Tableau method for FOL

Logical rules for quantifiers

 We saw in the sequent calculus that logical rules for quantifiers depend upon instantiating the quantified variable with terms.

- The rules allow us to use new variables provided they don't appear elsewhere in the proof
 - Sometimes elsewhere is implicit

Quantifiers

- The bound variables in quantifiers are meant to range over the complete domain D
- The resulting terms for forall are meant to be "and"ed together
- The resulting terms for exists are meant to be "or"ed together
- In a symbolic system, if we treat a single variable with the right rules we can get both kinds of effects.

Forall

- Consider the term $(\forall x . F)$
- Lets invent a new variable "y" which is fresh to the program.
- If we can prove F>>=(x|->y) without any assumptions about y, then we have proven it for (∀ x . F)

Exists

- Existentials $(\exists x . F)$ are more subtle.
- In an existential we don't need to prove it for all occurrences of x, but for some unknown x which makes F true, but x must be in the domain.
- Skolem functions provide the solutions

Skolem functions

- Consider the formula
- (∃ x . Odd(x) /\ x=y+1 /\ Even(y))
- We don't know what the x is, but it probably depends upon y, so lets invent a function F such that x=F(y). Then we have
- Odd(F(y)) /\ F(y)=y+1 /\ Even(y))
- Note that the variable x has dissappeared!

Rules for skolem functions

- Consider $(\exists x . F)$
- Let the free variables of F be (a,b,c,x)
- Then we may invent a skolem function, g, whose arguments are all the variables, exceopt for x, which is (a,b,c).
- So we get F>>=(x |-> g(a,b,c)) provided g is a new function symbol.
- What can we assume about g(a,b,c), nothing except that it is equal to g(a,b,c)!

Parameters

- Let L(c,f,p) be a logic.
- Invent a new set of constant symbols (disjoint from c and f) called parameters
- Let L^{par} be the logic L(c U par, f, p)
- Let C be a collection of sentences (closed formula) of Let L^{par}
- We'd like C to have some properties along the lines of the Hintika sets of propositional logic

Herbrand Models

- Parameters are constants.
- Since they are not part of any original model of L, we don't know how to model L^{par}
- Luckily we can invent a model, called a Herbrand model, which has all the properties we need a model to have
- The Herbrand model is often called a string (or term) model.

- In a Herbrand model substitutions and assignments coincide
- A substitution maps variables to terms
- An assignment maps variables to the Model set D
- In a Herbrand model D is the set of terms.
- We won't do it here, but we can prove that the Herbrand model has an interesting property called first order consisteny.

First order consistency

- \mathcal{C} is a first-order consistency property if, for each $S \in \mathcal{C}$:
 - For every atomic proposition φ at most one of φ or ¬φ is in S.
 ⊥ ∉ S, ¬⊤ ∉ S.
 - 3. If $\neg \neg \phi \in S$ then $S \cup \{\phi\} \in C$.
 - 4. If $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$.
 - 5. If $\beta \in S$ then $S \cup \{\beta_1\} \in \mathcal{C}$ or $S \cup \{\beta_2\} \in \mathcal{C}$.
 - 6. If $\gamma \in S$ then $S \cup \{\gamma(t)\} \in C$ for every closed term t of L^{par} .
 - 7. If $\delta \in S$ then $S \cup \{\delta(p)\} \in C$ for some parameter p of L^{par} .

Discriminating formulas in FO logic

• As in predicate logic we can discriminate formulas into certain sets (e.g. Alpha, Beta, Lit)

- We need two new categories
 - Gamma for $(\forall x . F)$ and $\sim (\exists x . F)$
 - Delta for ($\exists x . F$) and $\sim(\forall x . F)$

What does this look like over Formula?

- In the propositional calculus we needed to deal only with variables and the connectives.
- In the predicate calculus we have predicates, connectives, and the quantifiers.

```
data Discrim v a
= Alpha a a
| Beta a a
| Lit a
| Gamma v a
| Delta v a
deriving Show
```

```
notP (Conn Not [x]) = x
notP x = Conn Not [x]
```

```
discrim :: Formula p f v \rightarrow Discrim v (Formula p f v)
discrim (p@(Rel r ts)) = Lit p
discrim (Conn T []) = Lit (Conn T [])
discrim (Conn F []) = Lit (Conn F [])
discrim (Conn And [x,y]) = Alpha x y
discrim (Conn Or [x,y]) = Beta x y
discrim (Conn Imp [x,y]) = Beta (notP x) y
discrim (Conn Not [x]) =
  case x of
    (Rel r ts) \rightarrow Lit(notP x)
    (Conn T []) \rightarrow Lit(Conn F [])
    (Conn F []) \rightarrow Lit(Conn T [])
    (Conn And [x,y]) \rightarrow Beta (notP x) (notP y)
    (Conn Or [x,y]) \rightarrow Alpha (notP x) (notP y)
    (Conn Imp [x,y]) \rightarrow Alpha x (notP y)
    (Conn Not [x]) -> discrim x
    (Quant All v f) -> Delta v (notP f)
    (Quant Exist v f) \rightarrow Gamma v (notP f)
discrim (Quant All v f) = Gamma v f
discrim (Quant Exist v f) = Delta v f
```

Tableau Method

- The tableau method exploits this by building a branching tree, such that every path maintains this property.
- Differences from tableau for propostional logic.
 - 1. We no longer have propositional variables, but now have predicates over terms.
 - 2. We have to deal with quantifiers
 - 3. To close a path, we need conflicting predicates.

Properties of discrimination

- Discrimination splits all sentences into one of 5 sets.
- All sentences in each set have the same properties
- The splitting is arranged so each set has exactly one of the first order consistency properties

Tableau Trees

data Tree

- = Direct (FormulaS) Tree
 - Branch Tree Tree
 - Leaf
 - Closed FormulaS FormulaS
- A Leaf marks the end of a path that can be extended
- A (Closed x y) marks the end of a closed path where x and y are conjugates (appearing n the path ended by (Closed x y)

Extending a tree

extendTree p Leaf = p
extendTree p (Direct q t) =
 Direct q (extendTree p t)
extendTree p (Branch x y) =
 Branch (extendTree p x) (extendTree p y)
extendTree p (Closed x y) =
 Closed x y

-- make 1 and 2 elements trees
single p = Direct (p) Leaf
double p q = Direct (p) (single q)

The algorithm

- We start with the negation of the formula to be proved.
- We have a list of pending nodes (not yet visited) and a current tree.
- Pick an unvisited node, discriminate on it, and extend the tree according to the rules
- We need to do this in a state monad as we must be able to invent new variables and skolem functions not in the term.

```
tabTree :: [FormulaS] -> Tree -> State Int Tree
tabTree [] tree = return tree
tabTree (x:xs) tree =
  case discrim x of
    Lit p -> tabTree xs tree
    Alpha a b -> tabTree (a:b:xs) (extendTree (double a b) tree)
    Beta a b ->
      do { x <- tabTree (a:xs) (single a)</pre>
         ; y <- tabTree (b:xs) (single b)
         ; return(extendTree (Branch x y) tree) }
    Gamma s f ->
      do { t <- freshTerm</pre>
         ; let form = (subst (s |-> t) f)
         ; tabTree (form:xs) (extendTree (single form) tree) }
    Delta s f ->
      do { t <- freshSkolem s f</pre>
         ; tabTree (t:xs) (extendTree (single t) tree) }
```

Example

• ((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y))))

```
~((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y))))
(ALL x. O(x, x))
~(ALL x. (EX y. O(x, y)))
O(n1, n1)
~(EX y. O(f2(), y))
~O(f2(), n3)
```

How do we know if this tree can be closed?

 \sim ((ALL x. O(x, x)) \rightarrow (ALL x. (EX y. O(x, y)))(ALL x. O(x, x)) \sim (ALL x. (EX y. O(x, y))) O(n1, n1)~(EX y. O(f2(), y)) ~O(f2(), n3)

 \sim ((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y)))) (ALL x. O(x, x))~(ALL x. (EX y. O(x, y))) O(f2(), f2())~(EX y. O(f2(), y)) $\sim O(f2(), f2())$ X(-O(f2(), f2()), O(f2(), f2()))

Unification

 unification tries so see if two terms can be made identical by applying the same substitution.

• It works by finding two terms that differ only by a variable in one and a term in the other.

unify

```
unify (Var v) (Var u)
  u==v = return emptySubst
unify (Var v) y =
  do { occurs v y
     ; return(v | -> y \rangle
unify y (Var v) =
  do { occurs v y
     ; return (v |-> y) }
unify (Fun _ f ts) (Fun _ g ss)
  f==g = unifyLists ts ss
unify x y = Nothing
```

UnifyLists

```
unifyLists [] [] = Just emptySubst
unifyLists [] (x:xs) = Nothing
unifyLists (x:xs) [] = Nothing
unifyLists (x:xs) (y:ys) =
 do { s1 < - unify x y
     ; s2 <- unifyLists
               (map (subTerm s1) xs)
               (map (subTerm s1) ys)
     ; return(s2 |=> s1)}
```

Subtle

- Consider
- ((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) | O(y, y)))))
- What is the tableau?
- Does it close

Problem

• What about this example

$((ALL x. O(x, x)) \longrightarrow (ALL x. (ALL y. (O(x, x) & O(y, y)))))$

The tableau

```
\sim ((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) & O(y, y))))
      (ALL x. O(x, x))
~(ALL x. (ALL y. (O(x, x) & O(y, y))))
       O(n1, n1)
~(ALL y. (O(f2(), f2()) & O(y, y)))
\sim (O(f2(), f2()) & O(f3(), f3()))
+----+
|-O(f2(), f2())| |-O(f3(), f3())|
+----+
```

• The problem with the last example is that a forall term is instantiated at one variable

• But as we saw in the sequent calculus we can instantiate it several times.

• But if we're not carefull we may go into a infinite loop. Why?

Paths

- We don't need to actually compute the tree
- Only the paths of literal terms are necessary

• As we saw I the propositional case, the order we visit the nodes also matters.

```
tab3:: [FormulaS] -> [[FormulaS]] -> State Int
[[FormulaS]]
tab3 [] paths = return paths
tab3 (x:xs) paths =
  case discrim x of
    Lit p -> tab3 xs (map (cons3 p) paths)
    Alpha a b -> tab3 (insert3 a (insert3 b xs))
                       (map (cons3 a . cons3 b)
paths)
    Beta a b ->
        do { ms <- tab3 (insert3 a xs)</pre>
                         (map (cons3 a) paths)
           ; ns <- tab3 (insert3 b xs)
                         (map (cons3 b) paths)
           ; return (ms++ns) }
    Gamma v f ->
       do { t <- freshTerm</pre>
          ; let form = (subst (v | -> t) f)
          ; tab3 (form:xs) paths }
    Delta s f ->
      do { t <- freshSkolem s f</pre>
         ; tab3 (t:xs) paths }
```