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Exercise 10 -- Shorten Paragraphs 
 

Due February 16, 2006 
 

The goal is to remove 20% of the text (approximately 60 words) from the following 
paragraphs while preserving as much of the meaning as possible. You can perform 
“grammatical repair.” Give your answer by marking up this page directly (or a copy). 
[Note that we are not implying there is anything wrong with the paragraphs as is, nor do 
we expect the “trimmed” paragraphs to be wonderful prose.] 
From: Z. Budimlic and K. Kennedy, Optimizing Java: Theory and Practice, 
Concurrency: Practice and Experience 9(6), June 1997, pages 445-463. 
 
4. Relaxed Model 
 
A more effective approach to optimizing Java would be possible if we could relax some rules of the current 
Java compilation model. In particular, given the standard Java object-oriented coding style—frequent 
method calls, many short methods—interprocedural optimization techniques such as aggressive method 
inlining could lead to substantive performance gains.  
 
Unfortunately, interprocedural analysis as described in the literature for conventional languages is not 
permissible with the existing Java compilation and execution model, except with final classes and methods.  
The reason is that the compiler must assume late binding of the method calls inside the same class as well 
as to the methods from other objects. This is a consequence of not having the whole program in hand at 
compilation time. 
 
However, if we change the model, some interprocedural optimizations become possible, Object inlining, 
described in the next section, looks at all the classes that are available to the compiler and, whenever it can 
prove that a method invocation must be static, inlines whole objects. Code duplication relies on the run-
time mechanism to distinguish between the optimized and non-optimized classes and to decide which one 
to use for instantiation and which one for inheritance. 
 
4.1. Object Inlining 
 
One of the simplest and the most effective interprocedural optimizations is inlining. It has two major 
positive effects on the compiled code: elimination of subroutine call overhead and exposure of the method 
body to further optimization in the context of the original invocation. The potential negative effect is 
explosion of code size and the corresponding increases in compilation times. Intuitively, inlining would be 
most effective for code that has many subroutine calls and short subroutines. Thus, object oriented 
languages and programs written in object oriented style would profit the most from this optimization. Many 
of the current C++ compilers implement extensive inlining and achieve significant performance 
improvements as a result. 
 


