Narrowing: The Scope of this Project

Steven Libby

December 3, 2014

This project implements a narrowing strategy, specifically the Needed Nar-
rowing strategy [1] for Term Rewriting. This implementation is correct and
relatively efficient. It can be used to form a simple functional logic DSL inside
of Haskell. The scope of this project is limited to implementing this strategy.
There are many features in PAKCS that are extensions to the basic idea of Nar-
rowing, and they are not covered. As such, the resulting DSL is not convenient,
but it is functional. Further development of this system into a real language, or
integration with Funlog, are possible future projects, although integration with
Funlog would require modification of the Funlog parser.

1 Term

Terms are similar to the terms that we covered in the first order logic example,
but there are a few additions that I've had to make. The first is that I've made
a distinction between a constructor and a function. This is because the theory
of narrowing, or at least the part I'm familiar with, is built around constructor
based systems. In this case, a term will be in a normal form when it has only
constructors and variables, or there are no more rewrite rules to apply. The first
case is actually a subset of the second case, but the first case gives us a clear
stopping point when narrowing.

module Term where
import Subst

type Name = String

To get anywhere with narrowing we need to start with a term. A term ¢ is
inductively defined as either

e a constructor with 0 or more subterms
e a function with 0 or more subterms

e a variable

data Term v = Con Name [Term v]
| Fun Name [Term v]
| Var v deriving (Show, Eq, Ord)

type Pos = [Int]

There are a few important points about terms. Let ¢ be a term. The arity
of t is the number of direct subterms it has. In our case this is the length of
the subterm list. A position p in ¢ is a sequence of integers that determine a
subterm of ¢. The subterm of ¢ determined by p (written ¢|,) is a path down
the tree where we take the subtree at position p.

So if ¢ is the tree of fz : mapfxs

and p is the path [2,1] Then ¢|, is f. Finally if ¢ is a term, p a position and
s a term then t[s], is the result of replacing t|, with s. so t[id], would result in.

A rewrite rule is a pair of terms where the left term is rooted with a function.
We write [— r to refer to the rule. The idea is that if we have I — r and t|p = [
for some p then we could rewrite that to t[r],

The general problem of term rewriting is difficult. In fact in many systems
equality of terms is undecidable. To get around this problem, we limit our-
selves to left linear, non overlapping, constructor based systems. In practice
this amounts to making sure that variables in the left hand side are distinct,

and the left hand side of a rule can’t unify with any subterm of the left hand
side of another rule.

data Rule v = Term v:=> Term v | E deriving (Show, Eq, Ord)
type Program = [Rule Name]

In order to create the structures needed to narrow a term we need three
different equivalence relations. The first is the usual definition of equality given
in Haskell. The second is equality up to variables. That means two terms are
equal if renaming variables in the first term produces the second term. The
third is equality of the function and constructor symbols. This is just used for
grouping differnt rules together.

(" =) (Eqv) = Term v — Term v — Bool
(Con cts) " =(Con d us) =c=d A and (zipWith (" =) ts us)
(Fun f ts) " = (Fun g us) = f = g A and (zipWith (7 =) ts us)
(Var _) " =(Var _) = True

T=_ = Fulse

(77) 1 (Eq v) = Term v — Term v — Bool
(Conc_)"(Cond_)=c=d
(Funf)= (Fung) =f =g
(Varv) T (Var w) =v=w
T = False

The following function are all simple helper functions. Note that arity and
! > correspond to the notion of arity and position defined above.

isCon (Con _ _) = True
isCon _ = False

isFun (Fun — _) = True
wsFun _ = False

isVar (Var _) = True

isVar _ = Fualse

z!>[]==
(Con _cs)! > (h:t)=(esNh)! >t
(Fun _fs)! > (h:t)=(fs"h)! >t

left (l:i=>_)=1
right (_:=>r)=r

arity :: Term a — Int
arity (Var) =0

arity (Fun _ ts) = length ts
arity (Con _ ts) = length ts

variables gets a list of variables occurring in the term. I know, shocking.

variables 2 Term v — [Term v
variables (Var v) = [Var v]

variables (Con c ts) = [v | t + ts, v < variables t]
variables (Fun f ts) = [v | t < ts, v + variables t]

Finally we come to variable substitution. We handle this using a monad,
because the syntax is similar to how this is normally written. If ¢ is a term and
o is a substitution then ¢t >>= (o!) = to is the application of o to t. A common
pattern is (¢! > p) >>= (o!) and this is read as "take the subterm t|, and apply
o to it.

instance Monad Term where
return v = Var v

(Var v) >=s=swv
(Fun f ts) >=s = Fun f (map (>=s) ts)
(Con ¢ ts) >=s = Con c (map (>=s) ts)

1.1 Substitution

The substitution is very similar to the one used in class for first order logic.
The only difference is that I've changed the type from a function to a Map.
This has two advantages. The first is that lookups in a Map are faster than a
function, although given the inefficiencies in the pdt construction the value here
is debatable. The second, and much more important, advantage is that a Map
can be printed out. This was indispensable for debugging.

module Subst (Subst, emptySubst, (| =>), (]— >), (|/— >), (1), chain) where
import qualified Data.Map.Lazy as M

type Subst v m = M.Map v (m v)

We need a simple function for getting values out of our substitution. This
is normally written as o(v), but we use the notation olv.

(1) :: (Ord v, Monad m) = Subst v m — v — m v
slo

| M.member v s=sM.lv

| otherwise = return v

The following functions are equivalent to the definitions in the first order
logic example.

emptySubst :: Monad m = Subst v m
emptySubst = M .empty

(|- >) :(0rd v, Monad m) = v — m v — Subst v m
v |— >t = M.singleton v t

(| =>) 2 (Ord v, Monad m) = Subst v m — Subst v m — Subst v m
s1 | =>s2 = M.union sl s2

chain :: (Ord v, Monad m) = [Subst v m] — Subst v m
chain ss = foldr (| =>) emptySubst ss

(I/—>) :=(0rd v, Monad m) = v — Subst v m — Subst v m
v|/—>s= M.delete v s

2 unification

module Unify where
import Term
import Subst

This is nearly identical to the unification algorithm in the first order logic
example. I actually did some of my own work I swear. Two terms ¢ and ¢’ unify
if there exists a substitution o such that to = t'.

occurs :: (Eq v) = v — Term v — Maybe ()
occurs v t

| any hasV (variables t) = Nothing

| otherwise = Just ()

where hasV (Var u) =v=u

unify :: (Show v, Ord v) = Term v — Term v — Maybe (Subst v Term)
unify (Var v) (Var u) | u = v = return emptySubst
unify (Var v) vy = occurs v y > return (v |— > y)
unify ¢ (Var v) = occurs v x > return (v |— > z)
unify (Fun f ts) (Fun g ss) | f = g = unifyLists ts ss
unify (Con c ts) (Con d ss) | ¢ = d = unifyLists ts ss

unify Yy = Nothing

unifyLists :: (Show v, Ord v) = [Term v] — [Term v] — Maybe (Subst v Term)
unifyLists [] [] = Just emptySubst
unifyLists [] (z : xs) = Nothing

unifyLists (z : zs) [] = Nothing

unifyLists (z: xs) (y: ys) = do sl + unify z y
52 <+ unifyLists (map (>=(s1!)) zs) (map (>=(s1!)) ys)
return (s2 | => s1)

3 Definitional Trees

module PDT where
import Term

import Unify

import Subst

import Data.List

import Data.Char (isAlpha)

This is the first new idea introduced in this paper. At the high level, a Partial
Definitional Tree (or PDT) is a tree for pattern matching rewrite rules. There
are three types of patterns in PDTs: a Branch which represents matching
part of a pattern, a Rule which represents matching enough of a pattern to
apply a rewrite rule, and an Error which represents a failed pattern match.
A Definitional Tree is a PDT where the root pattern has only variables. By
convention a rule must be operation rooted, that is it must start with a function
on the left.

For example consider the function < defined by
0 < true
S(X1) <0— false
S(X1) < 5(X2) - X1< X2

This would produce the following Definitional Tree

S(X0.0) <= S(X1.0)

X0.0<=X1.0

data PDT v = Branch (Term v) Pos [PDT v]

| Rule (Term v) Pos (Term v) (Term v)
| Error (Term v) Pos deriving (Show)

In order to turn a set of rules into Definitional Trees, we group the rules by
their outer function symbol, and then turn each group of rules into a Defini-
tional Tree.

dt :: [Rule Name] — [PDT Name]
dt rs = map topdt (splitRules rs)
where newPat (Fun f ts:=> _) = Fun f (take (length ts) (newVars "x" []))
topdt r = pdt (newPat (head 7)) [0] r

To turn a group of rules with the same function symbol into a Definitional
Tree, we need to slowly fill in the variables with constructors until we reach the
pattern for a rule. The basic algorithm is simple. Start with a pattern with
only variables (i.e. X1 < X2). We split the rules into three cases. Case 1: The
pattern we are looking at matches a rule up to variable renaming. Then we just
return the rule. Case 2: All of the rules have a variable at the position in the
pattern we are looking at. Then we just move on to the next variable in our
pattern and start over. Case 3: Some rules have a constructor in the position of
our variable. In this case we split all of rules by the constructor in that position,
and make a subtree out of each constructor.

If now rules match our patter then this is an error. This actually can’t hap-
pen, because this implementation forces the system to be orthogonal (or we will
discard rules until it is)

pdt :: Term Name — Pos — [Rule Name] — PDT Name
pdt pat p [] = Error pat p
pdt pat p rs

| = (null rules) = renameRule (head rules)

| null cons = pdt pat [head p + 1] (vRules H tooShort)

| otherwise = Branch pat p $ branches + varBranch

where branches = map branch cons

branch cs = pdt (sub cs) (p + [0]) cs

rules = [Rule pat (init p) I r| (I:=> 1) < rs,pat ~ =1]
vRules = filter unifies rs

tooShort = filter ends rs

cons = groupBy (leftEq p) (filter differs rs)

con 1 = Con (name 1) (take (arity 1) (newVars v p))
sub ((I:=>):) = pat >= ((v |— > con (1! > p))!)

(Var v) =pat!>p

exists | = arity (1! > (init p)) > last p

ends (1:=>r) = (exists)

unifies (1:=>r) = exists L A (1! >p) ™ = (pat! > p)
differs (1:=>71) = exists L A= ((I! > p) ™ = (pat! > p))
varBranch = if = (null vRules) then [pdt pat [head p + 1] vRules] else []

The following functions are all helper functions for dt and pdt. left Eq checks
if the left hand side of two rules have the same function/constructor symbol at
position p. splitRules splits the rules based on their outer function symbol.
renameRule renames a rule based on the variable names in the PDT. newVars
makes an infinite list of new variables at position p. name just returns the outer
name of a term.

leftEq :: (Eq v) = Pos — Rule v — Rule v — Bool
leftEq p (lx:=> ") (ly:=>)= (lx! >p) "~ (ly! > p)

splitRules :: (Ord v) = [Rule v] — [[Rule v]]
splitRules = map sort o groupBy (leftEq [])

renameRule :: (Show v, Ord v) = PDT v — PDT v
renameRule (Rule pat p I v) = Rule pat p (I >= (s!)) (r >=(s!))
where (Just s) = unify | pat

newVars :: Name — Pos — [Term Name]
newVars np = [Var ((take While isAlpha n) + (dots (p + [4]))) | i < [0..]]
where dots = concat o intersperse " ." o map show

name :: Term Name — Name
name (Con ¢ _) = ¢
name (Fun f _) = f
name (Var v) =wv

4 Narrowing

module Narrow where
import Term
import Subst
import Unify
import PDT

Finally we get to Narrowing. The idea here is that we are evaluating a term
while unifying it. This is done by unifying our value with a PDT, and when
we encounter a rewrite rule we replace that subterm. This is called a narrow-
ing step. First we need to find the rule we want to use. This can be done by
traversing the PDT and unifying with each branch until we hit a rule or an
error. Since one term can be rewritten to multiple different terms we return a
list of new terms together with substitutions.

type Step v = [(Pos, Rule v, Subst v Term)]

narrow :: (Show v, Ord v) =
narrow t (Rule pat plr) _ =]
narrow t (Error pat p) _=]
narrow t (Branch pat p ts) dt

| = (null us) =[(p',r,s) | (ti,u) < us,

Ji=>r,u) | (Just w) < [unify pat t]]

Term v — PDT v — [PDT v] — Step v
(
(p, E,u) | (Just u) + [unify pat t]]

(
(p’,r,s) < narrow t ti dt]
| otherwise =[(p/,r,s|=>tau) | (p',r,s) < narrow t ' dt]
where us = [(ti, u) | ti < ts, (Just u) < [unify (pattern ti) t]]
(Just tau) = unify pat t
t’ = getTree ((t! > p) >= (tau!)) dt

getTree :: Term v — [PDT v] — PDT v

getTree t [| = Error t []

getTree tQ(Fun f _) (dtQ(Branch (Fun g _) _ _): dts)
|f=g =adt
| otherwise = getTree t dis

pattern (Rule pat — _ _) = pat
pattern (Error pat _) = pat
pattern (Branch pat _ _) = pat

Now that we can complete a narrowing step, we need to narrow a term to a
normal form. We can do this by narrowing each term to head normal form.

nf :: (Show v, Ord v) = [PDT v] — Term v — [(Term v, Subst v Term)]
nf dts (Con c ts) = [(Con c (map fst tsu), chain (map snd tsu))
| tsu + sequence (map (nf dts) ts)]
nf dts fQ(Fun — _) =[(f",u|=>u)|(f,u) < hnf dts f,(f",u') < nf dts f']
nf dts vQ(Var) = [(v, emptySubst)]

hnf 2 (Show v, Ord v)
hnf — c@Q(Con _ _) [(c, emptySubst)]
hnf dts fQ(Fun _ _) [((f',u' | =>u) | (p,1:=>r,u) narrow f (getTree f dts) dts, (f',u') < hnf d
hnf — v@(Var) = [(v, emptySubst)]

[PDT v] — Term v — [(Term v, Subst v Term)]

[0

5 examples that will be fixed later

import Term
import Subst
import Unify
import PDT
import Narrow

6 Example

The following is a simple example of a rewrite system where equations can be
solved using the Narrowing strategy.

z = Con "0" []
sz = Con "8" [z]
x = Var "X"

y = Var "Y"

t = Con "true" []

f = Con "false" []

< — =y = Fun "<="[z,y]
half £ = Fun "half" [z]

z /\y = Fun "/\\" [2,y]

x ==y = Fun "=:=" [z, y]

rules = [(z < — = 1) => 1,
(se<—=2) =>Ff,
(sz<—=sy) =>@<—=y),
(half z) => 2z,
(half (s 2)) => 2z,
(half (s (s))) :=> (half),
t/\z => 1,
f\z =>f,
(t==1) =>1,
(f==1) =>1,
(z==12) =>1,
((s 2) == (s y)) :=> (z == y)]

References

[1] Antoy, Sergio A Needed Narrowing Strategy 1994, POPL 94.

10

