
Tableau method for FOL 



Logical rules for quantifiers 

• We saw in the sequent calculus that logical 
rules for quantifiers depend upon instantiating 
the quantified variable with terms. 
 

• The rules allow us to use new variables 
provided they don’t appear elsewhere in the 
proof 
– Sometimes elsewhere is implicit 



Quantifiers 

• The bound variables in quantifiers are meant 
to range over the complete domain D 

• The resulting terms for  forall are meant to be 
“and”ed together 

• The resulting terms for exists  are meant to be 
“or”ed  together 

• In a symbolic system, if we treat a single 
variable with the right rules we can get both 
kinds of effects. 



Forall 

• Consider the term  (∀ x . F)   
• Lets invent a new variable “y” which is fresh to 

the program. 
• If we can prove  F>>=(x|->y) without any 

assumptions about y, then we have proven it 
for (∀ x . F)  



Exists 

• Existentials (∃ x . F) are more subtle. 
•  In an existential we don’t need to prove it for 

all occurrences of x, but for some unknown x 
which makes F true, but x must be in the 
domain. 

• Skolem functions provide the solutions 



Skolem functions 

• Consider  the formula   
• (∃ x . Odd(x) /\ x=y+1 /\ Even(y)) 
• We don’t know what the x is, but it probably 

depends upon y, so lets invent a function F 
such that x=F(y).  Then we have 

• Odd(F(y)) /\ F(y)=y+1 /\ Even(y)) 
• Note that the variable x has dissappeared! 



Rules for skolem functions 

• Consider (∃ x . F) 
• Let the free variables of F be (a,b,c,x) 
• Then we may invent a skolem function, g, 

whose arguments are all the variables, 
exceopt for x, which is (a,b,c). 

• So we get F>>=(x |-> g(a,b,c)) provided g is a 
new function symbol. 

• What can we assume about g(a,b,c), nothing 
except that it is equal to g(a,b,c)! 



Parameters 

• Let L(c,f,p) be a logic. 
• Invent a new set of constant symbols (disjoint 

from c and f) called parameters 
• Let Lpar be the logic L(c U par, f, p) 
• Let C be a collection of sentences (closed 

formula) of Let Lpar  
• We’d like C to have some properties along the 

lines of the Hintika sets of propositional logic 



Herbrand Models 

• Parameters are constants. 
• Since they are not part of any original model 

of L, we don’t know how to model  Lpar 

• Luckily we can invent a model, called a 
Herbrand model, which has all the properties 
we need a model to have 

• The Herbrand model is often called a string (or 
term) model. 



• In a Herbrand model  substitutions and 
assignments coincide 

• A substitution maps variables to terms 
• An assignment maps variables to the Model 

set D 
• In a Herbrand model D is the set of terms. 
• We won’t do it here, but we can prove that 

the Herbrand model has an interesting 
property called first order consisteny. 



First order consistency 



Discriminating formulas in FO logic 

• As in predicate logic we can discriminate 
formulas into certain sets (e.g  Alpha, Beta, Lit) 
 

• We need two new categories 
– Gamma  for  (∀ x . F) and ~(∃ x . F) 
– Delta for (∃ x . F) and ~(∀ x . F) 



What does this look like over Formula? 

• In the propositional calculus we needed to deal only with variables and 
the connectives. 

• In the predicate calculus we have predicates, connectives, and the 
quantifiers. 
 

data Discrim v a  
    = Alpha a a  
    | Beta a a  
    | Lit a  
    | Gamma v a  
    | Delta v a 
 deriving Show 
 
notP (Conn Not [x]) = x 
notP x = Conn Not [x] 

 



discrim :: Formula p f v -> Discrim v (Formula p f v) 
discrim (p@(Rel r ts)) = Lit p 
discrim (Conn T []) = Lit (Conn T []) 
discrim (Conn F []) = Lit (Conn F []) 
discrim (Conn And [x,y]) = Alpha x y 
discrim (Conn Or [x,y]) = Beta x y 
discrim (Conn Imp [x,y]) = Beta (notP x) y 
discrim (Conn Not [x]) = 
  case x of 
    (Rel r ts) -> Lit(notP x) 
    (Conn T []) -> Lit(Conn F []) 
    (Conn F []) -> Lit(Conn T [])  
    (Conn And [x,y]) -> Beta (notP x) (notP y) 
    (Conn Or [x,y]) -> Alpha (notP x) (notP y) 
    (Conn Imp [x,y]) -> Alpha x (notP y)  
    (Conn Not [x]) -> discrim x 
    (Quant All v f) -> Delta v (notP f) 
    (Quant Exist v f) -> Gamma v (notP f) 
discrim (Quant All v f) = Gamma v f 
discrim (Quant Exist v f) = Delta v f 



Tableau Method 

• The tableau method exploits this by building a 
branching tree, such that every path maintains 
this property. 

• Differences from tableau for propostional 
logic. 
1. We no longer have propositional variables, but 

now have predicates over terms. 
2. We have to deal with quantifiers 
3. To close a path, we need conflicting predicates. 



Properties of discrimination 

• Discrimination splits all sentences into one of 
5 sets. 

• All sentences in each set have the same 
properties 

• The splitting is arranged so each set has 
exactly one of the first order consistency 
properties 



Tableau Trees 
data Tree  
  = Direct (FormulaS) Tree 
  | Branch Tree Tree  
  | Leaf  
  | Closed FormulaS FormulaS 
 
A Leaf marks the end of a path that can be 

extended 
A (Closed x y) marks the end of a closed path where 

x and y are conjugates (appearing n the path 
ended by (Closed x y) 



Extending a tree 
extendTree p Leaf = p 
extendTree p (Direct q t) =  
   Direct q (extendTree p t) 
extendTree p (Branch x y) =  
   Branch (extendTree p x) (extendTree p y) 
extendTree p (Closed x y) =  
   Closed x y 
 
-- make 1 and 2 elements trees  
single p = Direct (p) Leaf 
double p q = Direct (p) (single q) 



The algorithm 

• We start with the negation of the formula to 
be proved. 

• We have a list of pending nodes (not yet 
visited) and a current tree. 

• Pick an unvisited node, discriminate on it, and 
extend the tree according to the rules 

• We need to do this in a state monad as we 
must be able to invent new variables and 
skolem functions not in the term. 



tabTree :: [FormulaS] -> Tree -> State Int Tree 
 
 

tabTree [] tree = return tree 
tabTree (x:xs) tree = 
  case discrim x of 
    Lit p -> tabTree xs tree 
    Alpha a b -> tabTree (a:b:xs) (extendTree (double a b) tree) 
    Beta a b ->  
      do { x <- tabTree (a:xs) (single a) 
         ; y <- tabTree (b:xs) (single b) 
         ; return(extendTree (Branch x y) tree) } 
    Gamma s f ->  
      do { t <- freshTerm 
         ; let form = (subst (s |-> t) f) 
         ; tabTree (form:xs) (extendTree (single form) tree) } 
    Delta s f -> 
      do { t <- freshSkolem s f 
         ; tabTree (t:xs) (extendTree (single t) tree)} 



Example 

• ((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y)))) 
 

 
~((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y)))) 

    (ALL x. O(x, x)) 

~(ALL x. (EX y. O(x, y))) 

     O(n1, n1) 

~(EX y. O(f2(), y)) 

~O(f2(), n3) 



How do we know if this tree can be 
closed? 

~((ALL x. O(x, x)) --> (ALL x. 
(EX y. O(x, y)))) 

    (ALL x. O(x, x)) 

~(ALL x. (EX y. O(x, y))) 

     O(n1, n1) 

~(EX y. O(f2(), y)) 

~O( f2(), n3) 

 



~((ALL x. O(x, x)) --> (ALL x. (EX y. O(x, y)))) 
       (ALL x. O(x, x)) 
   ~(ALL x. (EX y. O(x, y))) 
         O(f2(), f2()) 
      ~(EX y. O(f2(), y)) 
        ~O(f2(), f2()) 
X(~O(f2(), f2()),O(f2(), f2())) 



Unification 

• unification tries so see if two terms can be 
made identical by applying the same 
substitution. 
 

• It works by finding two terms that differ only 
by a variable in one and a term in the other. 



unify 
unify (Var v) (Var u)  
  | u==v = return emptySubst 
unify (Var v) y = 
  do { occurs v y 
     ; return(v |-> y)} 
unify y (Var v) = 
  do { occurs v y 
     ; return (v |-> y) }  
unify (Fun _ f ts) (Fun _ g ss)  
  | f==g = unifyLists ts ss 
unify x y = Nothing 



UnifyLists 
unifyLists [] [] = Just emptySubst 
unifyLists [] (x:xs) = Nothing 
unifyLists (x:xs) [] = Nothing 
unifyLists (x:xs) (y:ys) =  
  do { s1 <- unify x y 
     ; s2 <- unifyLists  
               (map (subTerm s1) xs)  
               (map (subTerm s1) ys) 
     ; return(s2 |=> s1)} 





unifyForm (Rel x ts) (Rel y ss)  
  | x==y = unifyLists ts ss 
unifyForm (Conn c1 ts) (Conn c2 ss)  
  | c1==c2 = unifyForms ts ss 
unifyForm x y = Nothing 
 
unifyForms [] [] = Just emptySubst 
unifyForms [] (x:xs) = Nothing 
unifyForms (x:xs) [] = Nothing 
unifyForms (x:xs) (y:ys) =  
  do { s1 <- unifyForm x y 
     ; s2 <- unifyForms (map (subst s1) xs)  
                        (map (subst s1) ys) 
     ; return(s2 |=> s1)} 



Subtle 

• Consider 
• ((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) | O(y, y))))) 

 
• What is the tableau? 
• Does it close 



Problem 

• What about this example 
 

((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) & O(y, y))))) 



The tableau 

~((ALL x. O(x, x)) --> (ALL x. (ALL y. (O(x, x) & O(y, y))))) 
           (ALL x. O(x, x)) 
~(ALL x. (ALL y. (O(x, x) & O(y, y)))) 
             O(n1, n1) 
~(ALL y. (O(f2(), f2()) & O(y, y))) 
 ~(O(f2(), f2()) & O(f3(), f3())) 
+--------------+  +--------------+ 
|~O(f2(), f2())|  |~O(f3(), f3())| 
+--------------+  +--------------+ 



• The problem with the last example is that a 
forall term is instantiated at one variable 
 

• But as we saw in the sequent calculus we can 
instantiate it several times. 
 

• But if we’re not carefull we may go into a 
infinite loop. Why? 



Paths 

• We don’t need to actually compute the tree 
• Only the paths of literal terms are necessary 

 
• As we saw I the propositional case, the order 

we visit the nodes also matters. 



tab3:: [FormulaS] -> [[FormulaS]] -> State Int 
[[FormulaS]]     
tab3 [] paths = return paths 
tab3 (x:xs) paths = 
  case discrim x of 
    Lit p -> tab3 xs (map (cons3 p) paths) 
    Alpha a b -> tab3 (insert3 a (insert3 b xs))  
                      (map (cons3 a . cons3 b) 
paths) 
    Beta a b -> 
        do { ms <- tab3 (insert3 a xs)  
                        (map (cons3 a) paths) 
           ; ns <- tab3 (insert3 b xs)  
                        (map (cons3 b) paths)  
           ; return (ms++ns)} 
    Gamma v f ->                  
       do { t <- freshTerm 
          ; let form = (subst (v |-> t) f) 
          ; tab3 (form:xs) paths } 
    Delta s f -> 
      do { t <- freshSkolem s f 
         ; tab3 (t:xs) paths } 
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