
Tableau method for FOL

Logical rules for quantifiers

• We saw in the sequent calculus that logical
rules for quantifiers depend upon instantiating
the quantified variable with terms.

• The rules allow us to use new variables
provided they don’t appear elsewhere in the
proof
– Sometimes elsewhere is implicit

Quantifiers

• The bound variables in quantifiers are meant
to range over the complete domain D

• The resulting terms for forall are meant to be
“and”ed together

• The resulting terms for exists are meant to be
“or”ed together

• In a symbolic system, if we treat a single
variable with the right rules we can get both
kinds of effects.

Forall

• Consider the term (∀ x . F)
• Lets invent a new variable “y” which is fresh to

the program.
• If we can prove F>>=(x|->y) without any

assumptions about y, then we have proven it
for (∀ x . F)

Exists

• Existentials (∃ x . F) are more subtle.
• In an existential we don’t need to prove it for

all occurrences of x, but for some unknown x
which makes F true, but x must be in the
domain.

• Skolem functions provide the solutions

Skolem functions

• Consider the formula
• (∃ x . Odd(x) /\ x=y+1 /\ Even(y))
• We don’t know what the x is, but it probably

depends upon y, so lets invent a function F
such that x=F(y). Then we have

• Odd(F(y)) /\ F(y)=y+1 /\ Even(y))
• Note that the variable x has dissappeared!

Rules for skolem functions

• Consider (∃ x . F)
• Let the free variables of F be (a,b,c,x)
• Then we may invent a skolem function, g,

whose arguments are all the variables,
exceopt for x, which is (a,b,c).

• So we get F>>=(x |-> g(a,b,c)) provided g is a
new function symbol.

• What can we assume about g(a,b,c), nothing
except that it is equal to g(a,b,c)!

Parameters

• Let L(c,f,p) be a logic.
• Invent a new set of constant symbols (disjoint

from c and f) called parameters
• Let Lpar be the logic L(c U par, f, p)
• Let C be a collection of sentences (closed

formula) of Let Lpar
• We’d like C to have some properties along the

lines of the Hintika sets of propositional logic

Herbrand Models

• Parameters are constants.
• Since they are not part of any original model

of L, we don’t know how to model Lpar

• Luckily we can invent a model, called a
Herbrand model, which has all the properties
we need a model to have

• The Herbrand model is often called a string (or
term) model.

• In a Herbrand model substitutions and
assignments coincide

• A substitution maps variables to terms
• An assignment maps variables to the Model

set D
• In a Herbrand model D is the set of terms.
• We won’t do it here, but we can prove that

the Herbrand model has an interesting
property called first order consisteny.

First order consistency

Discriminating formulas in FO logic

• As in predicate logic we can discriminate
formulas into certain sets (e.g Alpha, Beta, Lit)

• We need two new categories
– Gamma for (∀ x . F) and ~(∃ x . F)
– Delta for (∃ x . F) and ~(∀ x . F)

What does this look like over Formula?

• In the propositional calculus we needed to deal only with variables and
the connectives.

• In the predicate calculus we have predicates, connectives, and the
quantifiers.

data Discrim v a
 = Alpha a a
 | Beta a a
 | Lit a
 | Gamma v a
 | Delta v a
 deriving Show

notP (Conn Not [x]) = x
notP x = Conn Not [x]

discrim :: Formula p f v -> Discrim v (Formula p f v)
discrim (p@(Rel r ts)) = Lit p
discrim (Conn T []) = Lit (Conn T [])
discrim (Conn F []) = Lit (Conn F [])
discrim (Conn And [x,y]) = Alpha x y
discrim (Conn Or [x,y]) = Beta x y
discrim (Conn Imp [x,y]) = Beta (notP x) y
discrim (Conn Not [x]) =
 case x of
 (Rel r ts) -> Lit(notP x)
 (Conn T []) -> Lit(Conn F [])
 (Conn F []) -> Lit(Conn T [])
 (Conn And [x,y]) -> Beta (notP x) (notP y)
 (Conn Or [x,y]) -> Alpha (notP x) (notP y)
 (Conn Imp [x,y]) -> Alpha x (notP y)
 (Conn Not [x]) -> discrim x
 (Quant All v f) -> Delta v (notP f)
 (Quant Exist v f) -> Gamma v (notP f)
discrim (Quant All v f) = Gamma v f
discrim (Quant Exist v f) = Delta v f

Tableau Method

• The tableau method exploits this by building a
branching tree, such that every path maintains
this property.

• Differences from tableau for propostional
logic.
1. We no longer have propositional variables, but

now have predicates over terms.
2. We have to deal with quantifiers
3. To close a path, we need conflicting predicates.

Properties of discrimination

• Discrimination splits all sentences into one of
5 sets.

• All sentences in each set have the same
properties

• The splitting is arranged so each set has
exactly one of the first order consistency
properties

Tableau Trees
data Tree
 = Direct (FormulaS) Tree
 | Branch Tree Tree
 | Leaf
 | Closed FormulaS FormulaS

A Leaf marks the end of a path that can be

extended
A (Closed x y) marks the end of a closed path where

x and y are conjugates (appearing n the path
ended by (Closed x y)

Extending a tree
extendTree p Leaf = p
extendTree p (Direct q t) =
 Direct q (extendTree p t)
extendTree p (Branch x y) =
 Branch (extendTree p x) (extendTree p y)
extendTree p (Closed x y) =
 Closed x y

-- make 1 and 2 elements trees
single p = Direct (p) Leaf
double p q = Direct (p) (single q)

The algorithm

• We start with the negation of the formula to
be proved.

• We have a list of pending nodes (not yet
visited) and a current tree.

• Pick an unvisited node, discriminate on it, and
extend the tree according to the rules

• We need to do this in a state monad as we
must be able to invent new variables and
skolem functions not in the term.

tabTree :: [FormulaS] -> Tree -> State Int Tree

tabTree [] tree = return tree
tabTree (x:xs) tree =
 case discrim x of
 Lit p -> tabTree xs tree
 Alpha a b -> tabTree (a:b:xs) (extendTree (double a b) tree)
 Beta a b ->
 do { x <- tabTree (a:xs) (single a)
 ; y <- tabTree (b:xs) (single b)
 ; return(extendTree (Branch x y) tree) }
 Gamma s f ->
 do { t <- freshTerm
 ; let form = (subst (s |-> t) f)
 ; tabTree (form:xs) (extendTree (single form) tree) }
 Delta s f ->
 do { t <- freshSkolem s f
 ; tabTree (t:xs) (extendTree (single t) tree)}

Example

• ((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y))))

~((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y))))

 (ALL x. O(x, x))

~(ALL x. (EX y. O(x, y)))

 O(n1, n1)

~(EX y. O(f2(), y))

~O(f2(), n3)

How do we know if this tree can be
closed?

~((ALL x. O(x, x)) --> (ALL x.
(EX y. O(x, y))))

 (ALL x. O(x, x))

~(ALL x. (EX y. O(x, y)))

 O(n1, n1)

~(EX y. O(f2(), y))

~O(f2(), n3)

~((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y))))
 (ALL x. O(x, x))
 ~(ALL x. (EX y. O(x, y)))
 O(f2(), f2())
 ~(EX y. O(f2(), y))
 ~O(f2(), f2())
X(~O(f2(), f2()),O(f2(), f2()))

Unification

• unification tries so see if two terms can be
made identical by applying the same
substitution.

• It works by finding two terms that differ only
by a variable in one and a term in the other.

unify
unify (Var v) (Var u)
 | u==v = return emptySubst
unify (Var v) y =
 do { occurs v y
 ; return(v |-> y)}
unify y (Var v) =
 do { occurs v y
 ; return (v |-> y) }
unify (Fun _ f ts) (Fun _ g ss)
 | f==g = unifyLists ts ss
unify x y = Nothing

UnifyLists
unifyLists [] [] = Just emptySubst
unifyLists [] (x:xs) = Nothing
unifyLists (x:xs) [] = Nothing
unifyLists (x:xs) (y:ys) =
 do { s1 <- unify x y
 ; s2 <- unifyLists
 (map (subTerm s1) xs)
 (map (subTerm s1) ys)
 ; return(s2 |=> s1)}

unifyForm (Rel x ts) (Rel y ss)
 | x==y = unifyLists ts ss
unifyForm (Conn c1 ts) (Conn c2 ss)
 | c1==c2 = unifyForms ts ss
unifyForm x y = Nothing

unifyForms [] [] = Just emptySubst
unifyForms [] (x:xs) = Nothing
unifyForms (x:xs) [] = Nothing
unifyForms (x:xs) (y:ys) =
 do { s1 <- unifyForm x y
 ; s2 <- unifyForms (map (subst s1) xs)
 (map (subst s1) ys)
 ; return(s2 |=> s1)}

Subtle

• Consider
• ((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) | O(y, y)))))

• What is the tableau?
• Does it close

Problem

• What about this example

((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) & O(y, y)))))

The tableau

~((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) & O(y, y)))))
 (ALL x. O(x, x))
~(ALL x. (ALL y. (O(x, x) & O(y, y))))
 O(n1, n1)
~(ALL y. (O(f2(), f2()) & O(y, y)))
 ~(O(f2(), f2()) & O(f3(), f3()))
+--------------+ +--------------+
|~O(f2(), f2())| |~O(f3(), f3())|
+--------------+ +--------------+

• The problem with the last example is that a
forall term is instantiated at one variable

• But as we saw in the sequent calculus we can
instantiate it several times.

• But if we’re not carefull we may go into a
infinite loop. Why?

Paths

• We don’t need to actually compute the tree
• Only the paths of literal terms are necessary

• As we saw I the propositional case, the order

we visit the nodes also matters.

tab3:: [FormulaS] -> [[FormulaS]] -> State Int
[[FormulaS]]
tab3 [] paths = return paths
tab3 (x:xs) paths =
 case discrim x of
 Lit p -> tab3 xs (map (cons3 p) paths)
 Alpha a b -> tab3 (insert3 a (insert3 b xs))
 (map (cons3 a . cons3 b)
paths)
 Beta a b ->
 do { ms <- tab3 (insert3 a xs)
 (map (cons3 a) paths)
 ; ns <- tab3 (insert3 b xs)
 (map (cons3 b) paths)
 ; return (ms++ns)}
 Gamma v f ->
 do { t <- freshTerm
 ; let form = (subst (v |-> t) f)
 ; tab3 (form:xs) paths }
 Delta s f ->
 do { t <- freshSkolem s f
 ; tab3 (t:xs) paths }

	Tableau method for FOL
	Logical rules for quantifiers
	Quantifiers
	Forall
	Exists
	Skolem functions
	Rules for skolem functions
	Parameters
	Herbrand Models
	Slide Number 10
	First order consistency
	Discriminating formulas in FO logic
	What does this look like over Formula?
	Slide Number 14
	Tableau Method
	Properties of discrimination
	Tableau Trees
	Extending a tree
	The algorithm
	Slide Number 20
	Example
	How do we know if this tree can be closed?
	Slide Number 23
	Unification
	unify
	UnifyLists
	Slide Number 27
	Slide Number 28
	Subtle
	Problem
	The tableau
	Slide Number 32
	Paths
	Slide Number 34

