
Real World FunLog
Kendall Stewart

CS510 Logic & Prog. Lang
Fall 2014

Original Goal
• Solver for a “courier problem”

• Input:	

• A set of deliveries, where each delivery is a triple (source,
destination, parcel). The source and destination are physical
locations, and a parcel is a pair (weight, value).	

• A vehicle, which is a pair (daily range, weight capacity).	

• A starting location.

• Output:	

• A sequence of locations, marked as either start, pickup or
dropoff, that minimizes distance travelled while maximizing
value delivered, subject to range and capacity constraints.
No location should be repeated, except that the start and end
locations should be the same.

“Courier Problem”

• Originally I thought this was my own formulation,
but it turns out this is also known as the “Vehicle
Routing Problem with Pickup and Delivery”

• Yes, it’s NP-Complete.

• This makes sense: intuitively, it draws on the
Traveling Salesperson Problem and the
Knapsack Problem

Project

• My first step was to get to know FunLog’s affinity for
NP-Complete optimization problems by first trying
to implement as solver for the Traveling
Salesperson Problem

• Turns out this took a long time to get right, and led
to a few side projects…

TSP in FunLog
• Best solver? SAT? IP? SMT?

• SAT doesn’t know about arithmetic (could
implement partial adders in boolean logic?)

• IP is fairly restrictive (can’t do inequalities or
disjunctions easily)

• SMT is the best choice … but SMT is for decision
problems, so let’s start with a decision version of
TSP:

• ∃? path . hamiltonian(path) && len(path) ≤ k

TSP in FunLog
• I used an adjacency matrix representation for the graph: 

numLocations = 9 
dim cityInts#Int = [1 .. numLocations] !
cities = array #(cityInts)
 [
 "Seattle",
 "San Francisco",
 "Los Angeles",
 "Denver",
 "Austin",
 "Chicago",
 "St. Louis",
 "New Orleans",
 "New York"
] !
-- Retrieved with Google's "Distance Matrix" API. All data in kilometers.
edges = array #(cityInts,cityInts)
 [
 0, 1299, 1827, 2114, 3425, 3320, 3357, 4171, 4598,
 1299, 0, 613, 2011, 2828, 3430, 3308, 3657, 4676,
 1826, 614, 0, 1635, 2216, 3244, 2937, 3045, 4468,
 2115, 2015, 1636, 0, 1473, 1616, 1365, 2081, 2862,
 3423, 2830, 2217, 1474, 0, 1803, 1328, 817, 2805,
 3321, 3429, 3243, 1612, 1803, 0, 477, 1490, 1271,
 3353, 3304, 2939, 1366, 1327, 477, 0, 1088, 1533,
 4198, 3657, 3045, 2083, 818, 1490, 1088, 0, 2099,
 4589, 4679, 4493, 2862, 2803, 1271, 1529, 2097, 0
]

TSP in FunLog
• Hamiltonicity is relatively easy to express:

dim pathIndex = [1 .. numLocations + 1] 
 
∃ (path : array #(pathIndex) Int) . ( 
 ∀x . (valid(path[x]))  
 && path[1] == path[numLocations + 1] 
 && ∀x . ∀y . (x /= y && x /= 1 -> path[x] /= path[y]) 
 && ∀x . (edges.(path[x], path[x+1]) /= 0)  
)

• This doesn’t work in FunLog, because we can’t
index into a matrix using SMT variables.

• Need to express connectedness as a proposition.

TSP in FunLog
dim pathIndex = [1 .. numLocations + 1] 
 
∃ (path : array #(pathIndex) Int) . ( 
 ∀x . (valid(path[x]))  
 && path[1] == path[numLocations + 1] 
 && ∀x . ∀y . (x /= y && x /= 1 -> path[x] /= path[y]) 
 && ∀x . (connected(path[x], path[x+1])) 
)

connected(p,q) =  
 ∃ a . ∃ b . (p == a && q == b && edges.(a,b) /= 0)

• Two variables represent a pair of connected
vertices if there exist two vertices with a non-zero
edge that match the value of the variables.

TSP in FunLog

• Adding distances poses an additional problem. As
with connectedness, we can’t use SMT variables to
lookup in the adjacency list to find the distance
between two points. We need to encode the
distance lookup as some kind of “widget” in the
SMT constraints using propositions.

• This was a tough problem to crack.

• The solution: add more SMT variables to represent
the distance between two points on the path.

TSP in FunLog
dim cityInts#Int = [1 .. numLocations] 
dim pathIndex = [1 .. numLocations + 1] 
 
∃ path : array #(pathIndex) Int . 
∃ dists : array #(cityInts) Int . ( 
 ∀x . (valid(path[x]))  
 && path[1] == path[numLocations + 1] 
 && ∀x . ∀y . (x /= y && x /= 1 -> path[x] /= path[y]) 
 && ∀x . (connected(path[x], path[x+1])) 
 && ∀x . (weight(path[x], path[x+1], dists[x]))  
 && ∑x . dists[x] <= k  
)

connected(p,q) =  
 ∃ a . ∃ b . (p == a && q == b && edges.(a,b) /= 0)  
 
weight(p,q,w) = 
 ∃ a . ∃ b . (p == a && q == b && w == edges.(a,b))

SMT Minimization

• Could’ve stopped here and moved on to the VRP
problem … but the inability to do minimization with
SMT bothered me.

• Recall the trick for converting decision problems
into optimization problems: do a binary search over
the decision space.

• Need to implement this binary search as a new
“strategy” for SMT in the FunLog interpreter.

SMT Minimization
• Basic idea: start at 1 and expand the search space

exponentially. Use the first satisfying result as an upper
bound, and the previous result as a lower bound, and
conduct a binary search in that space to find the
minimum satisfying result.

• Problem: as we’ve seen (in tableau solvers etc), finding
a satisfying result might be easy, while deciding
unsatisfiability might require an exhaustive search and
take a long time.

• If we want to achieve anything resembling reasonable
efficiency, we’ll have to make our minimization partially
decidable by using timeouts.

Timeouts

• Yices2 has a built-in timeout feature, but its
precision is fixed at one-second intervals.

• We can use GHC’s System.Timeout package for
microsecond precision.

Timeouts
import System.Timeout !
yicesTimeout' :: String -> [String] -> [CmdY] -> Int -> IO ResY
yicesTimeout' yPath yOpts cmds tout =
 do (Just hIn, Just hOut, Just hErr, ph) <-
 createProcess (proc yPath yOpts)
 { std_in = CreatePipe
 , std_out = CreatePipe
 , std_err = CreatePipe
 , create_group = True
 } !
 let input = (unlines $ map show (cmds ++ [CHECK, MODEL, EXIT]))
 hPutStr hIn input >> hFlush hIn
 attempt <- timeout tout (poll ph)
 terminateProcess ph >> waitForProcess ph
 case attempt of
 Nothing -> do
 return (InCon ["timeout"])
 Just _ -> do
 _ <- hGetContents hErr
 out <- hGetContents hOut
 return $
 case lines out of
 "sat" : ss -> Sat (parseExpYs $ unlines $ filter (not.null) ss)
 "unknown" : ss -> Unknown (unlines ss)
 "unsat" : ss -> UnSat (unlines ss)
 other -> InCon other !
poll processHandle =
 do attempt <- getProcessExitCode processHandle
 case attempt of
 Nothing -> poll processHandle
 Just c -> return c

Expansion Phase
{- Expansion -} !
-- Initial timeout (usec) for expansion phase
initialExpandTimeout = 5000 !
-- Bound growth factor for expansion phase
expandBoundGrowth = 8 !
-- create the initial search space
expand bound minExpY cmds timeout =
 do let cmds' = cmds
 -- add in assertion for minimization expression
 ++ [ASSERT (minExpY :<= LitI bound)] !
 -- call yices with timeout
 result <- yicesTimeout [] cmds' timeout
 case result of
 -- if fails, expand bound
 InCon ["timeout"] -> do print (bound, timeout, "timeout")
 expand (bound * expandBoundGrowth)
 minExpY cmds timeout !
 UnSat s -> do print (bound, timeout, "unsat")
 expand (bound * expandBoundGrowth)
 minExpY cmds timeout !
 -- if succeeds, return previous bound and current bound
 Sat sol -> do print (bound, timeout, "sat")
 return (bound `div` expandBoundGrowth, bound)

Search Phase
{- Search -} !
-- Initial timeout (usec) for search phase
initialSearchTimeout = 20000 !
-- Timeout growth rate on failure (timeout)
searchTimeoutGrowth = 2 !
-- binary search through the search space
search low high minExpY cmds timeout !
 -- base case: minimal difference between success and failure
 | (high-low) <= 1 = do print (high, timeout, "sat")
 runYices [] (cmds ++ [ASSERT (minExpY :<= LitI high)]) !
 -- recursive case: search
 | otherwise =
 do let bound = (high - low) `div` 2 + low
 let cmds' = cmds
 ++ [ASSERT (minExpY :<= LitI bound)]
 result <- yicesTimeout [] cmds' timeout
 case result of
 -- if failure due to timeout, increase bound and increase timeout
 InCon ["timeout"] -> do print (bound, timeout, "timeout")
 search bound high minExpY cmds (grow timeout) !
 -- if failure due to unsat, increase bound but do not change timeout
 UnSat s -> do print (bound, timeout, "unsat")
 search bound high minExpY cmds timeout !
 -- if success, check result and replace upper bound with result
 Sat sol -> do
 print (bound, timeout, "sat")
 let solMap = (DM.fromList(map oneExp sol))
 let VBase (LInt min) = solMap DM.! (show minExpY)
 search low min minExpY cmds timeout !
 where grow t = floor (fromIntegral t * searchTimeoutGrowth)

Putting it Together

solveCon env deltaEnv ts ss (Min m) SMT (v@(VNS (NSYices e))) =
 do -- evaluate the minimization expression
 VNS(NSYices minExpY) <- evalC m deltaEnv return
!
 -- expand bound exponentially to find a search space
 (low,high) <- expand 1 minExpY cmds initialExpandTimeout
!
 -- find the minimum in the search space
 Sat solution <- search low high minExpY cmds initialSearchTimeout
!
 -- return the solution substitution
 let subst = (DM.fromList (map oneExp solution))
 return (map (\(nm,v) -> (nm, subVal subst v)) ts)
!
 where define(nm,i,v) = DEFINE (name nm, i) Nothing
 cmds = map define ss ++ [ASSERT e]

Performance

Drawbacks

Accuracy and performance are very sensitive to the
timeout parameters (and to the state of machine that
the solver is running on):  

-- Initial timeout (usec) for expansion phase
initialExpandTimeout = 5000
!
-- Bound growth factor for expansion phase
expandBoundGrowth = 8
!
-- Initial timeout (usec) for search phase
initialSearchTimeout = 20000
!
-- Timeout growth factor for search phase
searchTimeoutGrowth = 2
!

Drawbacks

The All-Seeing Oracle
• Where’d that “optimal” line come from, anyway?

• In addition to their “Distance Matrix” API (which
was used to get the instance for my examples),
Google also has a “Directions” API that employs a
proprietary TSP solver to allow you to find the
optimal circuit between a set of locations.

• FunLog did pretty well vs. Google on 9 cities (the
maximum you can ask Google to figure out)

• Demonstration: generating instances on the fly

Possible Extensions

• Attempting to heuristically compute the timeout
parameters based on properties of the problem

• Utilizing parallelism to try different parameters
simultaneously

• Allowing the programmer to set a “patience” level
in the FunLog code when specifying an SMT
optimization problem

