1. The first argument, is the time index.

2. The second argumerd, is the type assignment. It is encoded as a nested tuple ifolibeving
mapping:
tr = G — types
rd) =0
trT, 7™ = (T, (1, n))
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dataExp (n:Nat)et=v e’ Var wheree=(¢e’, (t,n))
| ve't m.Shift (Expne’'t) wheree=(e’,(t',m))
| Vt1t2. Abs (Expn (e,(t1,n))t2) _where=(t1— t2)
| Vtl. App (Expne(tl—=t)) (Expnetl)
| Const t String
| Fix (Exp n (e,(t,n)) t)
| vm. Next (Expmet) wherg=(Circlent), m=(Sn)
| Vm. Prev (Exp me (Circle mt)) where=(S m)

Figure 8.3: Typing judgment df  in Omega.

3. Finally, there is the representation of types. Base aravaypes ofL are represented by their
corresponding Omegatypes. The circle types are reprasbythe type construct@ircle , which

we shall discuss in more detail later.
We examine the encoding éf~ judgments as the data-tygsp in more detail:

1. The X-calculus fragment.The A-calculus is fairly standard, except for the treatment ofaldes.
First, in aX-abstraction, a variable is bound at the same time indexesvhrall judgment. In the
variable case, the time-index annotation in the type asség is required to match the time-index

of the overall expression.

2. Next.The 'next’ construct is defined as follows. The argument todbnstructoNext is anExp of
typet’ , at the some time-index The equality constraint forces the type of the overall juégt,
t, to be equal tcCircle n t’ . Finally, there is the additional equality constraint thegquals to

(S n) . This forces the sub-expression argumerNéxt to be an expression at a higher time index.

3. Prev.The constructoPrev takes one argument: a sub-judgmentoftgieep m e (Circle m t))
There is also an equality proof that forces the overall judgtis time index to be equal to the suc-

cessor on

It is worth noting how this preven®rev expressions at time index zero. If we wanted to have an
expressiorPrev e have the typeExp Z e t we would induce an equality proof obligation to

show thatZ equalsS m for somem In Omega this would result in a type error.

The types of the constructors for tliey judgments are listed in FiguEe™B.4. Let us look at a couple of

simple examples of ~ judgments.

el :Exp(Sn)e (1)
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Var
Shift
Abs
App
Next
Prev

= Expn(e,(tn))t

T Expnet-sExpn(e,(t2,m))t

o Exp n (e,(t1,n)) t2» Exp n e (11— t2)

S Expne(tl-t2)-Expnetl-Expnet2
mExp(Sn)et-Expne (Circlent)

T Expne(CirclentExp(Sn)et

Figure 8.4: Type signatures for constructordef judgments.

el = Prev (next (abs var))

e2:: Expne (Circle nt Circlent)

e2 = Abs (Next (Prev var))

e3:: Exp n e (Circle n (t+ t2) — Circle n t1— Circle n t2)
e3 = Abs (Next ((Prev (Shift Var)) ‘App‘ (Prev Var)))

1.

8.4

The judgmengl is “escaped,” usingrev at the top level, so the Omega type checker inf8ra)

as its time index.

The judgmeng2 is an identity function that takes an argument of type and immediately splices
it, using Prev into a Next -stage code. Thélext andPrev cancel each other out, leaving an

identity function of typeD)r — Or.

. The judgmene3 is slightly more complicated. It takes two arguments, a fiom)(m; — 72) and

a delayed value of typ€)r,, and produces a delayed result of type-.

An Interpreter for Lo

In defining an interpreter fof  we are guided by the big-step semantics for a small temponakional

language defined by Davies and Pfennind [29]. They definedhwastics of this language as a family

of functions, indexed by a natural number representingithe index, which maps expressions to values

(written:) e <> v.

The interpreter we define here is based on the same idea,gltlithas a more denotational style. The

following observations can be taken as general guidelimegfining the interpreter.

Time-indexed evaluation

The work that the interpreter performs can be divided integldistinct modalities, based on the time index.
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1. Atthetimeindex 0. The time index O represents expresdiuat are to be evaluatedw. This means
that theA-calculus fragment must be interpreted at the time indexdd.example, at time index O,

should map the expressigi.Var)0 to the integer valué, and so on.

2. Atthe time index 1. The time index 1 represents expresdiuat are to be evaluated at the next stage
(i.e., the next moment in time). In particular, this mearet the real work (e.g., reducingredices)
of the A\-calculus fragment is not to be performed at time index 1. elmv, escaping expressions of
the form frev ¢e) can occur inside time index 1 expressions. In this casegxpeessiore must be

evaluatedat time index Qproduce a time-index-1 value that is to be spliced in pldqaev e.

This is illustrated in Davies and Pfenning’s big-step seticarby the following rule:

0
e — nexto
evall

prev e < v

3. At the time index» > 1. At the time index greater than 1, there is no real work. Therpreter
must merely traverse, and rebuild, the original term, mglsare to increment its time index when

evaluating undenext , and to decrement its time index when evaluating updey .

Values

The interpreter fol is a written as a family of functions indexed by a natural nenfresenting the time
index. It must well-typed expressions (judgmentsief into values At the time index O, the values for the
A-calculus fragment seem quite straight-forward: an exgioesof typelnt — Int  can simply be mapped
into anint — Int function. However, when considering the modal fragmerg rthtion of values gets a
little more complicated.

First, at the time index 0, we have a type of val@scle n t that represent the delayed (modal)
values of typd at time indexh. Second, Davies and Pfenning introduce a notion of a sefoésaat some
indexn, that is a subset of the set of expressions in a particulanaldfiorm. The idea is that the set of

values at time indexn + 1) is isomorphic to the set of expressions at time indlex

data Val n e t =

Val Const t
| V me. VarV where e = (e',(t,n)), n=S m
| Vmpt2e. ShiftVv (val (S m) e’ t)

where e = (e',(t2,p)), n=(S m)
| V. mtl t2. AbsV (Val (S m) (e,(t1,(S m))) t2)
where t=t1->t2, n = S m
| V m tl. AppV (Val n e (t1->t)) (Val n e t1l) where n=3S8m
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| Vv t. NextV (Val (S n) e t') where t = (Circle n t)
| V mtl PrevV (Val (S m) e (Circle (S m) t)) where n= (S (Sm))
| V env. Cosed env (Val n env t)

data Circle n t = V env. Circle env (Val (S n) env t)

8.4.1 The Interpreter

With this in mind, we can tentatively assign a type to therpiteter. In order to be able to tackle the three

distinct interpreter modes in separate steps, we shadeliie interpreter into three functions:

eval0 :: Exp Z e t —e—t
evall :: Exp (S 2) e t —e—Val (S 2) et
evalN :: IsNat n —Exp (S n —e—Val (Sn)et

First, we present the interpreter at time index 0. Rhealculus fragment is fairly standard (see Chap-

ter[3).

eval0 :: Exp Z e t —e—t
evald0 ( Const ct) env = ¢

eval0 Var (env,(v,2)) = Vv
eval0 ( Shift e) (env, _) = eval0 e env
eval0 ( Abs e) env = \x—eval0 e (env,(x,2))

eval0 ( App el e2) env = (eval0 el env) (eval0 e2 env)
evald ( Next e) env = Circle env (evall e env)

The only exception is in the treatment of variables.The eslim the runtime environment carry their time
indexes. These time indexes are ignored when extractingggdtom the environment (linagnda). The
A-abstraction case must bind a new variable in the runtim@é@mwent (lineg). In addition to the actual
value, its time indexZ) is also bound.

Let us consider the modal fragment. The first thing to nothas the functiorevalO is not defined for
the case when the judgment is of the fornfPrev e . This is because, by definition &xp, judgments
of the formPrev e cannot have the typExp Z e t . Finally, on lines we show the definition of
eval0 for the judgment of the fornNext e . First, the sub-expressian of typeExp (S Z) e t
is evaluated byevall , to obtain the result of typ¥al (S Z) e t . Such a value, together with the
current environmergnv can be wrapped insideGircle  value to obtain the result of tyg@ircle (S
7)) t.

Now, let us consider the definition ef/all , the interpreter at the time index 1:
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evall :: Exp (S 2) e t —e—Val (S 2) et
evall Var env = VarV

evall ( Shift e) env = ShiftV (evall e (fst env))
evall ( Abs e) env = AbsV (evall e (env,(undefined,undefined)))
evall ( App el e2) env = AppV (evall el env) (evall e2 env)
evall ( Prev e) env = case (eval0 e env) of

Crcle e val —C osed e val
evall ( Next e) env = NextV (evalN two e env)

where two = IsSucc (IsSucc IsZero)

For the A-calculus fragment oL, the functionevall performsrebuilding The simplest example
of this is on lineg starting with the variable expressidfar :: Exp (S 2) (e,(t,S 2)) , it
constructs a value VarV :: Val (S Z) (e, (t,S 2)). For othefragment expressions (linggm) such rebuilding

is performed recursively on the structure of the term.

The most interesting part @vall is the case foPrev judgments (linezm). First, the sub-judgment
e is evaluated byvall to obtain a circle (delayed) value. This value is de-comséd, itsVal judgment
extracted. The actual splicing of this code is performedHhgydonstructol osed, which allows us to

form aclosureout of any value, by remembering the environment in which defined.

The case ofNext e (linem) proceeds by evaluating the judgmenat a higher time index to obtain a
value oftypeVal (S (S 2)) e t , and then wrapping the result wiextV to obtain a value of type
Val (S Z) e (Circle (S 2) 1)

Finally, we consider the functioavalN which implements the interpreter at a time index greatem tha

evalN : IsNat (S (S n)) —Exp (S (Sn)et —e—Val (S(Sn)et
evalN ( IsSucc (IsSucc n)) Var env = VarV
evalN ( IsSucc (IsSucc n)) ( Shift e) env =

ShiftV (evalN ( IsSucc (lIsSucc n)) e (fst env))
evalN ( IsSucc (IsSucc n)) ( Abs e) env =

AbsV (evalN ( 1sSucc (lsSucc n)) e (env, (undefined,undefined)))
evalN ( IsSucc (IsSucc n)) ( App el e2) env =

AppV (evalN ( IsSucc (lsSucc n)) el env)

(evalN ( 1sSucc (IsSucc n)) e2 env)

evalN ( IsSucc (IsSucc (IsSucc n))) ( Prev e) env =

PrevV (evalN ( 1sSucc (IsSucc n)) e env)
evalN n ( Next e) env = NextV (evalN ( IsSucc n) e env)
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The functiorevalN takes as its first argument a natural number representdttbr ourrent time index.
To ensure that this time index is at least 2, the arguments ty specified alsNat (S (S n)) . In
both theA-calculus and the temporal fragment the functeMalN behaves the same: the judgments are
recursively rebuilt (transformed into values), while tivad indexes increment and decrement whenever

Next orPrev is encountered.

8.4.2 Power Function

The first example we present is that of {@wer function, analogous to the one shown in Figlurd 7.5 for

Lo.

power :: Exp Z env (Int — (Circle Z Int) — (Circle Z Int))
power = Fix (Abs (Abs (Abs body)))
where body = myif ‘App’ vl ‘App‘ vO ‘App' body2
body2 = Next (times ‘App‘ (Prev v0) ‘App’

(Prev

(v2 ‘App‘ (minus ‘App‘ vl ‘App‘ one) ‘App‘ v0)))
myif = Const ( \c t e —if c then t else e) "if"
one = Const 1 "one"

times = Const (+) "+"
minus = Const (-) "-"

example = Next (Abs (Prev (power2 ‘App‘ (Const 2 "2") ‘App‘ (N ext Var))))
-- Next ( \x —(Prev (power 2 (Next x))))
result = eval0 example ()

The functionpower takes two arguments. The first, the exponent is an integaevalhe second, the
base, is a delayed integer value (of tyfiecle Z Int ), and produces as a result a delayed integer value
(of typeCircle (S Z) Int ). The function power can be specialized (ligeo exponent two to obtain
a delayed function value of typ@ircle Z (Int —Int) . Evaluatingexample (linem) yields the

following result (slightly cleaned-up and pretty-prinjed

result =
(Circle
(AbsV
(AppV
(AppV

(Val Const <fn> "times")
(AppV (AppV (Val Const <fn> "times") ( Val Const 1 "1")

Var V))
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Var V))) : Circle Z (Int -> Int)
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Chapter 9

Related Work

We shall organize our survey of related work by dividing tbild broad topics:

1. Meta-programming(Sectior3.I1)

(a) Homogeneous meta-programmirg§ectio 3. 111)

(b) Heterogeneous meta-programmiri§ectio3.11R)
2. Dependent types, type theory and meta-programni®ectio 3.R)

(a) General backgroundSectio9.211)
(b) Meta-programming with dependent typéSectioT3.2R)

(c) Simulating dependent types in HaskéBectio3.B)

9.1 Meta-Programming

Here we provide a very general overview of the work most diyeelevant to this dissertation. We begin
with some background remarks on meta-programming, ndtiaigt more detailed historical and taxonomic

survey of programming languages that support meta-pragiaghas been written by Sheard [118].

The notion of treating programs as data was first explicidyedoped by the LISP community. In this
context, the notion ofjuasi-quotatior12€,[8] was developed as a way of making the interface to #ite d
representing the object program “as much like the objeufiiage concrete syntax as possible.” [118] A
historical discussion, tracing quasi-quotation from thiginal ideas of Quine, to their impact on MetaML
is given by Taha1128]. The idea of the need for a meta-lang(ihgt can be used as a common medium for
defining and comparing families of (object) languages) aatrdiced to Landir 169]. Similarly, Bohm pro-

posed using th&-calculus-based language CuCh as a meta-language forlflaimgaage description [12].

181
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Nielson and Nielsori[90, 98, B2] define programming langsagpe calculi that clearly distinguish meta-
level from object-level programs as a part of the languadpés Work can be seen as motivated by a search
for a formal way to study the semantics of compilation. Thegognized that compilation can be seen a
meta-program with two phases: a static phase, where theimmpnstructs a residual output program
from some input program, and a dynamic phase where the @gdogram itself is executed. Thus, they
design a functional language with two levels correspondinthe two phases of compilation 194]: all
language constructs come in two flavors, minimally distisged by the syntax. We note also that the
two levels are essentially the same language, i.e., thantta-programming described is homogeneous.
Nielson and Nielson study the denotational semantics difi swo-level languages,[[[91] as well as their

applications to abstract interpretation][92]. They alspoagalize their work to multi-stage languages|[95].

An important impetus to the study of meta-programming lags came from the partial evaluation

community.

Partial evaluation researchers approached the problam dranore syntactic point of view, not really
considering the staging constructs as first-class (seonalgtimotivated) parts of the language. With the
benefit of hindsight, however, this perhaps explains why ttid not develop type systems that would

statically guarantee type correctness of both the statiagnamic stages in two-level languages.

Gomard and Joness [49] present a two-levelalculus as a part of their development of a partial evaluat
for the \-calculus and the study of binding time analysis for suchvaifuator. In this scheme, a binding time
analyzer takes a (single-leveljexpression, and produces a two-leXetxpression. Then, the semantics of
the two-level calculus can be used to reduce 2-level exjpresproduced by the BTA, yielding a residual
program that consists entirely of the level-2 parts of thev&! expression. They also develop a type system
for the 2-level calculus in order to be able to judge the auirmess of the annotations produced by the BTA.
However, only level-1 terms are typed; the residual prograonstructed using the dynamic part of the 2
level calculus are dynamically typed.

Gliuck and Jgrgensen [46,147] studied binding time analysd partial evaluation with more than two
stages. Their generalization of binding time analysis tdtiple stages is acknowledgeld [128] as being a
major source of inspiration for the MetaML family of multiage languages.

Two important meta-programming systems emerged from thdysbf constructive modal logic by
Davies and Pfennin@30.29] (See Secfion9.1.1).

MetaML [137] (See Section3.1.1 for a detailed discussiergri important synthesis of many previous
generative meta-programming languagédsextends the work on modal calculi of Davies and Pfenning,
introducing new concepts such as cross-stage persisamitéype-safe combination of reflection (thm

construct) with open code.
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9.1.1 Homogeneous Meta-Programming

The division into homogeneous and heterogeneous metagmuoging languages has was introduced by
Taha[128] and Sheard [118, for an excellent survey]. Ingbigion, we shall trace the context of homoge-

neous meta-programming, starting with modal-logic basedlculi, and proceeding to MetaML.

Modal Logic: A™ and A©

Many homogeneous meta-programming systems are motivgtdeelstudy of modal logic. In particular,
we shall examine two related logical systems (and theircatm versions of tha-calculus): the first,
A5, corresponds to the modal logftt; the secondA©, corresponds to linear-time temporal logic. Both
of these systems have found applications in the study of qpretgramming. Each of them captures an
important intuition about program generators. One of th¥thcaptures the notion aflosed codewhich
can be executed from within the meta-program. The oftief,allows manipulation of open code fragments
that can be easily combined by “splicing.” Combining the mwvodalities results in a meta-programming
language that captures very precisely the notion of homeges program generators. However, such a
combination is not straightforward, since the splicingcéasng) of AC and code execution (run) of-
interact and interfere with each other. Sheard and Thierpaovide a good discussion of the issue and a
survey of related work that addresse$ 1f [125].

The calculiA® and \© both use modal operatofs, (necessity) im= and( (next) in \©, to classify
terms that produce object-language programs. For exantgeype(A — OB) is seen as a type of a
program generator that takes an argument of tff@ad produces an object language program of #§pe

The calculus\” can be seen as the language of proof terms for the propaaitioodal logicS4 [L08].
On the logical side, box({) is the necessity operator. The necessity operator camelspto a type of
code i.e., values that represent object language expressiongarticular, it classifies, a type afosed
code i.e., a type of object programs that do not contain freeaideis. The type system of! ensures
that no free variables escape from thax construct by keeping two type assignments,andI’, (see
Figurd9.1). When type-checking the expresdior e, the expressioamust be type-checked, in the empty
the type assignmeirit (this is the type assignment that is augmented when typekafgeA-abstractions),
indicating that there are no free variablezirHowever, the box elimination construct binds its variahle
theotherenvironment\) thus allowing manipulation of unboxed values when buidimside other boxed
expressions.

Let us consider a standard example,gbever function which, given two integersandz, computes™.
Rather than providing a function of typlet — Int — Int , we shall define a function of the related type

Int —O(nt —Int) ,i.e., given the argument, it produces grogramthat when given the argument
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A-fragment
Varl Var2 Ailba:r Weak1 —A;FFmIT Weak?2
AT :rhax:T Ax:rm;Thx:T Ay:7s’'kx:7 ATy:m'kFx: T
AsTix:mbe:m ATRer i1 =1 A THer:
Abs A
A;THEA M :Te: 11— T2 A;THepex:m
O-fragment
A;(YFe:T ATher:0Onn Ayz:m;TEes:

r
Bo - Unbo
A;T Fboxe:Or X A;THletboxx =ejines: 7 %

Figure 9.1: The type system af’.

x computese™.

power Dnt —=0O(nt —Int)
power 0 = box (\x— 1)
power (n+l) = letbox f = power n inbox (\x — x * (f X))

Applying the power function to the argument 2 yields the pamgpow?2. Note thatpow?2 contains a
number of “administrative redices.” The generated programbe run by usintgt box construct to obtain

the value of32, shown below.

pow2 : [O(nt —Int)
pow2 = power 2
- pow2 = box(\x1—x1 * ((\x2— x2 * ((\x3— 1) x2)) x1))

result = letbox f = pow2 in f 3
- result =9

Davies and Pfenningd [29] also studied type systems extgntthi@ Curry-Howard isomorphism from
simple propositional logics to the constructive (lingiand) temporal logic. Such a system is shown to
accurately describe binding time analysis in (multi-sjgugatial evaluation. More notably, they state and
prove the property adime-ordered normalizatianT his property means that reductions preserve the binding
time of redices im© terms: all terms typed at an earlier “time”, s@yA are evaluated before terms typed
at a later time, say,) O A. This property also means tha®’ realistically describes partial evaluation, or,

more generally, generative multi-staged meta-progrargmira certain kind.
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A-fragment
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Figure 9.2: The type system af.

They prove that their calculus is equivalent with the syst#dnomard and Jone§ [49] by providing

translations between them.

The main technical trick in the type system (Figlird 9.2) is

1. To annotate the typing judgment with a natural nurmeeelindex. This index is augmented when
type-checking inside theext construct, which delays evaluation. Similarly, the indedécremented
when type-checking thprev construct, which escapes back to the previous level to ctergpro-

gram fragment that is to be spliced into a larger object-faogcontext.

2. To annotate the variable bindings in the type assigniiavith the level at which those variables are
bound. This assures that no variable in the program can lit“asthe wrong time,” thus preventing

phase errorssituations in which a variable is used before it is defined.

Thepower function example can be replicatedif’ as well.

power ©nt —OInt —OInt
power O X = next 1
power (n+1l) x = next (( prev x) * ( prev (power n ( next x))))

result = power 2 (next 3)
-- result = next (3*3*1)

Note that the residual code produced by #ie version of thepower function does not contain the

extraneoug-redices present in the residual code generated by'thenplementation.
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Type systems of” and\O are interesting examples of non-standard type systemshapt@r§l7 andl8
we describe encodings, using our Haskell techniques, dftweéd terms im\= and\©, as well as well-
typed interpreters for a version of both languages. It isrgting to note that in o© something very
much like the time-ordered normalization (see above) besomstatically enforceable invariant encoded

in the type of an interpreter for the encoding of well-typéd terms.

MetaML

The calculi based ol and() modalities have both comparative advantages and disayestvhen used

in meta-programming. The program generators writtekhtend to be easier to write and generate more
efficient residual programs. Program generators writtedth Wi tend to leave a large number of “admin-
istrative redices” in the residual programsl[29]; some eSthadministrative redices can be eliminated in
2O,

The disadvantage of© is that the generated residual code (whose types are aaisbifithe() type
constructor) cannot be programmatically executed in tpe ystem of© (there is noA© analogue to
unbox)

The considerable body of research on MetalIL [135] L3[0, 8Z129[134] is an attempt to combine the
ease of programming of th® modality with the ability to run generated programs of fhienodality, all

in a strongly typed setting. The general approach can baedths follows:

1. MetaML uses a slightly modified version of thie modality. In MetaML, it is a type constructor,
called “code”, and written as a bracket around a typ®:. The constructprev andnext are replaced

by bracketed code templatelg)) and escapesd].

2. MetaML introduces aun construct in the language which takes an expression of ifpend pro-
duces an expression of type However, this is unsound in general, singg might contain free
variables whose value bindings may not be known at the timnerofing the piece of code. A number

of type-systems have been devised to deal with this problem:

(a) Before a piece of code can be run, the type system muse ha it is closed[[135]. This
is done by making sure that it is typable in an empty typingtexta While this approach is
safe, there are situations in which it rejects programsdhaperfectly safe. It also prevents

abstractions over certain terms that contain

1in practice this means that execution of residual prograeneted is performed by some extra-linguistic (ad hocymez.g.,
a top-level way of executing programs.
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(b) Counting the number of escapes, brackets and run thettusut a term can also used to pre-
vent run from going wrong[130] This is a very syntactic noethof ensuring the safety of
run. Similarly, such a type system can be seen as being tictest, disallowing abstractions
overrun. Nevertheless, this type system can be quite useful inipeaciThe programming
language implementation of MetaML [121] uses a type systaset on this idea, extended to

a conservative extension of Standard ML of New Jerisey [79].

(c) A further development of MetaML type system, called AIBE], solved this problem by in-
troducing an additional modality, essentially “box,” asedimement of the MetaML type of
code. Then, only boxed code ternjéA4)]) can be executed usimgn. Unlike the previous
approaches, this type system allows for abstractionsroveHowever, the formalism of AIM
makes the meta-programming with explicit staging a lot membose and, at times, somewhat

awkward [134, for discussion].

(d) Recently, Taha and Nielsen presented a type system ftaNleusing environment classi-
fiers[L34]. The environment classifiers are a formal way exgligiaming environments in
which free meta-variables appearing in open code are defifteeladvantage of this type sys-
tem is that is allows the safe kinds of open code to be execiiteéd approach harmonizes the
tension between the approacHed (2b) &nH (2c): “while thiedfmsroach allows us to run open
code, but not abstractin, the second allows us to do the latter but not the former. [jpe

system with environment classifiers] provides both feattifg34, page 2].

(e) Finally, addressing the same difficulties of safely cammlg run andescapeas [Z#), Sheard
and Thiemann[]125] design another type system for MetaMlis Type system is based on
constraint solving and subtyping. The advantage of thisesyseems to be that it does not
require the programmer to supply any annotations beyondsheal MetaML ones, and that it
seems amenable to type inference. Unlike Taha and Nielsgmssystem([[134], it does not

require explicit annotations on cross-stage persistemtents.

In addition to these features, MetaML suppartsss-stage persistencellowing later-stage programs
to use values defined at an earlier stage. A good deal of woskals® been done to support stag-
ing of imperative MetaML program$& [15], as well as to provittedustrial strength” implementations of
MetaML [186,[121].

We digress, briefly, to consider how is MetaML, a homogen@eoetsi-language, relevant to the heteroge-
neous meta-programming framework we propose. In the exasypksented throughout this dissertation,
we have concentrated on heterogeneous programming seenéd particular kind. In this kind of hetero-

geneous meta-programming, we use a homogeneous fragmiet wfeta-language as an efficient “back
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end” for implementation. The scenario can be described| ks

1. We start with an encoding of the syntax (and type systerapuofe object language; .

2. We manipulate the object-programs by deconstructinig tepresentations and (e.g., in the case of

interpreters) map them to some domain of values, also edcsla part of the meta-language.

However, we can use staging in step 2, obtaining not a valtieimeta-language, but a residual program
in the meta-language that computes that value. The usuaiamngts for obtaining more efficient programs
through staging still apply in this situation. This way, wavk a heterogeneous system which translates
programs in the object languadsg into programs (represented in MetaML-style using the cgge)tin
the meta-language. By so combining heterogeneous and feraogs meta-programming we can reap the
benefits from both worlds: we can (a) safely manipulate digjigsgrams in many different object languages,
while (b) writing highly efficient interpreters for such @gajt languages by using MetaML notion of staging

to remove the interpretive and tagging overhead inherentitmg interpreters for such object languages.

9.1.2 Heterogeneous Meta-Programming

Now, we shall briefly trace the genealogy of the main ideasqarted in this dissertation. A couple of addi-
tional topics is worth mentioning in connection to hetemggus meta-programming — intentional analysis,

and the pragmatics of the interface to object-languagegynand we shall review them.

A Historical Overview

Initial motivation for our study of heterogeneous metagreonming came from the work on imple-
menting of domain specific languages in a safe, efficient ascipdined way by staging interpreters in
MetaML [120]. The basis of this approach is to define an oblfggyuage as a data-type in MetaML[121],
write a definitional interpreter for it, and then stage thiterpreter to obtain an efficient residual program
from which the interpretive overhead has been removed.

The first problem, however, was that with algebraic datas$yip MetaML there was no way of ensuring
that only well-typed programs of the object language arerpreted. If the object language is strongly
typed, developing a way of statically ensuring well-typesthof the object language encoding would pro-
vide an additional sense of safety (and reliability) of sthgnterpreters by guaranteeing that no type errors
would be generated by the residual program. Furthermorsawethat encoding and using type informa-
tion about the object language would allow us to gendegjkess staged interpretetisat are more efficient

because no tagging overhead is introduced by the impleti@m{a0Z].
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As a first step we developed a prototype meta-language vatiiref and dependent typés [102], and
implemented our first tagless staged interpreters. Thiguage was initially modeled on Cog [139] and
similar type theory-based languages. However, it was seoast into a FLINT-style [116] framework
that allowed us to write staged interpreters in a meta-laggwvith effects such as general recursion and
partiality without having to compromise either type safetyhe meta-language, or the expressive power to
represent well-typed object-language terms.

Such work provided a proof of concept and a simple prototyg@émentation, but we were concerned
with a couple of pragmatic issues. First, implementing andre importantly, maintaining a large new
programming language with a complicated type system argingtadid not seam feasible at the time.
Second, existing programming languages with dependeastygj did not seem to attract a large user base
among functional programmers.

At the same time, we became aware of Baars and Swierdiiasapgr that used equality types to rep-
resent types at runtime as a way of integrating dynamic typirHaskell. Their work, in turn, has roots
in Weirich’s paper presenting an encoding of equality betwiypes in Haskell [143]. Also relevant is
McBride’s work on simulating dependent types in Haskell|[75

We adapted these techniques to represent typing judgmieitsadculus terms in Haskell. To do this we
needed to use only very standard extensions to Haskell@8ahie most Haskell implementations, such as
higher-rank polymorphism and existential types. To experit with staging, we assumed that Haskell can
be extended, conservatively, with staging constlﬂchsthis programming language environment, we were
able to define the same tagless staged interpreters, andapgechnique to a larger set of heterogeneous

meta-programming examples.

Intentional Analysis

Here, we takéntentional analysigo refer to the ability of a meta-program to analyze the (agftit) repre-
sentation of object-programs. In the context of homogegemeta-programming systems such as MetaML,
intentional analysis is problematic from the semantic pofrview. Indeed, MetaML (and related systems)
are known agenerative meta-programming languaggsce the programmer is only allowed to generate

programs, not to rewrite or examine them.

MetaML and Intentional Analysis. MetaML enjoys interesting (non-trivial) equational profpes. The
a—,06—, n—, and bracket-cancellation reductions are sound with tdpethe operational semantics of

MetaML [129]. This allows the MetaML implementations to foem a number of optimizations on their

2An implementation of such a language was produced by Sh&&E] for Tim Sheard’s prototype implementation].
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representation of code without changing the meaning offarag. For example, certain trividiredices are
removed, rewriting simplifications based on monadic lavesparformed on code containing Haskell-style

do expressions, anét expressions are hoisted to avoid excessive nesting.

All these optimizations yield a representation of code thdtighly readable when printed. Automatic
removal of certain administrative redices in code repriegiem sometimes also yields more efficient object
programs. However, the equational properties that justise optimizations conflict with intentional
analysis. Simply put, if the user can observe the differdmetveen, say the pieces of codén x
=> x) 1 ) and(1), then the equational properties are no longer sound anthizatiions cannot be safely
performed. A satisfactory formulation of intentional ayg$ that can be safely integrated into MetaML
implementations has yet to be discovered.

In the techniques for heterogeneous meta-programming wgope, intentional analysis can be per-
formed on source object languages encoded by the prografwhée still statically ensuring that such
intentional analysis preserves typing properties of theailprogram). The part of the meta-language that
deals with staging, however, allows only generative metapgamming. We conjecture that in practice this
will prove to be a reasonable compromise: intentional asislyan be used to perform optimizing source-
to-source transformations on the syntax of object-langyaggrams, while staging is used to ultimately

ensure efficiency of object-language implementations.

FreshML. Pitts and Gabbay [39, 41, 111] formulate an elegant thearynfanipulating abstract syntax
with the notion of variable binding. From the programmingdaage point of view, this allows them to
construct data-types representing sets of syntactic teratiiloa-conversion. Theoretical foundation of
this work is Fraenkel-Mostowsky set theory, which providexiels for such sets of terms. Unlike previous
approaches, such data-types admit a simple and elegaohmdstructural induction, while still preserving
a-equivalence.

Integrating the key ideas of FreshML and nominal logic intoeta-programming framework has already
been proposed by Nanevski[86]. In our examples, we opt f@rdén style of representing syntax modulo
a-renaming. The main reason is that it is not entirely cleav tmexpress typeful abstract syntax in this
framework, although we conjecture that Nanevski's scherniglitwery well be adapted to our encoding of

typing judgments. The investigation of this question i flef future work.

Names and necessity. An interesting approach to meta-programming was propogeddmevski and
Pfenning [[86/ 85]. It can be seen as a parallel effort to solamy of the same problems that MetaML
was invented to address. Whereas MetaML starts witi{Jhmodality and finds various ways of relaxing

it to allow for execution of open code, Nanevski’s language,starts with theZ] modality and relaxes
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its restrictions on open code by using the ideas form Pittk@abbay’s nominal logic to allow certain
kinds of free variables. The main idea seems to be to comiJihef Davies and Pfenning with nominal
logic of Pitts and Gabbay [40]. This nominal-modal logicreseto provide a very rich system for meta-
programming: the modal fragment allows for constructiopmfgrams, including the run operation, while
the nominal fragment permits certain kinds of intentionalgsis over constructed meta-programs. Thus,
while residual programs generated in this framework tentetorery similar to ones generated AY,

intentional analysis can be used to make the residual pmgycansiderably more efficient.

DALI.  For sentimental reasons, we mention an attempt by the atgtlstudy a form of intentional anal-
ysis in the context of tha-calculus|[10D]. The approach was inspired by a proposalddg Miller [Z€] for
extending data-types in ML-like languages with a form ofit@gorder abstract syntax. Our approach was
to introduce a kind of object-level bindings that can be dstacted using a form of higher-order patterns
in a A-calculus. We studied the reduction semantics of such allcein an untyped setting and showed its
coherence with a rather standard natural semantics. Thisaph has been superseded by the considerably

more elegant theories of Pitts and Gabbay’s nominal |adit #d. " [88].

Typeful code representation. Hongwei Xi and Chiyan Cheil [18] have presented a framewarkneta-
programming (though they seem mostly interested in stypiimmogeneous meta-programming) that is
very similar to the approach described in Chajller 5. Thiskvemems to have been carried out syn-

chronously with our work, and we became aware of it relagilate in the course of our own investigations.

Xi and Chen represent object-language programs usingaaissivhose types are essentially the same
as the smart constructors for the tyfp e t in Chaptelb. Instead of Haskell, they use their own
language with guarded recursive data-type construdf@&][1The use of guarded recursive data-types
makes it unnecessary to resort to equality-proof baseddimge that we use in our implementations, and
thus results in code that is both easier to read and write.nfdia difference between their examples and
ours is that we show how we can combine the use of staging yp#ftl syntactic representations to derive
more efficient implementations.

Finally, they present embeddings of MetaML into this langgiby translation. This translation, however,
seems to be a meta-theoretical operation which is not definggk language itself. Rather, they seem to
see their language as a general semantic meta-languags. ta-programming languages liXe, \©
and MetaML can be given semantics by translation into tlagigliage. It might be interesting to compare

our implementations oX™ and\C in Chapter§l7 and 8 to their translations.
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Pragmatics of Object-language Syntax

In the examples presented in this dissertation, we use i@getiata-types (albeit augmented with tech-
nigues that allow them to statically encode important paoginvariants) to represent the syntax of object-
language programs. Parsing and pretty-printing interfacthese data-types can be implemented. This
is donepost hog by writing functions that construct elements of these latgie data-types from a purely
syntactic representation (e.g., strings or untyped sesgions). In Chaptefs 3 afid 5, we have shown how
to write such functions (calleypeCheck ).

In this dissertation, we chose not to concentrate furthah@nproblem since a simple, though not very
practical, solution for it does seem to exist. However, @fweneous meta-programming language would
gain considerably in usability, if the programmer could Bpased to object-language programs through
some kind of interface based on concrete syntax of the olgagiage. Concrete types,aamctype{l] are
a way of allowing the programmer to specify her algebraiadgpes in a BNF-like notation, where the non-
terminals correspond to types. From this specificatiorsgrarthat allow the programmer to write the new
data-types in whatever concrete syntax she chooses candmeatically synthesized. Furthermore, pattern
matching can also be extended to use concrete syntax. $ewatamporary theorem provers allow their
users to extend concrete syntax of expressions [139, 106idwding an interface to the underlying parser
and pretty-printer. Vissei [142] has also investigatedaaprbgramming with concrete object-language
syntax in the context of the term-rewriting language Sgatd41].

An interesting question is whether conctypes could be eddriio handle object-language syntax with
Haskell judgments in a type-safe way. Such an extensiondvoave to synthesize (or otherwise allow
the user to insert) appropriate equality proofs. Furtheembow such conctypes would be typed is not

immediately obvious. Pursuing this question would prowadenteresting direction for future work.

9.2 Dependent Types, Type Theory and Meta-programming

9.2.1 Background

Logical frameworks were introduced by Harper, Plotkin arahbkll [53/54] as a “formal meta-language
for writing deductive systems.” This work was similar to gerlier work of Martin-Lof on type theory as
a foundation for mathematics. Several theorem provers bega built that are either directly based on or
closely related to the LF approach: Ef[107], Coalll 39], K[HL].

Nordstrgm, Petersson and Smithl[97] describe at length proaph to using Martin-Lof type theory as

a programming language. However, as a practical programlanguage the pure type theory they present
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is somewhat limited. Furthermore, in the Martin-Lof typeory as presented by Nordstrgm et al., there is
little attention given to pragmatics such as efficiency @eaaf use. There is also no particular consideration
of how such programming system might relate to meta-progrim.

Several programming languages have been designed to taketade of expressive dependent type

systems. Twell[109] can be used as a logic programming lagpgbased on higher-order unification.

CayenneR] is a Haskell-like functional programming laage with dependent types. Cayenne, makes
little effort to isolate runtime computation from type-akéng. Rather, it combines dependent type theory
with arbitrary recursion, making the type-checking undabie. It is argued that in practice this is not
such a significant drawback. An important example of prognimg in Cayenne is an implementation of
a tag-free interpretef[3]. Compared to the tagless inédeps presented in Chaplér 2, this implementation
has two distinctive features we wish to critique.

First, we note that the lack of primitive inductive typesdes the rather awkward scheme of encoding
typing judgments of the object language using predicatadiké) Coq, where these predicates could be
propositions without computational content, the Cayemm@émentation must manipulate them at runtime.
This brings us to our second point. The lack of staging makddficult to see what practical gains are
achieved in terms of performance over a tagged interpreter.

Xi and Pfenning study a number of practical approaches todicing dependent types into program-
ming languaged [147, 148]. Like our approach, they are ameckwith designing practical programming
languages where dependent types can be used to gain effieietiexpressivity. Their solution to the prob-
lems of integrating dependent types with an ML-like langaiegto limit the dependencies to a particular
domain (decidable subset of integer arithmetic), and usstcaint solving to type check their programs.
They also appear to have pioneered the use of singleton itypesgramming languages, inspired perhaps
by Hayashil[58].

The FLINT group’s work on certified binari¢s[116] is perhdps most closely related to the language
MetaD we proposed in Chap{dr 2. They divide their languaggedrcomputational and non-computational,
linguistically separate parts. The computational partsprograms written in one or more computational
languages, while the specification language, part of whathess as a type language for the computational
languages, is shared among many computational languagdpescohnection between computational and
specification languages is achieved through the use ofesmmgtypes. Computational-language programs
are annotated with proofs of various properties. Thesefpia®@ encoded in the specification language.

Each computational language in this approach must be dedmgatrately in the meta-theory. Shao et
al. present a number of such computational languages thaieased as intermediate representations in

a compiler pipeline. Then, they define type (and propertgserving translations between them. Note
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that these definitions are not written in a programming (Rlieiaguage. It is argued that in a sufficiently

powerful formalism (say the calculus of constructionsgistransformations could be expressed.

In these computational languages, singleton types arel“Wied,” usually only on simple types such as
integers, which is a reflection, perhaps, of their intendezlas relatively low-level intermediate languages
in a compiler pipeline. In a heterogeneous meta-programinamework, we expect to use the inductive
families facility to allow the user to define new computatiblanguages and provide a uniform interface to

singleton types along the lines described in Chdgter 3.

9.2.2 Meta-programming and Dependent Types

Program Generators with Dependent Types. Sheard and Nelsoil_[1R2] investigated combining a re-
stricted form of dependent types with a two-level languagkeir type system allows them to construct
dependently typed program generators, but restrict suchkrg#ors to functions expressible with catamor-
phisms. This way, termination of program generators camaypdvbe guaranteed. In this framework, both
programs and their types are expressed with catamorphishish makes inference also possible. For
more information about type inference and dependent tygresmight consult Nelson’s dissertation][89].

In many ways, this work resembles and anticipates that afrigjg[11].

Certified binaries. Shao et all[116] define a general framework for writing centij compilers. They
sketch out how such a system could work by defining a numbeypefd intermediate languages (e.g., a
lambda-calculus, a language with explicit continuati@nslosure conversion language etc). Each of these
languages is strongly typed in a sophisticated type systiéimsingleton types. These type systems allow
each a program in each of the intermediate languages to ermcatistatically certify important invariants
such as bounded array indexing. A certification-presergorgpiler consists in a series of transformations
between these intermediate languages. Each transfomtakies a well-typed program in one intermediate
language and produces a well typed program in another ietiate language, so that the certified invari-
ants present in the input programs are true in the resulteofrinsformation. The invariants are specified
in a version of the Calculus of Inductive Constructions.

It is worth noting, however, when this system is considered meta-programming system, that they do
not give a formal meta-language in which these transfonatare defined. They conjecture that such a

system could formally be specified in some type theory (€gq) but it is not obvious how to do this.
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9.2.3 Program Extraction as Meta-programming

Coq. Coq [139] is an interactive theorem prover based on the Gaaf Inductive Construction§ [22],
itself an extension of the Calculus of Constructidnd [23heBriginal CoC system had two S(HtsSet,
which was impredicative, an@lype which was predicative, wherBet:Type. Coq extended this basic

formalism with a number of useful features:

1. Inductive (and also co-inductive) definitions allow thseuto define new types that resemble the al-
gebraic data-type, rather than having to work with awkwandi€h encodings. The types of these
inductive definitions are dependent (for a discussion dfiatiste families, see Dybjer [34, B5]). Con-

sider a definition for lists of a particular size, a type tisatlassified byset.

Inductive List [A:Set] : nat — Set :=
Nil : (List A O)
|Cons : (n:nat; x:A; xs:(List A n))(List A (S n)).
Definition onelList : (List Char (1)) := (Cons Char (0) 'A’ ( Nil Char)).
Definition twoList : (List Char (2)) := (Cons Char (1) 'B’ oneList).
Definition threeList :(List Char (3)) := (Cons Char (2) 'C’ twolList).

The list type has a parametar(i.e., it is a type of polymorphic lists), and a natural numinelex
indicating the list's length. Constructing such lists igwably as easy as constructing lists in ML.
Coq can also automatically derive primitive recursion corator(s) forList for writing functions

that analyze lists.
2. The sortProp is a “twin of Set,” [[44] also impredicative, which is intended for specifgi(non-

computational) propositions. Types classified?rgp can also be defined inductively.
As an example, consider a membership predicate ovelrigtigoreviously defined. The inductively
defined predicat®ember has one parametek,: Set — the type of the elements of the list, and three
indexes:

(a) The element of typA.

(b) A natural number indicating the length of the list.

(c) Alistin which the membership of the first index argumerdsserted.

SRoughly speaking, morally equivalent to Martin-Lof’s ueises[[74].
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Inductive Member [A:Set] : A—(n:nat)(List A n) — Pro;ﬂ =
MemberHead : (a:A; n:nat; rest : (List A n))
(Member A a (S n) (Cons A n arest))
| MemberTail : (a,b:A; n:nat; rest : (List A n))
(Member A a nrest) — (Member A a (S n) (Cons A n b rest)).

We can easily build a proof, for example, that 'B’ is a membfethe list['A’,'B’,’C’] by using the

following proof script:

Lemma x1 : (Member Char 'B’ (3) threeList).

Compute. Constructor. Constructor. Qed.

Print x1.

x1l=
(MemberTail Char 'B’ 'C’ (2) (Cons Char (1) 'B’ (Cons Char (0) ‘A’ ( Nil Char)))
(MemberHead Char 'B’ (1) (Cons Char (0) A ( Nil Char))))
: (Member Char 'B’ (3) threeList)

The most interesting feature of Coq is the extraction of paots from proofd[105]. The idea is based on
the notion of Heyting interpretation of propositions, whican give a realization of an intuitionistic proof
as a functional program. Several systems (theorem prolavg) been inspired by this notion to provide a
way of creating executable programs from logical specificatand their proofs [59, 105,120].

The most significant feature of Coq is that it treats the twirissSet andProp differently with respect

to program extraction:

1. Inhabitants of types with soRrop are, for the purpose of program extraction and executieated

as comments — to be erased from the final result.

2. Inhabitants of types with sofet remain in the extracted programs. However, it can be shown
through realizability results [105] that dependent typas also be removed from the extracted pro-

gram: given a Coq term (program), the extraction producesgpaitationally equivalent,, program.

3. Finally, the F, program produced by the extraction process is mapped ontogigm in one of

several common functional languages (Haskell, Object&®IC, Scheme).

4Recall from that in Coq notation, tHé types are written using parentheses. The type shown hereecamitten, using the more
classicalll notation asII_ : A.Iln : nat.Il_ : (List A n).Prop
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Let us consider the results of extraction for the lists withdth examples above. First thing to note is
that the list values with length, when extracted, corregsipgimply to normal list, except that ea€ons
node carries the natural number index of the length of its kdwever, in the type of the list, the natural
number index does not appear at all.
module Main where
import qualified Prelude
data List a = Nil | Cons Nat a (List a)
oneList = Cons O 'A’ Nil
twolList = Cons (S O) 'B’ onelList
threeList = Cons (S (S 0)) 'C’ twolist

Now, consider extracting the membership propafttydefined above as a proof that 'B’ is a member of
the list[A' ,’B’,’C’]. Note thatx1 is defined as__, which should never be evaluated in the prog&m.
module Main where
import qualified Prelude

= Prelude.error "Logical or arity value used"
X1 =

Let us now critique program extraction as a technique forappebgramming (in particular, its incarna-

tion in Coq), and contrast it with solutions we propose.

1. Pragmatic complexity of the systeithe pragmatic complexity of the system expresses itselfin t

different ways.

(a) The reasonable scenario for meta-programming with Cagjdwequire a user to first imple-
ment the critical parts of her (meta)program in Coq, forae#nd prove properties about it, and
finally, to use the automatic extraction to derive a CAML orskial program. This extracted
program must then be integrated with the existing programgranvironment in the target lan-
guage.

This requires the programmer to be an expert in both Coq (®msyaot so easily mastered
by an average (meta)programmemgd the general programming language environment (e.g.,

Haskell) into which the Cog-derived programs are integtate

(b) Developing a large program half in Coq, half in Haskedt,éxample, has a considerable poten-

tial of quickly turning into a software engineering nightraa

5Since Haskell is lazy, so long as no-one pulls on a logicabgsiion value, no runtime error is raised. Coq prohibitgrikions
of Set-based values by cases oWop-based ones, so the error is never raised in practice.
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2. Integration with existing programming languages and typgtems.Recall that programs extracted
from Coq areF,, programs. Mapping such,, programs into a typed functional language such as
Haskell or OCaml is often feasible in practice, but not als/fil0%]. In these cases, the extracted
programs cannot be well-typed in the languages targetelebgttraction mechanism. The practical
solution adopted by the implementor of Coq is to insert umsafting operations, when extracting

OCaml program.

When the target platform of program extraction is Haskbkl aipproach becomes problematic, since
some Haskell implementations require type informatiordpced by the type-checker in the process

of compilation.

3. Lack of programming-language featuredany standard programming language features, such as
printing and state, cannot be accessed directly in Coqphissible to use these features post hoc, by
transforming programs extracted from Coq by hand and iategy them into larger programs written

in Haskell or OCaml. This approach, however, may adverdédgtthe maintainability of programs.

9.2.4 Typeful Meta-programming

An interesting approach to well-typed meta-programmingcgpating both our techniques and those of Xi

and Chen[[146], is presented by Bjgrrier[11]. The meta-laggus presented as a two-levetalculus.

Bjarner introduces a type constructor for terms that is &émjilar to our encoding of typing judgments
in Haskell. A object language expression is represented ¢geaial type constructor which takes as its
argument asort.  Sorts are types of a special (nonkipd, which represent the type of object-language
terms. The sorts encode, in Bjgrner’s case, simple typesxXample, type of the object-language function
from integers to integers would BEerm[intsort->intsort] ). Similarly, a meta-program which

optimizes or simplifies an object-program in a (object-gygpeserving way has the type:

sinplify 1 Vwvisort. Term[v] — Term[v]

The meta-language is equipped with “well-typed” constotetind deconstructors for these values. The
type system of the meta-language is explicitly designedufipert type inference. This inference is re-
stricted to types that are (rank-2) polymorphic in Seets The machinery that allows this is rather compli-
cated, using a system based on higher-order semi-unificatid constraint solving. An interesting example

in Bjgrner's meta-language is a type-preservimgp function:

map :: VYw:sort. ( Vvisort. Term[v] — Term[v]) — Term[w] — Term[w]
map f (App(M,N)) = f (App (map f M, map f N))
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map f (Lam(M,N)) = f (Lam (M, map f N))
map f (Var N) = f (Var N)

The morally equivalent function in Haskell, with our typifgdgment representations, would look as

follows:

map : ( vel tl. Exp el t1 —Exp el tl) —Exp et —Exp et
map f x = case x of Var pl —f (Var pl)
App el e2 —f (App (map f el) (map f e2))
Abs el p— f (Abs (map f el) p)
Shift e p —f (Shift (map f e) p)

Unlike Bjgrner’'s system, where many interesting types afgpams that manipulate typed object-
language syntax can be automatically inferred, our approsguires the programmer to explicitly manipu-
late equality proof objects. This seems to be a consequéice fact that the object-language is hardwired
into the system. The user could not change or redefine themofiwell-typed object-language syntax.
An interesting question for future work would be whether ateyn like Bjgrner’s could be automatically

synthesized from a specification of the object-language system.

9.3 Dependent Types in Haskell

Faking it. A comprehensive description of how to simulate some asggaependent types in Haskell
was presented by Conor McBride [75]. The technique is gubélar to the one we present in Chaplér 4.

First, values of any first-order monomorphic type can bedift‘faked”) into the type world:

1. For each such typE, a Haskell clas§ t is created.

2. For each construct@r : t; — --- — t, — t, adata-type& : x — ---*x — x is created, as well as

an instance placing the data-tygento the clasg'.

For example, natural numbers are defined as follows:

class Nat n
instance Nat Zero
instance Nat n => Nat (Succ n)

data Zero = Zero
data Succ n = Succ n
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Second,n-ary type families (i.e., functions from values to types) are implemented @s+ 1)-ary
multi-parameter type classes, where thet 1)th parameter is functionally dependentl[66] on the previous
n parameters. Consider the type family, which given a natasatbern, computes a type of a function

with n natural number arguments.

nAry : Nat -> *
nAry Z = Nat
nAry (S n) = Nat -> (nAry n)

This can be encoded by a multi-parameter type class:

class Nat n => NArry n r | n -> r where ...
instance NAry Zero Nat where ...
instance NAry n r => NAry (Succ n) (Nat -> r) where ...

Functions typed by this type family can then be defined as neesrdf the clasdlAry .

This technique allows the type “computed” by the type fanilype computed by the Horn-clause reso-
lution machinery already present in Haskell type-checkdicBride explains his technique by providing a
number of interesting examples, such ag@WVith function with a variable number of arguments, and a
data-type of lists whose length can be determined staticall

The main difference between our approach and that of McBsidkat we have chosen not to rely on
Haskell's class system to “fake” dependent types. When fivediues of first-order monomorphic types to

the type level, we do so by using an inductively defined typestoictor instead of a type class.

data Zero = Zero
data Succ n = Succ n

data IsNat n = IsNat_Zero (Equal n Zero)
| forall n'. IsNat_Succ (IsNat n’) (Equal n (Succ n))

Similarly, type families become other inductively-defirdata-types. In manipulating these families, we
rely on the equality proofs in these data-types and a liboadgquality casting and manipulating functions.
This means that we cannot rely on Haskell's type checker topede the results of type functions. We

motivate our style of “faking dependent types” in Haskelltbg following two points:

1. Since we have explicit equality proofs in our type fangilize can use casting combinators to perform
casting across thendetype constructor, and thus move all dynamic computaticateelto the faking

of dependent types to an earlier stage. Runtime computat@nred by McBride's encoding of
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dependent types is performed by manipulating dictionavigish are not accessible to the user, and

thus could not be easily used to create truly tagless irgez[s.

A point related to this, noted by McBride, is that “at runtintieese programs are likely to put much a
greater strain on the implementation of ad hoc polymorphisan it was ever intended to beal™[75,

page 15]

2. In terms of programming style, Horn-clause notation ofkédl class definitions is not always the
most intuitive way of writing functions over types. Furth@re, code for one function (which has a
dependent type that is being faked) tends to be scatteredgamany different instances of a single

class, leading to rather brittle-looking code.

Phantom Types. Hinze and Cheney [19] have recently resurrected the notidplantom type,” first
introduced by Leijen and Meijel [70]. Hinze and Cheney’'smthan types are designed to address some of
the problems that arise when using equality proofs to remtagpe-indexed data (e.g., our typing judgment
Exp). Their main motivation is to provide a language in whichytgbic programs, such as generic traversal
operations, can be more easily written. This system, whachte seen as a language extension to Haskell,
also bears a striking similarity to Xi'guarded recursive datatypg®4€)], although it seems to be slightly
more expressive.

The main difference between phantom types and the techmjgesented in Chaptdis 4 ddd 5 lies in the
treatment of equality types. Instead of explicitly embeddequality types in data-type definitions, Cheney
and Hinze propose a language extension which allows thegmuger to state equalities between types in
a data-type definitions. For example, the typing judgmenffoalculus would be represented as follows
(note that the variables not bound by the data-declarateoggtl , are implicitly existentially quantified):
data Exp e t = Var with e = (e')t)

| Abs (Exp (e,tl) t2) with t = tl->t2
| App (Exp e (t1->t)) (Exp e tl)

This definition has a couple of advantages over the defirstiath explicit equality proofs. First, the “smart
constructors” are unnecessary to provide a useful inteftaacconstructingexps. The system automatically
assigns the “smart constructor” types to the regular caosirs. Second, there is comprehensive support
for de-constructing data-types with equality constraints

The managing and propagation of equality proofs is handiéahaatically by the type-system. Equality
proofs are never explicitly manipulated by the programnhestead, the type-checker uses unification to
solve type equality constraints that arise from deconstrg&xp values. Furthermore, certain equality

proof manipulation operations that cannot be implememeldaskell, but rather have to be declared as
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primitive,H need not be used since the built-in constraint-solver intype checker is powerful enough

infer the equalities they are used to compute.

Recasting our Haskell examples in Cheney and Hinze’s laggjisaa relatively simple exercise, as we
have shown in Chapt&i 6. One obstacle to using Cheney ana:Blipkantom types was the lack of an
implementation. This is why we developed Omega which, whkilg a prototype, is the first non-toy

implementation of Cheney and Hinze’s type system.

6For example the functiopairParts :: Equal (a,b) (c,d) — (Equal a c, Equal b d).



Chapter 10

Discussion and Future Work

In the bulk of this dissertation, we have elaborated on a géfieamework based on programming lan-
guages, type systems, and techniques, that supports tttepraf heterogeneous meta-programming. We
have thoroughly explored the design space of meta-langfesgeres intended to guarantee that meta-
programs maintain semantic invariants of object-langyzggrams. In Chaptdd 6, we have described a
functional programming language equipped with built-iport for type equality, and demonstrated its
power as a meta-programming language by implementing a euailinteresting examples (ChaptElsl6-8).

In this Chapter, we summarize our findings and results, asudidirections for future work.

10.1 Thesis and Findings

Recall that the thesis of this dissertation, stated in Gi&pfl, is that heterogeneous meta-programming
can be made into a useful meta-programming paradigm thgprcatide some of the same benefits as the

homogeneous meta-programming languages:

1. safety features (e.g., type safety of object-languatggpreters, memory and separation safety in

imperative object languages),
2. increased efficiency derived from the combination of sgingroperties and staging,

3. type-safe object-language generation and manipulation

The first question we asked ourselves was whether it washgedsi manipulate object-language pro-
grams that are not only syntactically correct, but aigme correc? As a first step toward answering this
guestion, we have designed a meta-language for heterogensta-programming. The key property of
this meta-language is that it allowed us to define the algellata-type representing abstract syntax in a

way that preserves a notion of well-typedness of the ob@uuage as a statically checkable invariant.

203
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This meta-language, called MetaD, combined, roughly spgakype system with dependent types with
staging in the style of MetaML.

Next, after implementing a prototype of MetaD, we used it titeva “well-typed interpreter” (in the
sense of Augustsson and Carlsson [3]) for a typed objeculzge This implementation exemplified a

step-by-step methodology for an important class of hetmegus meta-programming applications, which
we reiterate here:

1. Start with a (strongly) typed object language. Variabtedlng in the language should utilize the
index-based technique of de Bruijn_[13]. While this can m#ie formal encoding of the object

language somewhat awkward, it greatly simplifies the imletation.

2. Use the dependently typed inductive definition facilityetaD to encode the typing judgments of
the object-language terms as an inductive family.

3. Write a semantics for the object language. We have fousitthie “categorical style” semantics, an
inductive mapping from the typing judgments of the objenglaage to an arrow from the meaning of
type assignments to the meaning of types, fits most natunathour methodology. Such a semantics

is then implemented as a definitional interpreter in the Aetguage by providing the following:

(&) A map from the syntactic representation of object-laggutypes to their meanings as meta-

language types.

(b) A map from the syntactic representation of object-laaggitype assignments to the type of the

runtime environments in the meta-language.

(c) Finally, a map from the typing judgments of object-laaga expressions (StEp 2) to “arrows”
from the meaning of the associated typing assignment to #ening of the object-language

type.

4. Reformulate the interpretdd (3) by adding staging artiwta [T17]. Accomplishing this step makes
the deconstruction of typing judgments happen at the fiegiestyielding a interpretive-overhead
free residual program. We make an observation that suchgrgrois free of both interpretive and

tagging overhead (when the object language is a typediculus) and can thus be considered as a

simple, though reasonably efficient form of compilation][38

FigurlIQ.1 illustrates the general point of this transfation by a way of “T-diagrams”. The diagram
(a) corresponds to an interpreter of di&p 3. Note that we hametated the object-language program
O, with its object-language type The current stefil4) accomplishes the transformationagrdim

(b), where a meta-prograi, transforms the object-language progréminto another program in
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O O, — M)
M M,
(a) Interpreter (b) Staged Interpreter

Object language program with (object) type

M Meta-language program of tyfje]

*

A tagless staged interpreter written in the meta-language.

M-y Avresidual program generated by the staged interpreter.

Figure 10.1:

5.

the meta-languag@/ )y, while preserving the relationship between the objectilage type- and
the metalanguage tydér]).

Implement an associated class of meta-programs that giypossibly ill-typed) syntactic represen-
tation of an object-language term, constructs, if posséialid proof of its typing judgment that can

be executed using the interpreter (defined in Elep 4).

The steps[{1)E{5) can be considered a paradigmatic exarhpkterogeneous meta-programming, con-

sisting of an object language and an interpreter-baseceimghtation of such a language. This kind of

implementation in the meta-language we proposed has tlosvial features:

1.

The implementation of the interpreter for the objectglaage program ensuresatically that only
well-typed object-language programs are interpretedhebject-language is strongly typed, the ab-

sence of runtime type errors is guaranteed in the intenpogtine type system of the meta-langudge.

. Adding the infrastructure for explicit staging to suchiaterpreter allows us to leverage the strong

typing properties of the object-language to implement naffieient interpreters that do not require

injecting their results into a universal domain by taggiafires at runtime.

Inspection of code generated by staging clearly revealalisence of tags. We refer to an empiri-
cal study comparing programs generated by staged interprefth and without tags [62]. In this

study, Huang and Taha show that in practice removing taga fesidual programs generated by
MetaML results, on average, in twofold speedup of prograMesexpect these results to hold for our

implementations as well.

. Tagless interpreters are an example of programs thagznglped object-language programs. We

have also shown how to build “parsing” functions that camsttsuch object-language programs in a

Iprovided, of course, that the meta-language is type safe.
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type-safe way. We have implemented object-language tygps&epring syntax-to-syntax transforma-
tions (substitution example in Chapferl6.4), as an examipheseta-programs that both analyze and

construct well-typed object-language terms.

Next, we explored the question of whether the various lagguUaatures present in MetaD could be
harmoniously combined? To answer this question, we gavenaaladefinition of a small calculus that has
all the ingredients of a heterogeneous meta-programming-taeguage: a form of dependent types and
staging. We proved that such a language is type safe witlecesp an operational semantics. While this
does not constitute a formal proof that the more generalrarothing language MetaD is type safe as well,
it represents a good prima facie evidence that the maindigmés of MetaDcanbe safely and orthogonally
combined in a single language. A full formalization of thetpe MetaD that contains dependent families
is left as a question for future work.

The next question we asked ourselves was whether the fukksgwe power of the dependent types used
in MetaD is really necessary for the meta-programming ggradutlined above. Can the typing judg-
ments of object languages be encoded using something miortoadata-types in functional programming
languages than the inductive type families of the calcufumastructions?

Here, we demonstrated how such encodings (as well as defioitwell-typed, tagless interpreters, type-
checkers, and other meta-programs) can be accomplishegl asechnique for encoding type equality in
Haskell-like languages. Thus, we have successfully rehasbbject-language implementation methodol-
ogy (full step£IlEb) in Haskell.

The advantage of this approach is primarily in obtaining arempractical heterogeneous meta-
programming platform. However, we discovered significamacfical drawbacks of this approach as well:
explicit manipulation of type equality encodings in Haslkeln be both cumbersome and inefficient.

What was needed is a meta-programming language that alltthveqerogrammer to use type equality in
his encodings of abstract syntax, but automated much okttiarh of type equality manipulation. This is
why we designed and implemented the functional languageg@ntlee first implementation of a functional
language with automatic type equality manipulations.

In designing Omega, we started with a functional languagelai to Haskell. We modified its type
system to automatically keep track of type equalities. Tlstimportant new language feature we added
was a generalized algebraic data-type definition facilityol allowed to programmer to specify equalities
between types that must hold for each constructed eleméme dfata-type. We implemented a type checker
that automatically proves and propagates these type #gadlirough the meta-program. With Omega,
we were able to implement all our Haskell examples in a cleaimpler style. We evaluated Omega’s

usefulness as a meta-language on an expanded set of mgtafpming examples.
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Examples. Another modality of support, to which our thesis lends fteakurally, is by detailed examples

which showcase a set of techniques which, taken togethéw ma a practical idiom for heterogeneous

meta-programming. Also, the examples have the nature dbddl— the goal is to teach readers interested

in heterogeneous meta-programming how to implement anritapiclass of heterogeneous meta-programs

by describing step by step implementations.

Evaluation. In ChapteFllL we have outlined a set of criteria that a usalisbgeneous meta-programming

language should fulfill. We review these criteria and comnoerhow the work presented in the rest of this

dissertation addresses each of them.

1. Isit possible to define and manipulatifferentobject languages¥es. In Chaptdrl3 we have demon-

strated how an example object-language based on the sigg#gA-calculus can be encoded as an
inductive family in MetaD. In Chaptdil 5, we have started véthencoding of the samecalculus
based language. Then, we extended the object languagdriviaity, with pattern matching to
demonstrate how a wider variety of object-language featcae be treated with our technique. Then,
we have shown (Chaptdi{®-8), how an even more interestind ebject-language type systems can

be encoded, this time using Omegé&’, \© and the calculus of explicit substitutions.

. Is it possible to statically enforce important object-laragie properties such as typing and scoping?
Yes. In Chaptef]3, we show how to produce such encodings iardkmtly typed language MetaD
by using dependently typed inductive familHes.

In Chaptellb we have described a technique that allows us thiddn Haskell. While Haskell,
as a meta-language, does not guarantee the soundness afitted predicates that encode object-
language properties, we discuss how this problem can bddthimdpractice. Finally, in Chapt&l 6

we demonstrate how such invariants are enforced in Omega.

. Can we write efficient meta-program&®s. A classical way of achieving efficiency in interpreters
(and other meta-programs) is by applying staging techsituéhem [[128, 117]. Having described
a way of encoding object-language abstract syntax that, eBriklle put it, “allowing us to equip
data-structures [and abstract syntax] with built-in inamats” [75], is there any useful that staging can

play in the larger scheme of things?

We have been able to demonstrate how we can derive tangidditssfrom using both typeful repre-
sentations of object-language synendstaging. As a demonstration, we develop implementations

of tagless staged interpreters, thus providing a plausibligtion to the problem posed by Taha in

2For comparison the reader might peruse Appefdix A for a coatipa development in Coqg.
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the context of MetaML[]128, page ]&1 In MetaD and Haskell staging plays an important role in
producing efficient tagless interpreters, since manindat/ping judgments/equality proofs incurs

some runtime overhead that can be removed using staging.

In Omega, we can write truly tagless interpreters (remowithtpgging overhead) without the need
for staging, since the Omega type system performs type iggpabof manipulation statically, at
type-checking time. Staging can still be used in Omega t@owenmterpretive overhead from tagless

interpreters.

4. How easy is it to integrate it into functional programminggdeneral? The answer is a qualified

1 )

yes. This is a pragmatic question that we have explorechis decond part of the dissertation
(starting with Chaptekl4). A plausible criticism of MetaDn¢h to some extend, of Coq) is that
it is a “toy” implementation that one cannot easily integratith “real” functional languages. By
describing a way of encoding well-typed syntactic judgrsarftobject-language programs, we have
argued that heterogeneous meta-programming can be makb/to the “broad masses” of Haskell

programmers.

Most importantly, we have shown how type equality can beripomted into a practical program-
ming language (Omega). Built-in type equality provides tieta-programmer a generalization of
traditional algebraic data-types that we demonstrate tasheseful as MetaD inductive families in
practical meta-programming. At the same time, to a programaiready familiar with functional
programming and algebraic data-types, the mechanisms ieg@mresent a significantly less steep

learning curve than dependent types.

10.2 Future Work

Finally, we conclude our exposition by outlining severaas for future work on heterogeneous meta-

programming.

Faking dependent types. Inthis dissertation we have presented a number of exampéggoding typing

judgments of various object languages in Haskell and Om#&gamay also observe that this technique is a
instance (in the context of heterogeneous meta-prograg)mim general technique for “faking” dependent
type-like behavior in functional languages with a suffitigrexpressive type system. The question that

arises, then, is “how complaés this ‘faking’ technique?” We do not provide a formal, rigas answer

3“Are there practical, sound type systems for expressingéag reifiers?”
4A similar question about soundness has a rather facile megaiswer, since in Haskell all types are inhabited. Howevi not
unreasonable to argue that with a modicum of self-disaplihis question need not adversely affect the programmaneaictice.
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to this question; rather, we concentrate on exploring,ubhoexamples, a class of problems where the
technique is sufficient for interesting applications. Hoemethere are some negative observations about the

power of the technique that we can formulate.

We recall that in the object-language typing judgments Wehave defined, the indexes (representing
object-language types and type assignments in the typdsj@ftdanguage judgments) have all been first
order data-types. This property has made it easy to encdelée) the values of those indexashe type
levelin the meta-language. What if, however, we wish to encodedrigrder values at the type level? Two

related problems present themselves:

1. Presumably, we would like to represent functions, saymétl — t2 by type constructorsf kind
x — *, With the appropriate side conditions that the argumentla@desult of such a type constructor
is only used on type-level representationslbofto yield type-level representations @ . However,
type constructors in Haskell are not really functions oretyp they are syntactically restricted to an
applicative form of already-defined type constructors. Nar similar computational rules apply to

them.

When we simulate type-family computations (i.e., compyi@intype based on a value simulated at
type level), we rely on Haskell (or Omega’s) type checkeriplementation of unification to perform
the actual work of computation. Since type checkers fortional languages cannot be relied on to
perform sophisticated computations if they are to presgipe inference, we often have to help it

along by supplying equality proofs and various casting afi@ns in our programs.

As we have noted already, the lack of real functions at typel lelso means that we cannot perform

evaluation on such type constructors eiH1er.

2. Another technique that makes faking dependent types skélldOmega usable is the ability to have
runtime representations of values that are encoded atléyed- These runtime representations can
be compared (not surprisingly, at runtime) to yield eqyatitoofs, which, in turn, can be used to
cast between such representations. For example, thiséhaitgie heavily relied on by the function
typeCheck in Chaptefb.

However, it is not quite clear what a runtime representatiba type constructowould look like,

especially considering the fact that only values classhigtypes of the kind * can exist at runtime.

Let us further illustrate the problems above by an examplmp8se we have defined a type of lists in

5This is not completely true, since perhaps we could encddad K combinators at type level, and perhaps create inductive
judgments that would allow us to drive a form of reduction ofts combinators “from below”, by designing carefully cansted
data-types at runtime. However, this is not a practicaltgmiu
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Omega, so that the length of the list is encoded in its type:

-- kind Nat = Z | S Nat
data List a n = Nil where n==2
| Vv m. Cons a (List a m) where n=Sm

The type of the function that appends two list can be mostralijuexpressed so that the length of the

list it returns is the sum of the lengths of its two arguments:

append :: List am —lListan —lLista [m+n

However, neither Omega nor Haskell allow us to write suchpe tsince we cannot define addition as
a function at the level of types. The current solution is toagte addition as a relation between natural

number at the level of types:

append :: Plus m nq —lListan —Listam —Listagq

This style is both unnecessarly complex (since it introduwmmnfusing auxiliary judgments), and ineffi-
cient (since we must construct and manipulate the proBlug at runtime). The question then is whether
Omega’s type system can be suitably extended to make itlgedeiaddress them, perhaps by allowing a

restricted form of functional values at type level.

Logical frameworkin Haskell. The questionthen becomes whether Omega’s type system saitdialy
extended to make it possible to address them, perhaps wiradj@ restricted form of functional values at

type level.

Logical framework in Haskell. Related to the previous question is whether we could embeffiaisntly
expressive logic into Haskell/Omegaby various 'fakinghtaiques? In other words, can we fake our way
into a logic powerful enough to allow us to write non-trivipredicate based, specifications (and proofs of

those specifications) of executable Haskell/Omegaprogffam

The details of this question remain both tantalizing andie&i

Object-language binding constructs. The use of de Bruijn indices to represent binders in object-
languages has been used throughout this dissertation.eMeetiraware that this technique is both awkward

and error prond.When it comes to representing syntax with binders, at le@dtrecently, one could feel

6We note, in passing, that de Bruijn indices seem to be less-prone in typeful syntax representations, since statie-checking
can catch a lot of “off-by-one errors” that tend to creep iptograms manipulating de Bruijn-style terms.
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justified in paraphrasing a famous apothegm of Churchitls:Bruijn’s is the worst style of representing
binding constructs, except for all those others that hawen lieed. However, there are some glimmers of
hope.

In the context of mechanical theorem proving, McKinna antigek [7€] present certain formalizations
of the A-calculus and type theory (PTSs) without resorting to deijBrrepresentation of terms. Their
technique, however, seems much more applicable to theamring than to meta-programming.

We have already discussed Nanevski’'s adaptation of Pitts Gabbay’'s nominal logic to meta-
programming in\". In particular, Nanevski introduces a type constru¢tbr/ B) for “binding a (fresh)
object variable of typed in an object-program of typ®.” In the future, we plan to explore how such a
construct can be adapted to representing typeful objegtiage syntax. This direction seems to show most
promise.

Related to this concern is the question we raised in SeEfibi @f whether we can integrate some
support for pretty-printing and parsing that would allowtasinterface with object-language programs

using concrete syntax.

Semantic properties of object programs. In this dissertation, we have concentrated on represeating
class of properties of object-language syntax, namelg tggrectness. This seems reasonable in the con-
text of heterogeneous meta-programming, since manipglafject-language syntax that is well-typed is
quite useful. However, an interesting question for futumrknis whether there aratherinteresting prop-
erties that could be easily encoded and integrated into etarbgeneous meta-programming framework.
One such example would be to encode safety properties ofameg(e.g., proof of array bounds check-
ing, division by zero, and so on). Another interesting gioesis whether we can have object-language
representation with multiplkindsof properties, integrated into a single heterogeneous-preigramming

framework in a modular way.



Appendix A

Tagless Interpreters in Coq

A.1 Introduction

Coqg [139] is an interactive theorem prover based on the Gedaf Inductive Construction§ [22]. Since
the underlying logic of Coq is a constructive type theorg, theorem prover has been designed to support
extraction[[L04] of programs from proofs and definitions. Such a systeans at first to be at least a
good candidate for the kind of meta-language that we ardrsgé@kwhich to implement object language
manipulations that preserve semantic properties. TagMspreters are an excellent example of such a

manipulation, and its development using Coq is indeed plesti a large extent.

Inductive nat : Set:=0O: nat| S : nat—nat.

Inductive T: Set:=N:T|AnT:T— T — T.

Inductive E: Set:=Const: nat —E|Var:nat = E|Abs: T—E—-E|App:E—E — E.
Inductive G : Set:=Empty : G |Ext: G — T — G.

Inductive HasTypeVar : G — nat — T — Prop :=
HasTypeVar_Zero : (I':G;t:T)(HasTypeVar (ExtI' t) O t)
| HasTypeVar_Weak : (I:G;n:nat; t,t' : T)(HasTypeVar I" n t)— (HasTypeVar (ExtI't') (S n) t).

Inductive HasType : G - E — T — Prop :=
HasType_Const : (I:G;n:nat)(HasType I" (Const n) N)
| HasType_Var : (I':G;n:nat;t:T) (HasTypeVar I" nt) — (HasType T (Var n) t)
| HasType_Abs : (I':G;t1,t2:T;e:E) (HasType (ExtT' t1) e t2) — (HasType I" (Abs t1 e) (ArrT t1 t2))
| HasType_App : (I':G;t1,t2:T;el,e2:E) (HasType I el (ArrT t1 t2)) — (HasType I" e2 t1) —
(HasType I" (App el e2) t2).

Figure A.1: Syntactic Definitions fak in Coq.

For pedagogical reasons, then, we shall first develop asmgléerpreter using the Coq system. We will
introduce Coq syntax and operations as we go along. Theréadeferred to the excellent tutorial by

Gimenez[[44] for more systematic instruction.

The Figurd Al is a Coq script defining the syntax and the tygéesn of Ly. This script consists of a

212
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series ofinductivedefinitions.

Let us briefly examine the syntax of one of these definitions:

Inductive T: Set:=N:T |AnT:T— T — T.

The inductive family can most easily be thought of as a dgpe-in traditional functional languages. The
above definition introduces a new tyfie This new type is itself given the tyg@et (more on this later).
Following the assignment sign (:=), we list a number of cargbrs, where each constructor is given its
full type. Naturally, the result type of each constructorstnibeT. After accepting this definition, Coq
allows the user to us® very much as one does a data-type in Haskell or ML: expressibtypeT can be
examined withcaseexpressions, and recursive functions (provided that theynaleed primitive-recursive,
i.e., that they terminate) can be defined over them.

Inductive definitions go beyond data-types in the sensettiggt allow the inductive families to be de-
pendently typed. The inductive familielasTypeVar andHasType, in FigurdAl, are an example of such
dependent typing.

A.1.1 A Brutal Introduction to Coq Syntax

Before we dissect these definitions, let us review the syoft&®oq. In addition to traditional function type
formerrm, — 7, Coq supports the dependent function spHae: 7;.72. In Coq syntax, this is written
by prepending parentheses which bind a variable whose sdpads to the right:x(T1)T2. Multiple
nestedlI-types,Ilz; : 71.11xs : 7»....7, can be combined in the syntax &4.(T1; x2:T2;...)Tn. Further
syntactic sugar is provided whé&Rabstracting over multiple variables of the same tyipe; : 7.11xs : 7.7’/
can be written as the Coq typel(x2:T)T'". As is usual with dependent types, the function tyie-T2 is
just syntactic sugar fof1_ : 77.73) (in Coq notation, (:T1)T2).

Function abstractiohz : 7.e is written in Coq the same as theabstraction, except that square brackets
are used instead of parenthesasT]]e is a function that takes an argumer(pf typeT1) and whose body
is the expressior. In all binding constructs that require typing annotatierg(, [xT1]T2) the user can
omit the type of the variable provided that the type can berhed from context by placing a question mark
instead of a term (e.g., [x;PR). If the inference is impossible, the system complains.

Itis also worth noting that, contrary to common practicelindtional programming, applicatioal e2)
has lower priority in Cog than various binding constructeug, the expressiox{T]x y is fully parenthe-
sized as (k:T]x) y.

Returning to inductive definitions, let us consider the da€in of the inductive familyHasTypeVar.
The inductive familyHasTypeVar corresponds to the auxiliary typing judgmérdR T' - n : 7 from
Figure[Z.2. Itis defined as follows:
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Inductive HasTypeVar : G — nat — T — Prop :=

HasTypeVar_Zero : (I':G;t:T)(HasTypeVar (Ext I" t) O t)
| HasTypeVar_Weak : (I:G;n:nat; t,t' : T)(HasTypeVar I' n t)— (HasTypeVar (Ext T t)
(Sn)t).

A couple of points are worth noting:

e As in the definition of the inductive famil¥, the type familyHasTypeVar itself must first be given
a type. Rather than juSet, the typeHasTypeVar is a function taking three arguments (sometimes
called indexes): a type assignméhta natural numbemat, and aL, type T, and returning theort
Prop. In a way, this is analogous to a Haskell notiorygfe constructoexcept that whereas Haskell
type constructors are functions from types to types (in Qogjwould write them aBrop — Prop),

Coq type families are functions fromaluesto types.

One can think okortsas special types that classify other types. The Boop is a type of logical
propositions/formulas. The sor&t andProp are similar to the notion dfind * in Haskell, except
that Coq divides the kind of types into two distinct parts:eaeserved for programs and values
(Set) and the other reserved for logical propositioRsqp). Logically, this distinction is not strictly
necessarySet by itself would be sufficient. Indeed, most dependently tyf@guages unifiget
andProp into one single sort (e.g., Cayenneé [2]). However, as we sdal laterProp and Set
can be given different “operational” properties if we tr&iq definitions as programsSet types
become types of runtime values (integers, functions andndpwhile Prop types become mere
logical properties of those values which are used at typeskahg but are discarded from the runtime

computation.

e The values of the inductive familjasTypeVar can be built up using the two constructdfsis Type-

Var_Zero andHasTypeVar_Weak. The types of these constructors merit a closer examination

1. The constructoHasTypeVar_Zero is the base case of the typing judgment on variables. It

corresponds to the (Var-Base) rule from Figiurd 2.2:

VART.(F 01 varBase)

It has the dependent typE:G;t:T)(HasTypeVar (Ext I" t) O t). This means that it is a depen-
dently typed function which takes two argumerdispf type G andt of type T, and returns a
value of type HasTypeVar (Ext ' t) O t).
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2. The constructadasTypeVar_Weak is the weakening (inductive) case of the typing judgment

on variables. It corresponds to the Var-Weak rule from Fei2:

VART F 1 : ¢
VART, ' F (n+1):¢t

(Var-Weak)

It also has a dependent type:

(I:G;n:nat; t,t' : T)(HasTypeVar I' n t)— (HasTypeVar (ExtT't)) (S n) t).

Again, the constructor itself is a dependently typed fuoreti Its first argument is the type
assignment’. Its second argument is a natural numbeits next two arguments are twiq,
typest andt’. Finally, its last argumentis a typing judgment of typtaéTypeVar I" nt). Given

all these arguments, its result is of typtaTypeVar (Ext ' t') (S n) t).

A closer examination reveals that this type correspondstixto the inductive definition of
judgments in FigurEZ212: the last argument to the constrctoresponds to the antecedent of
the rule. The result of the type corresponds to the rule apresg. The arguments preceding
the antecedent simply serve to “close” the free variableghénjudgment, which in Figufe.2

are implicitly universally quantified.

Now, having defined., well-typedness judgments as Coq inductive families, they lbe treated as

provable Coq propositions.

A.1.2 A Brutal Introduction to Theorem Proving in Coq

But first, we shall briefly digress here to review the procdgh@orem proving in Coq. Due to the Curry-
Howard isomorphism61. 97], to prove a propositibm Coq, all one has to do is to constructiahabitant
of the type that corresponds®y Usually, propositions are types whose soRisp, although the theorem
prover is also capable of interactively constructing iritatis of types with sorSet as well.

As an example, consider the judgméBXP (), N - A\(N — N).(Var0) (Var 1) : (N — N) — N),
i.e., that thel, expressiol\N — N. (Var 0) (Var 1) has typg N — N) — N under the type assignment
(), N. First, we write down the appropriate Coq type that corresisdo this proposition:HasType (Ext
Empty N) (Abs (ArrT N N) (App (Var (0)) (Var (1)))) (ArrT (ArrT N N) N)).

Next, we issue the commaritheorem, and give a name under which the inhabitant of this type vell b

known to the systemekamplel):

Theorem examplel : (HasType (Ext Empty N)
(Abs (ArrT N N) (App (Var (0)) (Var (1))))

1In other words, find an expressierwhose type isP.
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(ArrT (ArrT N N) N)) .

After this command is issued, Coq goes into the interactieetem proving mode. It prints the type of
examplel, declared above, as a goal (below the line) and prompts #refarsnext command:

Coq output

1 subgoal

(HasType (Ext Empty N) (Abs (ArrT N N) (App (Var (0)) (Var (1)) )
(ArrT (ArrT N N) N))

Now, we issue the commarrtoof to begin proving the theorem. The first tactic we chose to sited
tacticEApply (we also sometimes use a closely related tactic cljguly — the reader can assume them
to be basically equivalent). This tactic takes an argumeptessiore. The theorem prover first computes
the type ofe. If it is an arrow type, it tries to unify its result type withe type of the current goal. If the
unification succeeds, the current goal is replaced by thestgpthe arguments to the function. If the type of
e is not a function and the unification with the current goalcagals, the goal is eliminated. The argument
we give toEApply is the constructoHasType_Abs:

EApply HasType_Abs.

Having succeeded in the previous tactic, the theorem ppmvets out a new goal:

Coq output

1 subgoal

(HasType (Ext (Ext Empty N) (ArrT N N)) (App (Var (0)) (Var (1) ) N)

Since the expression for which we are constructing the pnowf is an application, it is a good idea to
try to apply the constructddasType_App:

EApply HasType_App.

Again, the tactic succeeds. Now the system introduces twogoals (one for each of the twdasType
arguments tddasType_App), and prints:

Coq output
2 subgoals

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (0)) (ArrT ?3 N))

subgoal 2 is:
(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) ?3)

We could continue to useAppy with HasType constructors, but Coq has much more sophisticated

tactics that can figure out automatically what construdimepply. One such tactic is call€bnstructor:
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Constructor.
Now, a new subgoal is created instead of the first goal. Ndt@&#t has used the constructdéasType _Var

and the new goal is a variable judgment:

Coq output
2 subgoals

(HasTypeVar (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT ?3 N))

subgoal 2 is:
(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) ?3)

We quickly dispense with this subgoal by instructing theotieen prover to repeatedly apply tl®n-
structor tactic until it proves the current goal:

Repeat Constructor.

Now we are left with only one goal (former subgoal 2):

Coq output

1 subgoal

(HasType (Ext (Ext Empty N) (ArrT N N)) (Var (1)) N)

Again, we dispense with it using th®Auto tactic (which combine€onstructor with other automatic
reasoners):

EAuto.

And we are done! The system prints:

Coq output

Subtree proved!

This indicates that all the subgoals have been dischargethenproof is completed. We issue the one
final commandQed, to instruct the prover to accept the definitionesmplel we have just interactively

constructed:

Coq output
EApply HasType_Abs.

EApply HasType_App.
Constructor.
Repeat Constructor.

EAuto.

examplel is defined
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To review, the above theorem is defined using a proof scripthvbonsists of a series of commands
(tactics) given to the interactive theorem prover betweemmandsProof and Qed. Due to the type-
theoretic nature of Coq, the proof of the theorem constduateve can also be viewed as a program that
the theorem prover constructs interactively. Thus, relipgshe system to print the value of the variable

examplel yields the following response:

Print examplel.

Coq output

examplel =
(HasType_Abs (Ext Empty N) (ArrT N N) N (App (Var (0)) (Var (1))
(HasType_App (Ext (Ext Empty N) (ArT N N)) N N (Var (0)) (Var (1))
(HasType_Var (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT N N)
(HasTypeVar _Zero (Ext Empty N) (ArrT N N)))
(HasType_Var (Ext (Ext Empty N) (ArrT N N)) (1) N
(HasTypeVar _Weak (Ext Empty N) (0) N (ArrT N N)
(HasTypeVar _Zer o Empty N)))))
(HasType (Ext Empty N)
(Abs (ArrT NN (App (Var (0)) (Var (1)))) (ArT (ArT NN N)

Further Tactic Examples. To round off this little tutorial, we shall give another exgla of interactive
theorem proving to introduce the user to the tactics thdtheilused later on in this chapter. First, one
should recall that the interactive prover is not limited toying propositions, but can be used to construct
the inhabitants of any Coq type. We shall thus consider defian inhabitant of the typen(,n:nat)nat, in
particular, the addition function. Since this type is n&rap, we shall use the keywoidefinition instead
of Theorem to enter into the interactive mode:

Definition plus : (m,n:nat)nat. Proof.

The first thing that happens when entering the interactivdem®ethat Coq prints the type of the goal we
are trying to define:

Coq output

1 subgoal

nat->nat->nat

We will opt to define this function by recursion on its first angentm. We issue the commarféix 1,

and the theorem prover responds with:

Coq output
1 subgoal

plus : nat->nat->nat



219

nat->nat->nat

We can see that we have acquired a rssumptionnamedplus which has the same type as the value
we are trying to define. This assumption corresponds to as®ewcall to the functiomplus itself.
Next, since we are trying to prove an implicatiom (), we can instruct the prover to use the implication

introduction rule as far as possible. The tadtizos does just this.

Coq output
1 subgoal

plus : nat->nat->nat
m : nat
n : nat

nat

Now, we have two morassumptionsnamedm andn, of typenat and are trying to show an inhabitant
of nat. Any nat would logically do, but we want to define a particulzat that is the sum ofm andn.
This can be best accomplished by examining the cases ovesfdhe assumptions, say, We issue the
following command:

NewDestruct m.

Now, the prover has split the proof into two subgoals

1. The first case is whem is zero:

Coq output

2 subgoals

plus : nat->nat->nat
n : nat

nat

subgoal 2 is:
nat

But, if m is zero, then that sum @ andn is justn, and we can issue the appropriate command:
Apply n.

2. Thus, the first goal is discharged. Now, for the inductisecwheren is of the formS n0, for some
natural numbenO:

Coq output

1 subgoal
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plus : nat->nat->nat
n0 : nat
n : nat

nat

Well, we know that sincen=S n0, m + n = S(n0 + n), we can immediately provide the natural we

want:

Apply(S (plus nO n))

This discharges all subgoals, and we exit the interactiveeniy the commanBefined, which is analo-
gous toQed (thereis a slight, but for our purposes unimportant difference in lo&theorem prover keeps
track of values depending on which of the two commands is)used

We can also instruct Coq to print the definitionpfis:
Print plus:

Coq output

plus =
Fix plus
{plus [m:nat] : nat->nat :=
[n:nat]Cases m of
0) =>n
| ((S n0)) => (S (plus nO n))
end}
! nat->nat->nat

A.1.3 Semantics of., in Coq

The next step is to define the semantics of the langiliggés we have seen in Sectibn Z12.1, the semantics
is defined inductively over the well-typedness judgmemsour Coq implementation, the meaning/af
types is a function that magBs into Set. Similarly, type assignments are also mappe&és, i.e., to a
nested product of the meaning of individual types in the ggsggnments.

The semantic functionsvalT andevalTS are defined below by recursion dn types and type as-
signments, respectively. This form of definition is quitegar to programs in Haskell or ML, with the
exception that Coq attempts to prove that the recursiveinee function always terminates by examining
a particular argument (in this case the type or the type as®gt) and ensuring that it is structurally smaller

at every recursive call:
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Fixpoint evalT [T:T] : Set := FixpointevalTS[I": G] : Set :=
Cases T of Cases I of
| (AT t10) = (evalT t)—(evalT t0) | (ExtI"t) = ((evalTSI") x (evalT 1))

end' end.
Alternatively, we can make the appropriate definitions g€doq’s interactive theorem proving facility,

where we use tactic to generate the code for the functions isfe to define. The convenience of this
approach is that arguments available to a definition are shasypremises, while the types whose values
we are trying to construct are shown as current goals. Thef provironment makes sure that all the cases
are addressed and that only well typed programs are cotetrueurthermore, certain Coq tactics[32] can
be used as powerful program generation tools. After the itiefinis complete, the user can easily inspect
the source of the function she has interactively defined sTthe semantics of types and type assignments

can be defined by the following proof script:

Definition evalT : T — Set. Proof. Induction 1. EApply nat. Intros. EApply (X—XO0). Defined.
Definition evalTS : G — Set. Proof. Induction 1. EApply unit. Intros. EApply (Xx(evalT t0)).
Defined.

Syntactic notations. Another useful facility that Coq provides is to define sytitashortcuts which allow
the user a rather flexible way of extending the syntax of hegrams. Prefix, infix and mixfix operators
can easily be declared. For example, the following defingiallow us to use the more convenient notation
TTt] instead of(evalT t):

Notation” T [ t] " := (evalT t).
Notation ” TS [ts ] " := (evalTS ts).

The syntax for these definitions is rather intuitive: cotemgyntax appears on the left of the assignment
sign (:=) surrounded by quotes. The corresponding Coq esjme is written on the right — identifiers
mentioned in both are considered as variables ranging gwéactic expressions (variabl@bove). Upon
accepting a syntactic notation definition, the Coq systetoraatically generates parsing and pretty-printing
functionality and the newly defined notations can be freeieh with other Coq syntax.

Syntactic notations can be used to make our definition ohtypidgments syntactically identical with
the definitions in FigurE212. First, we declare notationgypes, expressions and type assignmgnts:
Notation "t1 — t2" := (ArrT t1 t2) (at level 65, right associativity).

Notation” \t. e " := (Abs te) (at level 40,left associativity).

2Note that this system is not perfect, and instead of apjicgtist beinge; ez we had to use the infix symb@ lest the parser
confuse application i with application of Coq.
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Notation” A @ B " := (App A B) (at level 50, left associativity).
Notation ” () " := Empty.
Notation "G ;; t” := (Ext G t) (at level 60, left associativity).
Finally, we can define a more traditional mixfix notation fgping judgments:
Notation "’ VAR'T'Fn: t” := (HasTypeVarI' nt).
Notation " EXP'T' e :t”:=(HasType I et).

Resuming with the semantics 6f, the next step is to define the auxiliary functiookup, which imple-
ments the semantics of variable look-up: it takes as itsragg a type assignment, a natural number index
of the variables, and returns a function from the meaningetype assignment to the meaning of the type

of the variable:

Definition lookUp : (I:G)(n:nat)(tT)(VART Fn: )—(TS[T]) = (T[t]).
We shall define this function interactively, with tactichélfunction is defined by recursion on the second
argument, the natural number index of the variable. We uséattticFix 2, which gives us access to the

recursive call tdookUp. This gives an assumption

lookUp : (T:G)(n:nat)(tT)(VART Fn: t)—(TS[T]) — (T[t].
Next, we recall that what the type we are trying to prove isepéhdent) function type. In general, to
prove the propositionx(P)Q, we have to prov&) under the assumptioxP. In Coq, we use the tactic

Intros to do this, and obtain the following assumptions:

I':G

n: nat

t: T
H:(VARTFn:t)
HO : T8[I]

The new goal becoméH[t].
The definition now proceeds by case analysis on the typerassigtl': NewDestruct I

Now, there are two different cases for the variable

1. Casel' = Empty. If T' is empty, then the assumptitih has the type/ar Empty - n : t. If we
examine the inductive definition of the variable judgmewts notice that there is no derivation such
that under the empty environment some variable index hape tye., we cannot project from an

empty environment.

This means that one of our assumptiddsis false, and logically, from falsity we can prove any goal.
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In Coq, we shall prove this case by using tesurd tactic, which takes a propositid? proves an
arbitrary propositiorQ, provided that both nd® andP follow from the current assumptions. The
formula forP we use is simplyVar Empty - n : t). The formulaQ is, of course, the original goal
Tt

Absurd (VAR Emptytn:t).

Now, the goal—(Var Empty + n : t) follows by examining the types of the constructors for
HasTypeVar and determining that there is no derivation with an emptyetgpvironment. Coq
has a tactic automatically does thisversion H.

Next, the goa(Var Empty F n : t) follows trivially from the assumptionstrivial.

Now the initial goalT$[t] has been proved.

. Casel’ = I'",t1. For the second case, the original assumptions are remriiith respect the new
value ofI":

I':G

t1:T

n: nat

t: T

H: (VAR (ExtT"t1 Fn: 1)

HO : TS[I]
Now, we proceed by cases on the natural number imdex

NewDestruct n.

(a) The first case, whemis 0. In this case, based on the hypothéki# easily follows thatl = t,
by examining the possible derivations. Thus, we assert agmaitl = t and prove it by
Inversion: Assert (t=t1). Inversion H.

Now we can use this equality to rewrite &dlintotls (using the tactiSubst) and simplify our
assumptions and goals by issuing the following commaB@ésito.Subst t.

I':G

t1:T

H: (VAR (ExtTVt1+ O :11)

HO : TS[Ext I t1]
Recall, that the goal we are proving nowJ§t1]. Now, the assumptiolO has the type
TS[Ext T” t1], which can be simplified by simply unfolding the definition thie meanings

of type assignments to obtain the product:
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HO : TS[I] x T[t1].
Now, to obtain the goal, we only need to project the secontgiat0:

EApply (Snd HO).

(b) There remains the one final case when the varialileof the formS m. This case will be

computed by making a recursive call to the functiookUp.
However, before such a recursive call can be made, we mustthavappropriate judgment to
give it to as an argument. Thus, we first assert a new goal\d [’ - m : t), which is easily
proved by inversion:

Assert (VAR t0 - m: t). Inversion H. Trivial.
Then use this newly proved assumption, narfidg as one of the arguments to the recursive
call oflookUp. One final step is to provide the runtime value of ty$gI"']], which is obtained,
as in the previous case by projecting, this time the first elemfrom the assumptiorHQ :
TS[T] x Tt1]).

Apply (lookUp t0 m t H1 (Fst HO)).
The recursive call is accepted because the index argumeststructurally smaller than the
initial argumenmn, which allows Coq to prove termination tfokUp:
Defined.

Having discharged all the cases, the interactive theorenepistates that all the goals have been proved.
The commandefined instructs the prover to accept the proof term generatedeiptaceding interactive
session as a definition for the functitmokUp. Since it is defined using recursion, Coq makes sure before
accepting the definition th&aokUp always terminates.

The first thing one notices when examining the definitiotookUp, whether in terms of the interactive
proof script or in terms of the generated code, is the largeusntnof “logical book-keeping.” One example
of this is the first case which we had to show that lookup in aptgnenvironment leads to absurdity.
Similarly, we had to assert and prove properties in othezsegther to be able to project the 0-th variable
or to make a recursive call tookUp: both of these properties were easily obtainable from theitiefi of
the typing judgment. These assertions end up being morgllivalent to various “generation lemmak? [5]
one often proves when defining typing relations.

All this logical apparatus clutters up our definitions andkesthe connection with the semantics stated in
SectioZZ1 rather obscure. So the question that preisggitsSmmediately isvhy not define the function
lookUp by direct induction over the typing judgmewAR I' - n : t)? Then, the assertio?VAR T'Hm : t),
for example, would be directly obtained from the inductiteps rather than having to be proved.

The reason why this does not work is a rather subtle but impbfeature of the Coq theorem prover.
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In order to obtain a property of the system call@dof irrelevance]], objects of kindProp cannot be
deconstructed (inductively, or by cases) in order to cfpedge objects of kindet. In other words, com-
putational objects that live in thget universe cannot depend on the structure of the proof objeé&tsop,
since the actual structure of a proof should be irrelevdhpiraofs of the property” are equally valid.

The advantage of this principle is in the possibilityextraction where the Coq system constructs pro-
grams (in Caml, Haskell, or Scheme) from its proofs or defing. Under the extraction scheme, all objects
of kind Prop, i.e., all proofs of properties are simply erased from theegated program. Thus, although
the Coq term fotookUp is quite large, the extracted program is much more managgesibte most of the
logical book-keeping disappears from the extracted pragra

Still, it is possible to define functions such lm®kUp more straightforwardly in Coq itself. The step

required is to redefine the typing judgments to have I8etirather tharProp.

Inductive T: Set:=N:T|AnT:T—T — T.
Inductive E : Set:=Const: nat —E |Var:nat = E|Abs: T—E—-E|App:E—E — E.
Inductive G : Set:=Empty : G | Ext: G —» T — G.

Notation "t1 — t2" := (ArrT t1 t2) (at level 65, right associativity).
Notation” \t. e " := (Abs te) (at level 40,left associativity).
Notation ” A @ B " := (App A B) (at level 50, left associativity).
Notation ” () " := Empty.

Notation "G ;; t” := (Ext G t) (at level 60, left associativity).

Inductive HasTypeVar : G — nat — T — =

HasTypeVar_Zero : (I':G;t:T)(HasTypeVar (I" ;; t) O t)
| HasTypeVar_Weak : (I:G;n:nat; t,t' : T)(HasTypeVar I" n t)— (HasTypeVar (I';;t") (S n) t).
Notation "’ VAR'T' Fn:t” = (HasTypeVarI' nt).

Inductive HasType: G - E - T — =
HasType_Const : (I:G;n:nat)(HasType I" (Const n) N)
| HasType_Var : (I':G;n:nat;t:T) (VAR T F n: t) — (HasType I" (Var n) t)
| HasType_Abs : (I':G;t1,t2:T;e:E) (HasType (T';;t1) e t2) — (HasType I (A t1. e) (t1 — t2))
| HasType_App : (I':G;t1,t2:T;el,e2:E) (HasType I el (t1—t2)) — (HasType ' e2 t1) —
(HasType I (el @ e2) t2).
Notation” " EXP'T'+e:t":=(HasType I et).

Figure A.2: New syntactic definitions fdry, where judgments are fBet.

A.1.4 Set Judgments

Figure[A2 details the changes to the syntactic definitibas heed to be made. The only change is in the
type declaration of the type famili¢sasTypeVar andHasType: they are declared as returniBgt rather
thanProp. This means, in particular, that they are no longer simpdydal propositions, but alssuntime

values.” Now, let us examine a new, simpler definition of the funclmokUp:
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Definition lookUp : (I:G)(n:nat)(tT)(VART Fn: )—=(TS[T]) — (T[t]).

Now, rather than by general recursion on the index, we careidiately define the function by induction
on the typing judgment argumeAR I' - n : t). If we name the judgment argumettthen the following
interactive commands to the theorem prover set up the defirby induction ort:

Intros. Induction H.

The definition is now split into two cases, yielding two goals

1. The case for the base judgment, the runtime environmgohzent has the typ&S [IV;¢]. We can
immediately obtain the godl [t] by projecting the second value from the runtime environnkht
which is a pair:

EApply (snd ? ?HO0).
2. Inthe case for the weakening judgment, we obtain the sy the induction hypothesis:
HrecH : (TS [TV )—(T1).
HO: T8 [Tt ]
What remains now is to apply the induction hypothesis to dlsem@intime environment:

EApply (HrecH (fst ? ?HO0)).

Defined.
To finish off, we can easily define the functiemal which interprets typing judgments of expressions:

Definition eval : (I'':G; e:E; tT)(EXP T Fe:t) = (TS[T]) = (T[t]).
This function is defined by recursion on the fourth argumtnet typing judgment of type EXP T+ e
: 1), which is analyzed by cases:

Fix 4. Intros. NewDestruct H.

There are four cases:

1. Inthe case for integer constants, we have the integetantmsavailable as one of our assumptions.
The goal to be proved is of tyd&]N], which simplifies tonat. Thus to prove the goal we only need

to exhibit a natural number, in particular the number

EApply n.
2. In the case for variables, two assumptions are integgstiamely the variable sub-judgmetitand

the variable index:

HO: (VarT - n : t)

n: nat
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With these assumptions, we can make a call to the auxiliargtfionlookUp, previously defined:
Apply (lookUp T n t HO).

3. The function case creates as its result a function, thg bbdvhich is evaluated in an expanded
runtime environment:

Simpl. Intros. EApply (eval (T';;t1) e t2 h (HO,H)).

4. Finally, for the application case we compute the functialuefun, as well as the argument value
arg by recursive calls teval. Then,fun is applied toarg to obtain the meaning of the application.
LetTac fun := (eval I" el (t1—t2) h HO). LetTac arg := (eval I" e2 t1 hO HO). EApply (fun
arg). Defined.

A.1.5 Program Extraction: Tagless Interpreters

We have mentioned Coqg’s ability to perfonpnogram extractiorfrom its theorems and definitions. Ex-
traction is fully automatic. The user only need specify sayaeeral parameters, such as for what target
language (Haskell, OCaml, Scheme) extraction is performad simply indicate a Coq definition that
should be extracted:
Recursive Extraction lookUp.

When issued this command, the theorem prover performs atitwextraction and prints out the text of

the generated program, data-types, function definitiodsadin

module Main where
import  qualified Prelude
__ = Prelude.error "Logical or arity value used"
data Nat = O | S Nat
data Prod a b = Pair b a
fst p = case  p of Pair xy — X
data Typ = N | ArrT Typ Typ
data TS = Enpty | Ext TS Typ
lookUp gamma n t hO =
case gamma of
Enmpty — Prelude.error "absurd case"
Ext 0 t1 —
(case_ n of O — (case_ hO of Pair fe — e)
S n0 — lookUp tO nO t (fst hQ))

Figure A.3: Extraction ofookUp (Prop-based judgments) as a Haskell function.

We may compare the two Haskell programs generated by extnaftom the Prop- and Set-based
implementations (FiguleZAl.3 and FiglreA.4, respectively)
Note that in Figur€AlI3 there is no trace of typing judgmenithe functionlookUp takes only three
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module Main where
import  qualified Prelude
data Nat = O | S Nat
data Prod a b = Pair b a
fst p = case  p of Pair xy — X
snd p =case p of Pair xy — vy
data Typ = N | ArrT Typ Typ
data TS = Enpty | Ext TS Typ
data HasTypeVar = HasTypeVar _Zero TS Typ
| HasTypeVar_Weak TS Nat Typ Typ HasTypeVar
lookUp gamma n t h h0 =
let
ft0 n0O t1 hl1 h2 =
case hl of
HasTypeVar _Zero gamma0 t2 — snd h2
HasTypeVar _Weak gammaO nl1 t2 t h3 — f gamma0 nl t2 h3 (fst h2)
in f gamma n t h hO

Figure A.4: Extraction ofookUp (Set-based judgments) as a Haskell function.

arguments: the type assignment, the index number and thieneienvironment. Now, a combination of
these arguments could be givendokUp so that the resulting combination is not well-typed (i.kere
is no VAR judgment in the original Coq definition).

In these cases, the extracted program (e.g.d)neses the Haske#irror value. These are cases that
were defined by thébsurd tactic in the original — if the terms are well typed these sast®ould never
occur.

By contrast, th&et-based typing judgments (Figure A.4) are extracted as adflaida-typeHasTypeVar .
Furthermore, the functiolookUp takes aHasTypeVar as its fourth argument and pattern matches over
it. This means that only well-typed judgments are analyzetithat there are nabsurdcases. The price
we pay for theSet-based definition is that the additional data-ty{esTypeVar must be passed around
in the extracted program and analyzed. This could resulbiergial runtime penalties.

An even more serious problem is present in the extractedgrabin both styles of implementation:
the programs extracted need not be, and uswatynot, well typed in Haskell. The functiolookUp
(Figure§AB anf[Al4) XXX is a case in point; each time arounedecursive loop the runtime ’ environment
has a different type. This is because the type-system oféflaskess expressive than the type system of
Coq: Haskell rejects some well-typed Coq programs, evemghthey never cause runtime type errors.

For these extracted programs to be successfully compilediaskell type checker must be turnecﬂ)ﬁ.

Since Haskell cannot type-check the program, the user nelysbn the correctness of Coq's extraction

3Coq extraction for Objective Caml inserts the appropriat#sdo the casting functiorQbj.cast where it detects that Caml's
type system is inadequate. This feature is not yet impleedefar Haskell extraction.
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algorithm to assure that the programs do not go wrong atmﬁai

A.2 Do We Need a Different Meta-Language?

With the experience described above one might éskCoq an adequate meta-language for our purposes

of generating safe and efficient tagless interpreters? Vedditional/different features would be desirable
in such a meta-language?

1. Dependenttypes, especially inductive families, aréequseful in representing typing judgments, and
providing clean, direct implementations of object-langeaemantics. Furthermore, the interactive

theorem proving interface seems to be a very practical wagoérating/writing programs.

2. However, a straightforward implementation in Coq aldmgltnes shown fo,, may be inadequate
for many practical languages that do not enjoy the propérstrong normalization. The Calculus
of Inductive Construction, on which Coq is based, is a stlpngrmalizing calculus. That means,
for example, that we have an object language with non-teatitin and/or arbitrary recursion, we
cannot use Coq’s function space to model the function splakject programs. While it is possible

to develop domain theory in Coq, extraction of such defingigvould not necessarily yield useful
artifacts.

An ideal meta-language would find a way to combine non-teation (and maybe other effects) with

dependent types in some useful and manageable way.
3. Program generation via extraction may look good but thices a number of problems:

(a) If we useProp-based implementation, considerable difficulties emerigfe wplementation of
interpreters. First, we cannot define the meanings of progi@hich live inSet) directly by
induction/cases over typing judgments (which liveFrop). This can sometimes be circum-
vented by proving a number of “generation lemmas,” but tHesemas become increasingly
difficult to prove and use the more complex the language wénéeepreting. Second, various

“logical book-keeping” distracts from the clarity of defioins and obscures their connection to
the semantics.

(b) If we useSet-based judgments, the interpreters generated by extnaat@oneither really tag-

less, nor are they typable in Haskell. This leads to both s ddperformance, as well as to a

4In the writing of this chapter the author has discovered laeratinpleasant bug in Cog 7.4 extraction, so the issue, dcanal, is
by no means irrelevant.
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loss of reliability — we must rely on the correctness of thegoam extraction rather than the

host language type system.

If we are to combine the simplicity and ease of (b) with thecédficy of (a), we would obtain quite a
satisfactory implementation. Is this possible? Fortugaites, if we abandon program extraction in
favor of meta-programming by staginghen, we can use the (b) style to define interpreters, but use
staging to perform all tagging-like operation (decondinrcof typing judgments) before the runtime

of a particular object-language program (more about thés)a
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