
Painless Programming Combining Reduction and Search
Design Principles for Embedding Decision Procedures in High-Level Languages

Tim Sheard
Portland State University

sheard@cs.pdx.edu

Abstract
We describe the Funlogic system which extends a functional lan-
guage with existentially quantified declarations. An existential dec-
laration introduces a variable and a set of constraints that its value
should meet. Existential variables are bound to conforming values
by a decision procedure. Funlogic embeds multiple external deci-
sion procedures using a common framework. Design principles for
embedding decision procedures are developed and illustrated for
three different decision procedures from widely varying domains.

Categories and Subject Descriptors D.1.0 [Software.]: Program-
ming Techniques.General.

General Terms Applicative Programming, Logic Programming,
Functional Programming

Keywords Search, first order logic, decision procedures

1. Introduction
There are many styles of declarative programming – functional pro-
gramming (FP), logic programming (LP), and constraint based pro-
gramming (CLP), to name a few. Most systems that implement
a particular style fall exclusively into one of two broad compu-
tational modalities that I call reduction and search. A declarative
program, in the reduction modality, consists of a set of instructions
for transforming the input into the output. A declarative program,
in the search modality, consists of a description of the properties
of a solution using some sort of logic, and then searching a solu-
tion space for an answer that has those properties. It is important to
emphasize that both kinds of systems can emulate the other (since
most are Turing complete). In fact, there are some systems that
combine both modalities, such as Curry[4], Ciao![10], Flora[20],
AMPL[8], and Oz[24]; The most common approach is to build a
general purpose language around a single search modality mecha-
nism. These languages often call specialized external tool, such as
a SAT solver (Alloy[12]), Linear-Programming libraries (AMPL),
an SMT solver (DMinor[3]), or a CLP solver library (Ciao!).

Another approach is to embed a search modality into a func-
tional language through the use of libraries or specialized data
structure design. Such systems often do a competent job. But in
general both kinds of systems suffer from one or more of the fol-
lowing problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

• Loss of generality. Systems built around a single search based
mechanisms can solve a one class of problems well, but break
down on other classes.

• Impedance mismatch. The use of embedded libraries to
broaden the class of problems amenable to solution often re-
sults in a certain unnaturalness in their use. For example they
may require the user to script a bunch of library calls using a
given API.

• Sub-optimal notation. Some problems are naturally and suc-
cinctly encoded using specialized notation. Systems built around
libraries often require the user to encode their problem descrip-
tion in an embedded specification language using the host lan-
guage’s notation.

• Poor abstraction. Specialized systems are often very expres-
sive, but not succinct. It matters not, that a problem can be ex-
pressed, if it requires thousands of lines to do so.

• Loss of incremental improvement. Through contests such as
SMT-COMP [2], and the CADE ATP System Competition [25]
the competition amongst implementers of specialized solvers
is immense. The winning systems often make tremendous im-
provements over previous year’s winners. Capturing these gains
is important.

The author, interested in alternate ways to specify programs
declaratively, tried many systems, and ran into all of the problems
above. He noticed that every problem is avoided in some system.
Could all the problems be avoided in a single system? He decided
to try by following the design principles below.

• A good system combines both computational modalities. Search
naturally describes some problems, and reduction others. The
two systems complement each other in several important ways.
Logic based programs are often both concise and easy to un-
derstand; while functional programs make great scripting lan-
guages, for combining things together.

• A good system should have multiple external solvers. This al-
lows the system to be general over several classes of problems,
yet benefit from specialized implementations and incremental
improvements.

• A good system naturally supports alternate notations where
necessary, but reuses notation where possible.

• A good abstraction that bridges between the functional and
logic worlds is necessary. The abstraction should be general –
it should apply to all logics. It should be both easy to use and
understand.

Funlogic is a new language (not an embedded domain specific
language). It has its own compiler. It reuses key ideas from many
systems (set notation from Datalog, escape from one syntax to an-

other from MetaML, relational algebra as first order logic from Al-
loy and KodKod, narrowing from Curry, and overloaded types from
Haskell). In building Funlogic, the author learned many engineer-
ing lessons and much about combining multiple solvers. He made
a number of research discoveries worth reporting.

• Search problems are best described by multiple dimensions.
These include description of the search space, special cases that
either shrink the search space (such as symmetries) or make
its description smaller, the properties that should hold of the
solution, the strategy used to search the space, and a description
of the target of the search – are we looking for any solution,
no solution, multiple solutions, a solution that maximizes an
objective function, an approximate solution, or a solution as
a probability distribution? We have found these dimensions
to describe every kind of search we have studied. Additional
dimensions, to add to our understanding of existing systems,
are sought.

• Overloading of terms allows the same language to be used in
both the reduction and search modality. A term that describes
the property of a solution specifies input to an external solver.
The meaning of a term in a constraint, is not the same as an
identical term in another part of the program. This difference
in meaning can be explained by two techniques: overloading
and staging. Precise semantics can be given for the language in
terms of these two techniques.

The rest of this paper is as follows: In Section 2 we describe our
system. In Section 3 we solve several small problems (each with a
different solver). In Section 4 we discuss the eight steps necessary
to add a new solver. Then, in three large Figures (4, 5, 6), we step
through the eight steps for each solver, discussing similarities and
differences using real data extracted from the examples introduced
in Section 3. In Section 5 we discuss a few of the many possible
extensions that might make our system even more useful. In Section
6 we discuss how it is related to other systems.

2. Language description
Funlogic combines functional programming with first-order logic.
A program in Funlogic consists of a sequence of declarations. A
declaration introduces into scope one or more names, and each
name is bound to a value. Values bound to newly introduced names
are either primitive (like data constructors) or they are computed by
either reduction or search. There are six kinds of declarations.

1. Value. (twoPi,x) = (3.14159 * 2.0, not True)
A value declaration introduces one or more names by use of a
pattern on the left-hand-side of an equation. The term on the
right-hand-side is reduced to a value, and that value is matched
against the pattern, binding the names in the pattern. In the
example above twoPi is bound to 6.28318 and x is bound to
False.

2. Dimension. dim width#Int = [1 .. 3]
A dimension declaration introduces a finite subset of a base
type. Base types include Int, Real, Bool, String, Char. Di-
mensions are finite sets and play a key role in describing search
spaces.

3. Data. data Tree a = Tip |Fork(Tree a) a (Tree a)
A data declaration introduces one or more constructors which
are either functions or constants of a newly introduced type.
In this example Tree is a new type, and Tip is a constant of
type Tree, and Fork is a ternary function that returns a Tree.
An enumeration (a data type consisting of only constants), also
introduces a Dimension with the same name.

4. Function. len [] = 0
len (x:xs) = 1 + len xs

A function declaration introduces a function defined by pattern
matching over one or more clauses. Functions may be recursive.

5. Formula. anc(x,y) -> person(x),person(y).
anc(x,y) <- parent(x,y);

parent(x,z),anc(z,y).
A formula declaration is an alternate syntax for introducing a
name that binds to a finite set. A finite set describes a relation,
and the formula syntax is reminiscent of a Prolog or Datalog
program. The formula is a concise way of describing compli-
cated sets. A formula declaration has two parts: a constraint
anc(x,y) -> person(x),person(y) and a computation:
anc(x,y) <- parent(x,y);parent(x,z),anc(z,y). The
constraints can place arbitrary limits on what the computation
can add to the set. In the example above person is a previously
introduced dimension (playing the role of a unary predicate),
and parent a previously introduced relation. Formula are an
example of an alternate notation and are discussed in detail in
Section 3.3.

6. Search. exists ys : List 4 Int
where sum ys == 9
find First

by SMT
A search declaration introduces one or more names whose val-
ues are computed by search. It contains a number of compo-
nents: the name(s) being introduced (ys), a description of the
search space (List 4 Int), a set of constraints (sum ys == 9),
a strategy (First) and a technique (or solver) used to perform
the search (SMT).

In the paragraphs that follow we will introduce additional fea-
tures of Funlogic by introducing a number declarations, then we
will explore the consequences of the declarations by showing an
interaction with the read-eval-print loop of Funlogic. An interac-
tion starts with the prompt exp> , which is followed on the same
line with the user’s input, followed on the next line with the sys-
tem’s response. For example

exp> 4+4
8:: Int

Here we see that the system responds with 8:: Int when the user
types 4+4 after the prompt.

Feature List. Haskell-like list syntax is supported. Lists can be
constructed by enumeration, the use of constructors ([] for nil, and
the infix (:) for cons), and list comprehensions. Lists also support
pattern matching.

exp> [True,False]
[True,False]:: List Bool

exp 1:2:[]
[1,2]:: List Int

exp> [2..6]
[2,3,4,5,6]:: List Int

exp> [(i,i-j) | i <- [8,9], j <- [3,4]]
[(8,5),(8,4),(9,6),(9,5)]:: List (Int,Int)

exp> case [3,4] of { [] -> 99; (x:xs) -> x}
3:: Int

Feature Dimension. Finiteness plays an important role in Fun-
logic. Search spaces are finite n-dimensional spaces, or can be de-

scribed by a finite number of logical variables. Funlogic uses the
notion of dimension to describe this phenomena. A single dimen-
sion is introduced by the dim declaration, or by an enumeration.

dim int11#Int = [0..10]
dim int2#Int = [4,5]
data Name = Tom | Hal | Jon

These declarations introduce names for three dimensions.
exp> int11
Int#11:: Dim Int

exp> int2
Int#2:: Dim Int

exp> Name
Name#3:: Dim Name

In general, Funlogic uses the symbol # in the syntax that manip-
ulates dimensions. Multi-dimensions are constructed from other di-
mensions by use of the dimension aggregate operator that consists
of the # operator followed by a tuple of dimensions. For example.
pair = #(Name,int11)
triple = #(pair,int11)

Dimensions are flattened when they are aggregated. Note how
triple has been flattened into sequence of 3 simpler dimensions
even though it was constructed by aggregating two dimensions.
exp> pair
#(Name#3,Int#11):: Dim (Name,Int)

exp> triple
#(Name#3,Int#11,Int#11):: Dim (Name,Int,Int)

Operations on dimensions include iteration using a list compre-
hension, and the function elem:: Dim a -> a -> Bool.

exp> [i | i <- #(Name,int2)]
[(Tom,4),(Tom,5),(Hal,4),(Hal,5),(Jon,4),(Jon,5)]
:: List (Name,Int)

exp> elem pair (Tom,5)
True:: Bool

exp> elem pair (Hal,55)
False:: Bool

Feature Array. Array are finite aggregates with constant time
access functions. An array with type: Array d i is indexed by
values in the dimension d and contain elements of type i. Arrays
are constructed by array:: Dim d -> List i -> Array d i.

twoD = array #(Name,int2) [’a’,’b’,’c’,’d’,’e’,’f’]
oneD = array width ["red","blue","green"]

For 2-D arrays the elements in the initialization list appear in row-
major order. It is assumed that there is an element in the list for
every point in the domain d.

exp> oneD
1 2 3
+-----+-------+--------+
|"red"| "blue"| "green"|
+-----+-------+--------+
:: Array Int String

exp> twoD
4 5

+---+---+
Tom|’a’|’b’|

+---+---+
Hal|’c’|’d’|

+---+---+
Jon|’e’|’f’|

+---+---+
:: Array (Name,Int)

Char

Arrays are accessed using index:: Array d i -> d -> i.
The infix operator (.) is also bound to the same function. Dimen-
sions of an array are accessed by arrayDim:: Array d i -> Dim d.

exp> index oneD 3
"green":: String

exp> twoD.(Jon,4)
’e’:: Char

exp> arrayDim twoD
#(Name#3,Int#2):: Dim (Name,Int)

Feature Set. A value of type Set(A,B,C) stores a set of tuples
of type (A,B,C). A set is constructed with the function set:: Dim
d -> List d -> Set d. Elements of a set are constrained by the
domain of the set.

dim int3#Int = [1,2,3]
s1 = set #(int3,int3) [(1,2),(1,2),(2,3),(0,4)]

Set construction removes elements from the list that are out-
side the domain. Set construction also ignores duplicates. Note the
“missing” tuples in s1 below.

exp> s1
{(1,2) (2,3)}:: Set(Int,Int)

3. Several small problems
In Figure 1 are several small problem solutions written in Funlogic.
Each illustrates a different search based paradigm. All are remark-
ably similar. A problem is defined. A solution is phrased in terms of
an existentially declared data structure with first order constraints,
and a solver is chosen. The majority of the code comprising a so-
lution consists of a few small functions that manipulate data and
express relevant boolean valued functions used to constrain which
solutions are acceptable.

3.1 A production problem
In the lower-left quadrant of Figure 1 is a Funlogic program that
solves a production problem using an linear-programming solver.
The problem involves choosing the production level at several fac-
tories to meet estimated sales demand while minimizing transporta-
tion costs, subject to some global constraints. The existentially de-
clared array prod holds production information. The value stored
in prod.(f,s) holds the number of units produced at factory f
destined for store s. Constraints include:

• Factory A is smaller than the others, and its total production
cannot exceed 150 units.

• every prod.(f,s) value is positive or zero.
• The sum of production for each store is equal to estimated sales

at that store.

Shipping costs vary between each factory and store, and are
stored in the array ship. The store owners wish to minimize to-
tal shipping costs. Note that the specification of the problem is ex-
pressed in terms of ordinary user level functions: sum, and and.
These and several other “library” functions are found in the lower-
right quadrant of Figure 1.

3.2 An N-queens solver
In the upper-right quadrant of Figure 1 is a Funlogic program that
solves the N-queens problem using an SMT solver. The problem
involves placing n-queens on a n×n chessboard in a manner such
that no queen can take another queen using the moves of chess.

rank = 2 -- Rank 2 (4x4) Soduko solver

dim size#Int = [0 .. rank*rank - 1]
dim digit#Int = [1.. rank*rank]

input = set #(size,size,digit)
[(0,3,4),(1,1,2),(1,2,1)
,(2,1,1),(2,2,4),(3,3,1)]

-- (i,j,n) is in the set if "ij"= n (ij in base-rank)
square = set #(size,size,size)

[(i,j,(div i rank) * rank + (div j rank))
| i <- size, j <- size]

exists grid : set #(size,size,digit) input .. universe
where -- every row(n) has 1-4

and[$(full {k<-grid($n,j,k)}) | n <- size] &&
-- every column(n) has 1-4

and[$(full {k<-grid(i,$n,k)}) | n <- size] &&
-- every box(n) has 1-4

and[$(full {k<-grid(i,j,k),square(i,j,$n)})
| n <- size] &&
-- each coordinate has only one digit

$(grid(i,j,n),grid(i,j,m) -> eq#digit(n,m))
find First

by SAT

ans = setToArray grid

size = 4 -- An N-Queens Solver

dim width#Int = [1 .. size]

dim i2#Int = [0,1]

rowPts i = [(i,j) | j <- width]
colPts j = [(i,j) | i <- width]
nwEdges = append (rowPts 1) (colPts 1)
swEdges = append (rowPts size) (colPts 1)

add m pts = sum [m.p | p <- pts]

downDiag(x,y) =
(x,y):[(x+i,y+i)| i <- width, x+i <= size, y+i <= size]

upDiag (x,y) =
(x,y):[(x-i,y+i)| i <- width, x-i >= 1, y+i <= size]

exists bd : Array #(width,width) i2
where -- every row(i) adds to 1

and [add bd (rowPts i) == 1 | i <- width] &&
-- every column(i) adds to 1

and [add bd (colPts i) == 1 | i <- width] &&
-- every diagonal adds to 0 or 1

and [add bd (downDiag p) <= 1 | p <- nwEdges] &&
and [add bd (upDiag p) <= 1 | p <- swEdges]

find First
by SMT

-- Production minimization problem

data Factory = A | B | C
data Store = NYC | ATL | LA

pairs = #(Factory,Store)

ship = array pairs [2,3,5,3,2,1,3,4,2]
sales = array Store [230,140,300]

exists prod: Array #(Factory,Store) Int
where sum[prod.(A,s) | s <- Store] <= 150 &&

and [prod.(f,s) >= 0 | (f,s) <- pairs] &&
and [sales.s == sum [prod.(f,s) | f <- Factory]

| s <- Store]
find Min sum[prod.(f,s) * ship.(f,s)

| (f,s) <- pairs]
by LP

-- Library functions

append :: List a -> List a -> List a
append [] ys = ys
append (x:xs) ys = x :(append xs ys)

and :: BoolLike b => [b] -> b
and [] = true
and [x] = x
and (x:xs) = x && (and xs)

sum :: NumLike t => [t] -> t
sum [] = liftI 0
sum [x] = x
sum (x: xs) = x + (sum xs)

Figure 1. Solutions for several small problems

We assume the reader is familiar with this problem1. The program
works as follows. It represents a solution by an array of integers in
the range [0..1] A 4-queens solution looks like:

solution representation
Q

Q
Q

Q

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

The invariant (on the representation) is that every row and col-
umn sums to exactly 1, and that the sum of every diagonal is at
most 1. To compute these sums, we proceed in two steps. First we
define simple functions that return a list of points, representing co-

1 See wikipedia.org/wiki/Eight queens puzzle for a good discussion.

ordinates in the array, for rows, columns, and diagonals. It is best to
visualize the points that a function returns by using a graphical rep-
resentation. An X in a square means that coordinate is an element
of the list returned. Rows (rowPts) and columns (colPts) are par-

ticularly easy and are implemented by simple comprehensions over
the size of the problem.

rowPts i colPts j
j

i x x x x
x
x
x
x

Diagonals are more complex. Given a point, (i,j), we compute
the list of points on the up and down diagonals starting at that point
as visualized below.

downDiag(i,j) upDiag (i,j)
j j

i x
x

x
i

x
x

x

To compute all the diagonals, we see that every complete diag-
onal is rooted at a point on the edge of the array. Down-diagonals
are rooted on points on the north and west edges, and up diagonals
are rooted on points on the south and west edges.

nwEdges swEdges
x x x x
x
x
x

x
x
x
x x x x

To sum the elements in an array we define the function add. It
is given an array and a list of coordinates, and sums the elements
of the array at those coordinates. Here we make use of the library
function sum which adds all the elements in a list.

The answer we are searching for will be stored in the ex-
istentially declared array bd. It is a 2-D array with dimensions
#(width,width) . It stores elements in the range of the dimen-
sion i2 ([0..1]).

The constraint on bd is a large conjunction consisting of 4 parts:
rows, columns, up-diagonals, and down-diagonals. each part has
the form: and [add bd (f i) � 1 | i <- alphas] where
alphas is a set of elements (here, either a positive integer less than
the puzzle size or a coordiate of an edge), f is a function from an
element to a list of points, and � is a boolean relation. For each
coordinate in (f i) we sum the element at that coordinate, and
compare that sum to 1.

3.3 An exercise in alternate notation
In the upper-left quadrant of Figure 1 is a Funlogic program for
solving soduko problems. It uses a SAT solver, and much of its
elegance and simplicity relies on using an alternate notation for
describing and manipulating sets. A set of n-tuples is an n-ary
relation.

FunLog has two alternate notations for manipulating relations –
formula and constraints. The simplest formula is called an atom. It
is comprised of a name followed by a parenthesized list of patterns.
For example R(p1, .., pn). To be well formed R must be a set of n-
tuples of type (t1, .., tn) and each pattern pi must have type ti. The
atom R(p1, .., pn) denotes the largest subset of R in which every
tuple matches the patterns (p1, .., pn). Atoms are the basic building
blocks of formula and constraints.

In Figure 2 are rules for constructing formula and constraints.
These notations are modelled after both Prolog terms and Datalog
formula (that express the relational algebra). Because I assume that

Formula syntax. let x::Set(A,B), y::Set(A,B),
g::Set(B,B), h::Set(C,D), and f::Set(C,B). Also let a,
b, c, and d be variables, and p and q be patterns. Then we can
denote operations on these sets by the following formula:

formula meaning type

x(p,q) atomic formula, filter Set (A,B)
x(a,b); y(c,d) union of x and y Set (A,B)
x(a,b), y(a,b) intersection of x and y Set (A,B)
x(a,b), h(c,d) product of x and h Set (A,B,C,D)
h(c,d),f(c,b) join of h and f Set (C,D,B)
{ a <- y(a,b) } the 1st projection of y Set A
eq#n(a,b) equality on n Set (n,n)

Constraint syntax. A constraint denotes a boolean valued function
over a set of tuples. Let r::Set d, s::Set d, and f::Set(d,e)
where d and e are finite domains as explained in Section 2, then:

formula meaning

none r(x) r is the emptyset
full r(x) r contains every tuple in domain d
some r(x) r has at least one element
one r(x) r has exactly one element
r(x) <= s(y) r is a subset of s
f(x,y) -> r(x) r is a subset of { x <- f(x,y)}
f(x,y) | x -> y in f, y functionally depends on x

Example translation. A formula denotes a set, and a constraint
denotes a boolean value. Each translates to ordinary function calls
over sets. Formula translate into calls to functions that implement
the relational algebra over sets of tuples. An example translation
follows.

{ c <- x(a,"Tom"),y(a,c) }

First we select only those tuples of x whose second component
is "Tom", then join the resulting relation with y on the common
component a. This results in a ternary relation, z(a,"tom",c),
which is then projected on its third component.

project3of3 (join (select (\(a,b)->b=="Tom") x) y)

Figure 2. The meaning of formula and constraints by example.

most readers are familiar with at least one of these notations2, I
only give suggestive examples for each supported construction in
both notations.

Embedding alternate syntax. The default syntax of Funlogic
is the expression. Any place an expression is expected a formula or
a constraint can be used by escaping into one of the alternate syn-
taxes by use of the $(...) operator. Consider the declarations

dim people#String =
["Anita","Barbara","Caleb","Frank","Tim"]

parent = set #(people,people)
[("Frank","Tim"),("Tim" , "Caleb")
,("Anita","Tim"),("Barbara","Caleb")]

To create a set consisting of those tuples that include valid (child,
parent, grandparent) triples, one may declare:

threeGen = $(parent(x,y),parent(y,z))

which escapes to the alternate formula notation to express a self-
join on the parent relation. One can test if that set has exactly one
element by escaping into the alternate constraint notation.

2 if you are not, see wikipedia.org/wiki/Datalog for an introduction

exp> threeGen
{("Caleb","Tim","Anita") ("Caleb","Tim","Frank")}
: Set(String,String,String)

exp>
exp> $(one threeGen(x,y,z))
False: Bool

It is also possible to escape from the formula notation into the
expression notation. Let the variable n have value "Tim", then in a
formula parent(x,$n) the $n indicates an escape into the expres-
sion notation, and is equivalent to the formula parent(x,"Tim").
This makes it possible to parameterize sets specified using the for-
mula notation.

3.4 A Soduko solver
Soduko puzzle of rank n consists of a square matrix with edge size
equal to n × n where some of the squares have been filled in with
digits in the range [1.. n × n]. A sample puzzle of rank = 2 is
given below.

0 1 2 3
0
1
2
3

4
2 1
1 4

1

(0,3,4)
(1,1,2) (1,2,1)
(2,1,1) (2,2,4)
(3,3,1)

To solve this problem, a number between 1 and 4 must be
inserted into each empty coordinate. The invariant of a successful
solution is that all the digits 1-4 must appear (in any order) in every
row, in every column, and in every 2×2 box. We make the term
box precise in our code, but note, in a rank n problem, the boxes
are n × n. Each coordinate in a row, column, or box is given an
index (between 0 and n − 1) as illustrated below. For example the
coordinates (1,3,i) (in bold font) are in row 1, column 3, and
box 1.

row column box
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 0 1 1
0 0 1 1
2 2 3 3
2 2 3 3

We represent a problem as a finite set of triples. One for each
filled in square in the problem description. The triples for the
sample puzzle are listed to the right of the puzzle above (they are
called input in the solution).

The interpretation of a triple (row,col,k) is that the value k is
stored at coordinate (row,col). Because both (row,col,3) and
(row,col,5) could be in the set, it is possible for many numbers
to be stored at each coordinate. Thus an additional invariant is that
exactly one number is stored at each coordinate.

We solve the problem by computing sets of triples, which are
subsets of the 3- dimensional search space. Each subset, s, contains
the tuples comprising a single row, column, or box. If we project ({
k <- s(i,j,k) }) a set of tuples, like s, on the digit column, we
obtain a set of digits, where each element is in the range 1-4 (see
the digit dimension declaration). An invariant is met if this set
is the full set {1,2,3,4}. Computing the projection over row n
({k<-grid($n,j,k)}) and column n ({k<-grid(i,$n,k)}) is
trivial. The nth box takes some care. The set square assigns every
coordinate to a single box index. Thus the tuple (i,j,n) is in the
set, square, if coordinate (i,j) is assigned to box n. This is easy
to compute by noting that n = ij if we read ij as a 2 digit number
in base rank. When rank is 2, square is the set:

{(0,0,0),(0,1,0),(0,2,1),(0,3,1),(1,0,0),(1,1,0)

,(1,2,1),(1,3,1),(2,0,2),(2,1,2),(2,2,3),(2,3,3)
,(3,0,2),(3,1,2),(3,2,3),(3,3,3)}

See the graphic labeled box above for a visual representation of
square at rank 2.

4. Seven steps to adding a new solver
The steps we discuss in this section constitute a prescription of
how to incorporate an external solver into a high-level language.
We consider these steps to be the research results of this paper. We
discuss these steps in two passes. First we introduce the steps in
the abstract. Then in Figures 4, 5, and 6 we illustrate each of the
steps, on each of the solvers, using actual data from the problems
introduced in Figure 1.

Every solver accepts problems in a given form, the compiler
must capture this form, but hide its details from the programmer.
The programmer thinks in terms of data and functions supported
by Funlogic. The key to “painless programming” is maintaining
the programmer’s view. This is done by the use of overloading.
In Figure 3 are four abstract classes of operations. Three of these
classes are familiar to most programmers – arithmetic, booleans,
comparisons. The fourth class captures operations in the relational
algebra, and will be familiar to any one who has studied data bases.

In the same figure we supply concrete instances. These are the
functions programmers normally associate with these operations.
Each solver will associate a different set of functions with these
operators, and supply a mechanism to lift a concrete value to its
representation type(s). This process is described in the next few
paragraphs. As we look closely at each solver, keep in mind how
widely their structure varies, yet they will all yield to this same
process.

1. Representation types. The first step to incorporating a solver
is to choose a data structure to represent problems solvable by that
solver. Actual representation types appear as the first step in each
of the Figures 4, 5, and 6. These come in several flavors.

• Term representations. The type SAT (figure 5) is an abstract
representation of the booleans. The type SMT (figure 4) is an
abstract representation of operations and comparisons over nu-
meric types. These types are essentially term representations of
expressions over of the concrete type they represent.

• Structural representations. The type MExp (figure 6) captures
the domain of constraints over linear arithmetic expressions as
used in linear-programming problems. Here the representation
captures structural properties of the problem domain – that a
term is a polynomial.

• Propositional representations. The type (BitVector SAT t)
(figure 5) is an abstract representation of finite sets of elements
of type t. A propositional representation stores “bits” and repre-
sents different values depending on the truth or falsity of the bits
stored. Some users may be familiar with a bit-blasting proposi-
tional representation of arithmetic, where integers in the range
[0 .. n] are represented as log2 bits. A propositional repre-
sentation “compiles” to a SAT problem.

• Search tree. A fourth kind of representation type is that of an
explicit search tree. Overloaded operations “prune” paths in the
tree that do not lead to a solution that meets the constraints. For
space reasons, an example of this type of representation is not
given in the paper.

2. Overloading. The second step in the process of maintaining
an abstract view of solver representations is the use of overload-
ing. Programmers write constraints using the computational mech-
anisms of FunLog – functions and data structures. User defined

Overloaded operators

class BoolLike b where
true :: b
false :: b
(&&) :: b -> b -> b
(||) :: b -> b -> b
liftB :: Bool -> b

class NumLike t where
liftI :: Int -> t
liftR:: Rational -> t
(+) :: t -> t -> t
(*) :: t -> t -> t

class(NumLike t,BoolLike b)
=> Compare t b where

(<=):: t -> t -> b
(==):: t -> t -> b

class SetLike s where
create:: Dim a -> [a] -> s a
select:: (a -> Bool) ->

s a -> s a
proj3of3:: s (a,b,c) -> s c

Concrete instances

instance BoolLike Bool where
true = P.True
false = P.False
x && y = x P.&& y
x || y = x P.|| y
liftB x = x

instance NumLike Int
where
liftI x = x
liftR x =

error "UnSupported"
(+) x y = x P.+ y
(*) x y = x P.* y

instance Compare Int Bool
where
(<=) x y = x P.<= y
(==) x y = x P.== y

instance SetLike Set.Set where
create dom xs =

Set.fromList
[x | x <- tuples dom

, elem x xs]
select p xs = Set.filter p xs
proj3of3 xs = Set.map third xs

where third(x,y,z) = z

We use a Haskell-like notation to describe classes and instances. The use of the notation “P.x” indicates the concrete un-overloaded function or value. Both
classes and concrete instances are abbreviated, we show only a few member functions, enough to explain the examples in Figure 1, in the implementation there
are many more member functions. Note that all solvers, no matter what their representation types, will support the same abstract interfaces. For space reasons,
concrete instances for Float, Double, and Rational are not shown.

Figure 3. Overloading with abstract and concrete instances.

functions manipulate both real data and abstract data representa-
tions through the magic of overloading. Overloading in Funlogic is
similar to overloading in Haskell. Every primitive (numeric opera-
tors, boolean operators, set operations, etc.) has a standard concrete
implementation and one or more overloaded abstract implementa-
tions. One for each solver that might use that operator. Abstract
implementations of operators manipulate abstract representations.
User written functions, through overloading, inherit multiple im-
plementations through a library passing mechanism. Which library
is passed depends upon the context. Whether the user is manipulat-
ing real data or solver representations, he uses the same functions
in the same way.

3. Initialization. The third step in the process of maintaining an
abstract view of solver problems is initialization. An existentially
declared variable must be translated (or initialized) into the internal
representation of the appropriate solver. The programmer views
this internal representation as if it was an ordinary concrete value
when he writes constraints. Ordinary functions and data, defined by
the programmer, are used to manipulate it. Initialization chooses an
abstract representation and constructs a view consistent with the
programmers view of the data. An initializer looks like a type.
Depending upon the solver, this type will be expanded into some
abstract representation, different for each solver.

4. Staging and Resolving Overloading. The fifth step in the pro-
cess of maintaining an abstract view of solver problems is handling
mixed concrete and abstract data in the constraints associated with
existential declarations. Data is concrete if it is a literal constant, or
declared outside the existential declaration. Consider a constraint
for an SMT existential declaration.

exists x::Int, z::Int where ((x + (2 + y)) == z)

Where (+) and (==) are overloaded, 2 is concrete, y is concrete
because it is declared outside the existential, and x and z are
abstract (existentially bound). We type check the program in the
following environment.

(+):: forall n . NumLike n => n -> n -> n
(==):: forall n b . Compare n b => n -> n -> b
x:: t1 -- existentially bound x’s type is unconstrained
y:: Int -- y’s type is concrete
z:: t2 -- existentially bound z’s type is unconstrained

Type checking infers a type for a term, and reconstructs the term
where overloading is made explicit, and unconstrained types my
become constrained by context, and concrete sub terms are made
as large as possible. The term is reconstructed with the following
type, and the types of x and z are further constrained.

((x (+)#A (liftI#B ((liftI#C 2) (+)#D y))) (==)#E z):: t4
x:: t3; y:: Int; z:: t3

The reconstructed overloaded operators ((+), (==), liftI) are
tagged with constraints (A, B, etc). We separate the constraints from
the reconstructed term to make the term easier to read.

#A = (NumLike t3); #B = (NumLike t3); #C = (NumLike I)
#D = (NumLike I); #E = (Compare t3 t4)

Note that the term ((liftI#C 2) (+)#D y) is completely
static, since the constraints #C and #D are completely static. Note
further, that some of the others are unconstrained. This is because
we make few assumptions about the variables x and z. In the next
step, we use the solver context to remove this uncertainty. First, a
where clause represents a boolean value, so the whole term must
have the type representing SMT’s version of Bool, which is SMT.
Second, the existential variables have type Int and SMT’s version
of Int is also SMT. See Figure 4 for the details. So under the
variable assignment {x:: SMT, y:: Int, z:: SMT }we check
the reconstructed term.

((x (+)#A (liftI#B ((liftI#C 2) (+)#D y))) (==)#E z):: SMT

This completely fixes the types in each of the constraints

A# = (NumLike SMT); B# = (NumLike SMT); C# = (NumLike I)
D# = (NumLike I); E# = (Compare SMT SMT)

This specifies an exact function for each overloaded call.

((x :+: LitI (id 2 P.+ y)) :=: z)

What we have described is a type based binding time analysis
where concrete terms are static, and abstract terms are dynamic. We
have used two binding time analyses, and have found them both to
work well. The first is embedded in an on-line partial evaluator that
uses a lazy (just in time) lifting. We have also used a static (off-line)
analysis, based upon some previous work [17, 22], appropriate for
a compiled semantics. See Appendix B for details of this step.

5. Constraint generation. The fourth step in the process of main-
taining an abstract view of solver problems is constraint specifi-

cation. The user writes a boolean valued expression involving the
existentially declared variables. His constraints may also mention
any other concrete data in scope. This constraint is executed using
the overloading associated with the particular solver, as described
above. Evaluation under the overloaded functions associated with
the solver produces abstract-input appropriate for that solver.

6. Input formatting. While the representation type is meant to
capture the structure of the input to a solver, there will always be
some reformatting necessary to accommodate the input format of
individual solvers.

7. Instantiation. Once a problem has been solved by an external
solver, the solution must be used to instantiate the abstract structure
of existential variables into concrete data.

4.1 The N-Queens problem
The N-Queens problem is solved by a SMT solver. The 7-step
process is illustrated in Figure 4. It uses a term representation
we call SMT. This is an untyped term algebra that builds data
structures representing expressions over arithmetic, booleans, and
comparisons.

Its abstract instances just build larger terms from smaller terms,
by using the constructor functions from SMT.

The n-queens problem initializes a small vector of values, each
in the range [0..1]. In the SMT solver, an array is initialized to
a real array of abstract variables (elements of type SMT). The types
of these abstract variables is taken from the initializer (the range
[0..1]) and passed as input to the solver (see step 7). Functions
that manipulate these variables will be overloaded and build SMT
data.

To illustrate constraint generation in the queens example study
one of the constraints from Figure 1.
and [add bd (rowPts i) == 1 | i <- width]
Binding time analysis, lifts the constant 1, and the expression is
evaluated in a context where the functions add, and, and (==), are
bound to their abstract instances.

Abstract variables from each row i are added and their sum is
equated with 1. The effect is to build SMT data. Inspect the abstract
initialization to see that the correct variables are indeed added. The
SMT data is then formatted to meet the input specifications of the
solver.

4.2 The Soduko problem
The Soduko problem is solved by a SAT solver. The 7-step process
is illustrated in Figure 5. It uses a term representation (we call SAT)
to represent the booleans, and a propositional representation we call
BitVector to represent sets.

The type (BitVector SAT t) is an abstract representation of
finite sets of elements of type t. A BitVector value (BV d xs)
stores a list of pairs, xs. There is one pair, (t,b), in the list for
each possible tuple element, t, of the dimension d. The second
element, b, of a pair, is an abstract boolean. If that abstract boolean
represents True then the tuple element, t, is in the set, otherwise it
is not. When concrete booleans are used (i.e. BitVector Bool t),
a set is a concrete bit-vector (one bit for each possible tuple). When
abstract booleans are used (i.e. BitVector SAT t), elements can
be conditionally present in a set, depending upon the assignment of
truth values to logical variables (i.e. values of the form (VarP n))
in the abstract boolean expression.

In addition to operations over booleans, the abstract functions
create, select, proj3of3, and join, that manipulate abstract
sets, are defined as instances. The missing definitions appear in
Appendix A, along with the functions combine and mergeL, that
play important roles in explaining how abstract sets are manipu-
lated. The function call (combine f (x,p) pairs) finds the pair

Step 1. Problem Representation.

data SMT
= VarE String
| LitB Bool -- True or False
| LitI Int -- 23
| SMT :&&: SMT -- x && y
| SMT :+: SMT -- x + y
| SMT :==: SMT -- x == y
| SMT :<=: SMT -- x <= y

Step 2. Overloading.

instance NumLike SMT where
liftI = LitI
(+) x y = x :+: y

instance BoolLike SMT where
true = LitB P.True
false = LitB P.False
(&&) = (:&&:)
liftB = LitB

instance Compare SMT SMT where
(<=) x y = x :<=: y
(==) x y = x :==: y

Step 3. Initialization.
Produces an array where each element is an SMT variable.

bd : Array #(width,width) i2

1 2 3 4
+-----+-----+-----+-----+

1|‘bd1 |‘bd2 |‘bd3 |‘bd4 |
+-----+-----+-----+-----+

2|‘bd5 |‘bd6 |‘bd7 |‘bd8 |
+-----+-----+-----+-----+

3|‘bd9 |‘bd10|‘bd11|‘bd12|
+-----+-----+-----+-----+

4|‘bd13|‘bd14|‘bd15|‘bd16|
+-----+-----+-----+-----+

Steps 4. Binding time analysis.

-- user function
add m pts = sum [m.p | p <- pts]

-- one part (for brevity) of queens constraint
and [add bd (rowPts i) == 1 | i <- width]
--->
and [add bd (rowPts i) == liftI 1 | i <- width]

Step 5. Constraint generation. Constraint evaluates using over-
loaded functions and, add, and (==).

(and (= (+ bd1 (+ bd2 (+ bd3 bd4))) 1)
(= (+ bd5 (+ bd6 (+ bd7 bd8))) 1)
(= (+ bd9 (+ bd10 (+ bd11 bd12))) 1)
(= (+ bd13 (+ bd14 (+ bd15 bd16))) 1))

Step 6. Input formatting leads to SMT input file

(define bd1::(subtype (x::int) (or (= x 0)
(= x 1))))

(define bd2::(subtype (x::int) (or (= x 0)
(= x 1))))

...
(assert (and (= (+ bd1 (+ bd2 (+ bd3 bd4))) 1)

(= (+ bd5 (+ bd6 (+ bd7 bd8))) 1)
...

Figure 4. N-Queens problem pipeline.

Step 1. Problem Representation.

data SAT =
VarP Int

| FalseP
| TruthP
| AndP SAT SAT

data BitVector b a = BV (Domain a) [(a,b)]

Step 2. Overloading. See Appendix A for full definitions.

instance BoolLike SAT where
true = TruthP
false = FalseP
(&&) = AndP
liftB True = TruthP
liftB False = FalseP

instance BoolLike b => SetLike (BitVector b) where
create d xs = ...
select p (BV d xs) =

BV d [(x, liftB (p x)) | (x,b) <- xs]
proj3of3 (BV (D3 _ _ d) xs) = ...
join (BV (D2 a b) xs) (BV (D2 _ c) ys) = ...

Step 3. Initialization.
Produces BitVector SAT (Int,Int,Int)

grid: set #(size,size,digit) input .. full

[(0,0,1)=p1 (0,0,2)=p2 (0,0,3)=p3 (0,0,4)=p4
(0,1,1)=p5 (0,1,2)=p6 (0,1,3)=p7 (0,1,4)=p8
(0,2,1)=p9 (0,2,2)=p10 (0,2,3)=p11 (0,2,4)=p12
(0,3,1)=p13 (0,3,2)=p14 (0,3,3)=p15 (0,3,4)=T
(1,0,1)=p16 (1,0,2)=p17 (1,0,3)=p18 (1,0,4)=p19
(1,1,1)=p20 (1,1,2)=T (1,1,3)=p21 (1,1,4)=p22
(1,2,1)=T (1,2,2)=p23 (1,2,3)=p24 (1,2,4)=p25
(1,3,1)=p26 (1,3,2)=p27 (1,3,3)=p28 (1,3,4)=p29
(2,0,1)=p30 (2,0,2)=p31 (2,0,3)=p32 (2,0,4)=p33
(2,1,1)=T (2,1,2)=p34 (2,1,3)=p35 (2,1,4)=p36
(2,2,1)=p37 (2,2,2)=p38 (2,2,3)=p39 (2,2,4)=T
(2,3,1)=p40 (2,3,2)=p41 (2,3,3)=p42 (2,3,4)=p43
(3,0,1)=p44 (3,0,2)=p45 (3,0,3)=p46 (3,0,4)=p47
(3,1,1)=p48 (3,1,2)=p49 (3,1,3)=p50 (3,1,4)=p51
(3,2,1)=p52 (3,2,2)=p53 (3,2,3)=p54 (3,2,4)=p55
(3,3,1)=T (3,3,2)=p56 (3,3,3)=p57 (3,3,4)=p58]

Steps 4. Binding time analysis and alternate syntax expansion
produces constraint.

full {k <- grid(3,j,k)}
-->
full (proj3of3 (select (\ (i,j,k)->i==3) grid))

Step 5. Constraint generation. Constraint evaluates using over-
loaded functions, full, proj3of3, and select.

(p45 \/ p49 \/ p53 \/ p56) /\
(p46 \/ p50 \/ p54 \/ p57) /\
(p47 \/ p51 \/ p55 \/ p58)

Step 6. Input formatting leads to .cnf file

p cnf 58 3
45 49 53 56 0
46 50 54 57 0
47 51 55 58 0

Figure 5. Soduko problem pipeline.

(x,q) in pairs (if any) and replaces its abstract boolean q with (f
p q). This can be used to effectively insert or delete elements de-
pending upon the values of p and f, for example (combine (||)
(x,True) xs) adds x and (combine (&&) (x,False) xs) re-
moves x. The function mergeL iterates combine.

The Soduko problem initializes a finite set. An initializer for a
finite set has the form: Set #(d1,d2) s1 .. s2. It includes a
pair of concrete sets, s1 and s2. The set s1 must be a subset of the
set s2 and both must have the same dimensions as the set being
initialized. Like all abstract sets, the initialized set consists of a list
of pairs. The intuition for initialization can be seen in the picture
below

Tuples in s1 have their BoolLike values set to True, they
are definitely in the set. Tuples not in s2 have their BoolLike
values set to False, they are definitely not in the set. The others
are assigned a boolean valued propositional variable. Different
assignments of True or False to the propositional variables will
change what is in the set.

Note that the tuples given as input to the Soduko puzzle
((0,3,4), (1,1,2), (1,2,1), (2,1,1), (2,2,4), and (3,3,1))
all have their BoolLike value set to True, and all the others are as-
signed a propositional variable. This is because the set s2 is the full
set of tuples (the universe). It is not unusual for an initializer to be:
Set #(d1,d2) none .. universe, which is completely uncon-
strained (i.e. every tuple is assigned a propositional variable). But,
choosing appropriate bounds can dramatically decrease the size of
the problem sent to the solver, and thus effect its efficiency. Other
initializers (not shown) allow users to describe symmetries[5, 23],
which also can make the search process more efficient.

In the Soduko example, one part of the constraint is:
full {k <- grid(3,j,k)}. The alternate notation expands to
a term involving the overloaded functions full, proj3of3 and
select. No binding time annotations are needed. This compares
a one column projection to the full set {1,2,3,4}.

The term is evaluated in an overloaded context to get a SAT
term. To see how the answer arises, consider its first conjunct
(p45 \/ p49 \/ p53 \/ p56). A 2 is in the set if and only if
this conditions holds. The only tuples in row 3 with a 2 in the k
position are:
(3,0,2)=p45 (3,1,2)=p49 (3,2,2)=p53 (3,3,2)=p56.
So, one of the variables p45, p49, p53, or p56 must be true. In a
similar fashion, the second and third conjuncts assure 3 and 4 are
also in the set (work it out for yourself). What about 1? Why no
conjunct for 1? Because the tuple (3,3,1)=T is already fixed by
the input, so 1 will always in the set {k <- grid(3,j,k)}.

This representation is then formatted into a standard .cnf file
and passed to the sat solver.

4.3 The Production problem
The Production problem is solved by a Linear Programming solver.
The 7-step process is illustrated in Figure 6. It uses a struc-
tural representation (we call Mexp, for Mathematical program-
ming) to represent polynomials over several variables. For ex-
ample: 3x + 2y + 1. Operations, like (+), combine polynomi-
als. For example: (3x + 2y + 1) + (2x + 2z + 3) results in
(5x + 2y + 2z + 4).

Step 1. Problem Representation.

type PolyNom n = [(String,n)]
data MExp n = Term (PolyNom n) n
data Rel n
= RANGE (PolyNom n) (Range n)
| TAUT -- True
| UNSAT -- False

Step 2. Overloading. See Appendix A for full definitions.

instance NumLike (MExp Int) where
liftI n = Term [] n
(+) (Term [] a) (Term [] b) = ...

instance BoolLike [Rel Int] where
liftB True = [TAUT]
(&&) xs ys = ...

instance Compare (MExp Int) [Rel Int] where
(<=) (Term [] a) (Term [] b) = ...

Step 3. Initialization. Array filled with unit polynomials.

prod: Array #(Factory,Store) Int

NYC ATL LA
+---------+---------+---------+
A|‘(1a + 0)|‘(1b + 0)|‘(1c + 0)|
+---------+---------+---------+
B|‘(1d + 0)|‘(1e + 0)|‘(1f + 0)|
+---------+---------+---------+
C|‘(1g + 0)|‘(1h + 0)|‘(1i + 0)|
+---------+---------+---------+
: Array (Factory,Store) (MExp Int)

Steps 4. Binding time analysis. Constraint is annotated.

and [sales.s == sum [prod.(f,s) | f <- Factory]
| s <- Store]

-->
and [liftI(sales.s)==sum[prod.(f,s) | f<-Factory]

| s <- Store]

Step 5. Constraint generation. Constraint evaluates using over-
loaded functions. Transformed to coefficient matrix.

230 <= (1a + 1d + 1g) <= 230
140 <= (1b + 1e + 1h) <= 140
300 <= (1c + 1f + 1i) <= 300

a b c d e f g h i
+----+--+-+-+-+-+-+-+-+-+-+---+---+
|230 |<=|1|0|0|1|0|0|1|0|0|<= |230|
+----+--+-+-+-+-+-+-+-+-+-+---+---+
|140 |<=|0|1|0|0|1|0|0|1|0|<= |140|
+----+--+-+-+-+-+-+-+-+-+-+---+---+
|300 |<=|0|0|1|0|0|1|0|0|1|<= |300|
+----+--+-+-+-+-+-+-+-+-+-+---+---+

Step 6. Input formatting leads to .mps file

NAME prod
ROWS
N COST
E R1
E R2
E R3
COLUMNS

a COST 2
a R1 1

...
ENDATA

Figure 6. Production Problem pipeline.

The type [Rel n] represents a boolean term. An element of
such a list is a ternary relation, bounding a polynomial from above
and below. For example: -∞ <= (3x + 2y) <= -3.

Comparisons build these relations. E.g. a constant comparison
(3x + 2y + 1) <= 7, produces: -∞ <= (3x + 2y) <= 6.

More complex, comparing two polynomials
(3x + 2y + 5) <= (y + 5z + 2) becomes
-∞ <= (3x + y - 5z) <= -3

Using this representation of terms, an abstract boolean is a list
of ternary relations. To overload the operator (&&), the two sets are
unioned, by combining elements with a common polynomial, by
“squeezing” the lower and upper bounds.

{-∞ <= (3x) <= 6} && { 4 <= (3x) <= 9} becomes
{ 4 <= (3x) <= 6 }

The full definitions for the overloaded operations in the abstract
instance step are found in Appendix A.

The production problem, like the Soduko problem, initializes to
a real array storing abstract data. Here each array cell holds a unit
polynomial over a different variable. A unit polynomial has only
one variable (with a coefficient of 1) and an additive constant of 0.

In the production problem, we illustrate constraint generation
using the last of the three constraints. Binding time analysis recog-
nizes that the sub term sales.s is completely static (it will reduce
to a constant, like 230) so it is annotated with liftI.

Each of the sums leads to a bounded polynomial. From these
bounded polynomials an array of coefficients is constructed. Note
that for each polynomial, only some of the coefficients are set to 1,
these correspond to the entries in prod for the same store (i.e. the
same column in the abstract array).

The array of coefficients is formatted as a standard .mps file.

5. Possible extensions
Additional solvers. The first and most natural extension is to
find and incorporate additional solvers. The linear-programming
solver framework can be generalized to solve problems over real or
rational numbers, or to allow non-linear constraints. We are looking
for suggestions for new kinds of solvers.

Allowing programmers to add solvers. A more useful exten-
sion would be to add language features that allow programmers
to add their own solvers. Currently the Funlogic compiler must be
hacked to add a new solver. The design principles specify the steps
necessary. To allow programmers to add solvers, each step would
have to be internalized. Currently the language is a simple call by
value language. Users write no type information at all, and every
term is given, what appears to be a simple Hindley-Milner type.

In reality, 2-stage overloaded types are actually used. To inter-
nalize the 7 steps the language would have to be much more sophis-
ticated. It would need overloading and classes, staging annotations,
and more. All this would have to accessible to the programmer.
While I believe this is possible. I have not built it, yet.

What should we search for? New solvers expand the design
principles to accommodate new ideas. The linear programming
solver is a case in point. The other solvers can return any solution
that meets the constraints. The LP solver must find a solution that
maximizes the objective function. When we first embedded the LP
solver we had to generalize the notion of what we were solving
for. This led us to add the find clause to an existential declaration.
Now one can find the First (SAT,SMT,Narrowing), or the Max or
Min (LP) solution. This led us to think about other possible ways of
describing what we should search for. We have currently added two

other find modes: Many and Abstract. We envision these being
used as design exploration tools by the programmer. They help the
programmer design his program by exploring the design space of
possible constraints.

The Abstract mode allows the user to visualize the results of
initialization. Rather than generate and find a solution that meets
the constraint. It prints out the constraint and binds the existentially
quantified variables to their initializations. This lets the program-
mer use the read-eval-print loop to visualize the results of potential
constraints (much the way we did in Figures 4, 5, and 6, which were
in fact created using the Abstract mode).

The (Many x) mode solves the constraint, and then instantiates
and prints out x under the solution. It then pauses and goes into
an interactive loop that allows the programmer to type in addi-
tional constraints. These constraints are then added to the original
ones and the process is repeated. This allows the programmer to
incrementally develop what constraints are necessary. Over or un-
der constraining problem specifications is common, and using this
mechanism allows exploration of the possibilities. Other possibili-
ties of design exploration include

• Populating large constrained data structures. Given a data
structure and a bunch of constraints one can explore questions
like: Is there a value which meets all the constraints? What does
a value look like? What if I add an additional constraint?

• Model Checking. Given a data structure and a bunch of con-
straints is it true that every solution (or model) has additional
properties.

• Test generation. Find some input data that forces a computa-
tion to go down a certain path for testing purposes.

The existential declaration allows programmers to explore these
design parameters from within the language. No need for an exter-
nal tool or analysis.

6. Related work
Funlogic embeds multiple solvers in a general purpose language.
This combination is rare. Several systems, self described as mod-
elling languages, such as AMPL [8] and GAMS, support multiple
solvers. But, they are not programming languages, just a conve-
nient notation to write down the math that describes a problem.
The solvers they support all concern minimizing or maximizing an
objective under various kinds of constraints. I know of two systems
that embed solvers in database languages, based upon Datalog, by
using the notion of “plugin” [14, 19]. But neither provides strong
scripting capability.

Recently, Kuncak et al.[16] introduced the idea of a software
synthesis procedure, where code is synthesized at compile time by
the use of a decision procedure. The synthesized code, when exe-
cuted at runtime, will provide values for existentially defined vari-
ables. They introduce the notion of a formula, a syntactic subset
of boolean valued terms, for which the decision procedure knows
how to synthesize code. In this paper we demonstrate how over-
loading can both replace the syntactic restriction with constrained
types, and broaden the class of decision procedures applicable. In
more recent work[15] they have strengthened their decision proce-
dures by extending them with a notion of symbolic evaluation of
user defined functions.

While Funlogic is a unique collection of ideas, I would be
remiss if I did not acknowledge many fine papers which strongly
influenced my thinking in its design.

The work of Daniel Jackson[11, 29] and his student Emina
Torlak[28] first opened my eyes to the fact that non-trivial speci-
fications (all of relational algebra) could be expressed in first order
logic. The thesis by Toni Mancini[18], strongly reinforced this fact.

The Curry language[9], developed by Michael Hanus and Ser-
gio Antoy was also influential. The recent paper[4] A New Com-
piler from Curry to Haskell, explained to me exactly how Curry fits
within the design principles developed in this work (though I didn’t
realize it at the time I first implemented a narrowing solver).

I first encountered the use of overloading to generate constraints
in the paper Logical Abstractions in Haskell[7] by Nancy A. Day,
John Launchbury, and Jeff Lewis. It took a while for me to real-
ize that this could be generalized from boolean constraints to con-
straints over other domains, such as numeric domains, or even alge-
braic data structures. My knowledge of how to type and implement
overloading comes mainly from the fine paper Typing Haskell in
Haskell[13] by Mark Jones.

One key element necessary to use overloading as a constraint
generation mechanism is effective initialization of existentially in-
troduced variables. Good initialization abstracts over aggregates
(allowing the user to declare one array, rather than many individ-
ual variables), and chooses good representations that minimize the
problems to be solved. My approach to initialization was strongly
influenced by the small check system[21] (which uses a type-based
system to generate all “small” values of a given type) , and by con-
versations with Emina Torlak. Emina taught me the bounding trick
for finite set initialization, and the importance of using symmetry
in initialization.

Binding time analysis was the last piece of the puzzle. Experi-
ence with MetaML[26, 27] made it possible to recognize a binding
time problem when I saw one. The two binding analyses I have ex-
perimented with include an interpreted approach based upon nor-
malization by evaluation[1, 6], and an approach based on some
work by a former student, Nathan Linger[22], which is outlined
in Appendix B. Interesting enough, a third approach[17], outlined
by Linger, performs the analysis, not by abstract interpretation, but
by reducing the problem to a boolean SMT problem. So we have
come full circle.

7. Performance
I built the system as a proof of concept, not to optimize perfor-
mance. There are lots of possibilities. Here are a few baseline tim-
ings for the programs in the paper: 4 queens a few hundredths of a
second; 8 queens in a second; 10 queens time out (the limit is 60
seconds). Rank 2 Soduko in a few hundredths of a second; Rank 3
Soduko (the normal 9x9) in about 3 seconds; Rank 4 Soduko times
out.

But, by changing the initializer for SAT, and swapping in a
specialized formula to CNF pass, a student solved rank 7 (49x49)
puzzles. Using specialized representations makes a difference, and
giving users programmers access to these is important. We leave
this to future work

8. Conclusion
The existential declaration is an expressive abstraction, bridging the
functional and logic worlds, for many different kinds of problems,
solvable by a wide variety of decision procedures. Implementing
existential declarations over a wide variety of domains requires
embedding multiple decision procedures. Fortunately, the steps in-
volved can be can be precisely described. Overloading and staging
are the key ingrediants to giving precise semantics to the embed-
ding process.

Acknowledgments
There are many people who helped me in my research. First I
would like to thank Molham Aref and Emir Pasalic who got me
started thinking about other ways to think about declarative pro-
gramming, and LogicBlox (a great place to work in Atlanta Ga.)

which partially supported this research. I would also like to thank
Jim Hook (my co-teacher) and all the class members of the Win-
ter 2011 class Mathematical Logic via Foundational Algorithms at
PSU that helped refine my thinking about how to combine logic
and functional programming. This work was also supported in part
by NSF grant 0910500.

References
[1] V. Balat and O. Danvy. Strong normalization by type-directed partial

evaluation and run-time code generation. Lecture Notes in Computer
Science, 1473:240–252, 1998. ISSN 0302-9743.

[2] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results of
the 3rd annual satisfiability modulo theories competition (SMT-comp
2007). International Journal on Artificial Intelligence Tools, 17(4):
569–606, 2008.

[3] G. M. Bierman, A. D. Gordon, C. Hritc, and D. Langwor-
thy. Semantic Subtyping with an SMT Solver. TechRe-
port MSR-TR-2010-99, Microsoft Research, Dec. 2010. URL
http://research.microsoft.com/en-us/projects/dminor/.

[4] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2:
A new compiler from curry to haskell. In H. Kuchen, edi-
tor, WFLP, volume 6816 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2011. ISBN 978-3-642-22530-7. URL
http://dx.doi.org/10.1007/978-3-642-22531-4.

[5] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-
breaking predicates for search problems. In KR, pages 148–159, 1996.

[6] O. Danvy, M. Rhiger, and K. H. Rose. Normalization by evaluation
with typed abstract syntax. J. Funct. Program, 11(6):673–680, 2001.

[7] N. A. Day, J. Launchbury, and J. Lewis. Logical abstractions in
haskell. In Proceedings of the 1999 Haskell Workshop. Utrecht Uni-
versity Department of Computer Science, Technical Report UU-CS-
1999-28, October 1999.

[8] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL – A Modeling
Language for Mathematical Programming. The Scientific Press, South
San Francisco, 1993.

[9] M. Hanus. Report on Curry (ver.0.8.2). Inst. fur Informatik, Christian-
Albrechts Universitat, .de, 2006.

[10] M. Hermenegildo and T. CLIP Group. An Automatic Documentation
Generator for (C)LP – Reference Manual. The Ciao System Documen-
tation Series–TR CLIP5/97.3, Facultad de Informática, UPM, Aug.
1997. URL http://clip.dia.fi.upm.es/Software/Ciao/.
Online at http://clip.dia.fi.upm.es/Software/Ciao/.

[11] D. Jackson. An intermediate design language and its analysis. In
Proceedings of the ACM SIGSOFT 6th International Symposium on
the Foundations of Software Engineering (FSE-98), volume 23, 6 of
Software Engineering Notes, pages 121–130, New York, Nov. 3–5
1998. ACM Press.

[12] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge, Mass., 2006.

[13] M. P. Jones. Typing Haskell in Haskell. In ACM Haskell Workshop ,
informal proceedings, Oct. 1999.

[14] D. Klabjan, R. Fourer, and J. Ma. Algebraic modeling in a deductive
database language. In 11th INFORMS Computing Society Conference,
2009.

[15] A. S. Koksal, V. Kuncak, and P. Suter. Constraints as control. In
POPL ’12, Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 151–164.
ACM, 2012.

[16] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Software syn-
thesis procedures. Communications of the ACM, 55(2):103–111,
Feb. 2012. ISSN 0001-0782 (print), 1557-7317 (electronic). doi:
http://dx.doi.org/10.1145/2076450.2076472.

[17] N. Linger and T. Sheard. Binding-time analysis for metaML via type
inference and constraint solving. In K. Jensen and A. Podelski, editors,
TACAS, volume 2988 of Lecture Notes in Computer Science, pages
266–279. Springer, 2004. ISBN 3-540-21299-X.

[18] T. Mancini. Declarative constraint modelling and specification-level
reasoning. Diploma thesis, Universita degli Studi di Roma ‘La
Sapienza’, 2004.

[19] D. Z. Molham Aref and E. Pasalic. Using optimization services in
datalog. In 11th INFORMS Computing Society Conference, 2009.

[20] M. Novak, G. Gardarin, and P. Valduriez. Flora: A functional-style
language for object and relational algebra. Lecture Notes in Computer
Science, 856:37–46, 1994. ISSN 0302-9743.

[21] C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and
Lazy SmallCheck: automatic exhaustive testing for small values.
ACM SIGPLAN Notices, 44(2):37–48, Feb. 2009. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic). doi:
http://doi.acm.org/10.1145/1543134.1411292.

[22] T. Sheard and N. Linger. Search-based binding time analysis using
type-directed pruning. In ASIA-PEPM, pages 20–31, 2002. URL
http://doi.acm.org/10.1145/568173.568176.

[23] I. Shlyakhter. Generating effective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics, 155(12):1539–1548,
2007. URL http://dx.doi.org/10.1016/j.dam.2005.10.018.

[24] G. Smolka. The definition of kernel oz. Technical report,
Saarländische Universitäts- und Landesbibliothek; Sonstige Einrich-
tungen. DFKI Deutsches Forschungszentrum für Künstliche Intelli-
genz, 1994. URL urn:nbn:de:bsz:291-scidok-37290.

[25] G. Sutcliffe and C. B. Suttner. The CADE ATP system competition.
In D. A. Basin and M. Rusinowitch, editors, IJCAR, volume 3097 of
Lecture Notes in Computer Science, pages 490–491. Springer, 2004.
ISBN 3-540-22345-2.

[26] Taha and Sheard. MetaML and multi-stage programming with explicit
annotations. TCS: Theoretical Computer Science, 248, 2000.

[27] W. Taha and T. Sheard. MetaML and multi-
stage programming with, Feb. 09 1999. URL
http://citeseer.ist.psu.edu/516106.html;
http://cse.ogi.edu/ walidt/paper-2.ps.

[28] E. Torlak and D. Jackson. Kodkod: A relational model finder. In
O. Grumberg and M. Huth, editors, TACAS, volume 4424 of Lecture
Notes in Computer Science, pages 632–647. Springer, 2007. ISBN
978-3-540-71208-4.

[29] E. Torlak, A. Prof, and D. Jackson. Thesis: A constraint
solver for software engineering: Finding models and cores
of large relational specifications., Dec. 04 2008. URL
http://stuff.mit.edu/people/emina/papers/etorlak-cv.pdf.

A. MP abstract instance functions
In this appendix are the missing functions for the abstract instance
declarations in Figures 5 and 6.

mergeP f [] ys = ys
mergeP f xs [] = xs
mergeP f ((x,n):xs)((y,m):ys)=
case compare x y of
EQ -> case (f n m) of

0 -> mergeP f xs ys
i -> (x,i):mergeP f xs ys

LT -> (x,n):
mergeP f xs ((y,m):ys)

GT -> (y,m):
mergeP f ((x,n):xs) ys

combine oper(t,b)[] = []
combine oper(t,m)((s,n):xs)| t==s = (t,oper m n): xs
combine oper(t,m)((s,n):xs)=(s,n):combine oper(t,m)xs

mergeL oper [] ys = ys
mergeL oper ((z,m):xs) ys =

mergeL oper xs (combine oper (z,m) ys)

instance NumLike (MExp Int) where
liftI n = Term [] n

(+) (Term [] a) (Term [] b) = Term [] (a+b)
(+) (Term [] a) (Term ys b) = Term ys (a+b)
(+) (Term xs a) (Term [] b) = Term xs (a+b)
(+) (Term xs a) (Term ys b)

= Term (mergeP (+) xs ys) (a+b)

instance Compare (MExp Int) [Rel Int] where
(<=) (Term [] a) (Term [] b) =

if (a <= b) then [TAUT] else [UNSAT]
(<=) (Term [] a) (Term xs b) =

[RANGE xs (Range (LtEQ(a-b)) PlusInf)]
(<=) (Term xs a) (Term [] b) =

[RANGE xs (Range MinusInf (LtEQ (b-a)))]
(<=) (Term xs a) (Term ys b) =

[RANGE (mergeP (+) xs (negPoly ys))
(Range MinusInf (LtEQ (b-a)))]

instance BoolLike [Rel Int] where
liftB True = [TAUT]
liftB False =[UNSAT]
true = [TAUT]
false = [UNSAT]
(&&) xs ys = help (sort xs) (sort ys)

where help (UNSAT:_) ys = [UNSAT]
help xs (UNSAT:_) = [UNSAT]
help (TAUT: xs) ys = help xs ys
help xs (TAUT: ys) = help xs ys
help [] ys = ys
help xs [] = xs
help (RANGE x a:xs) (RANGE y b:ys)

| x P.== y
= RANGE x (intersectRange a b):

help xs ys
help (RANGE x a:xs)(ys@(RANGE y b:_))

| x < y
= RANGE x a:(help xs ys)

help (xs@(RANGE x a:_))(RANGE y b:ys)
| x > y
= RANGE y b:(help xs ys)

instance BoolLike b =>
SetLike (BitVector b) where

create d xs =
BV d [(t,liftB(elem t xs)) | t <- tuples d]

select p (BV d xs) =
BV d [(x, liftB (p x)) | (x,b) <- xs]

proj3of3 (BV (D3 _ _ d) xs) =
BV (D1 d)

(mergeL (||)
[(z,b) | ((x,y,z),b) <- xs]
[(x,false) | x <- d])

join (BV (D2 a b) xs)(BV (D2 _ c) ys)= BV d3 ans
where d3 = D3 a b c

ans = mergeL (||)
[((a,b,c),p&&q)
| ((a,b),p) <- xs
, ((x,c),q) <- ys
, x P.== a]
[(t,false)| t <- tuples d3]

B. Staging type inference
In this section we provide further details of the staging type-
inference process discussed in Paragraph 4 of Section 4. Lets start
with a description of syntax. I keep everything very simple here.
The real language has more, but this simple version extends natu-
rally.

constants: i ::= {..., -1,0 +1, ...}
b ::= {True,False}

class library: A ::= NumLike t | BoolLike t
| Compare t t | SetLike t

types: T,t ::= Int | Bool | t -> t | x

schemes: S ::= forall xs . A => T

terms: E,f,e ::= v | f e | i | v#A | b

Each class library has a number of overloaded methods. See
Figure 3 for details. In the staging type-inference process, we will
need to compute a type from an overloaded operator and a class
library.

libType:: v -> A -> T
libType (+) (NumLike t) = t -> (t -> t)
libType liftI (NumLike t) = Int -> t
libType (==) (Compare t b) = t -> (t -> t)

instan (forall xs . A => T) = (A[ts/xs],T[ts/xs])

Where the ts in instan are fresh type variables. The staging
type-inference process is a syntax directed walk over a term in
the presence of an environment, s:: v -> S, that maps variable
names to schemes. The judgment s |- E --> (E’,T) means,
under s the term E has type T, and reconstructs to E’. The process
is strongly reminiscent of type inference in the presence of class
constraints[13] and search based binding time analysis[22].

--- LIB
s |- x#A --> (X,libType x A)

fresh t
--- INT
s |- i --> (liftI#(NumLike t) i, t)

fresh t
--- BOOL
s |- b --> (liftB#(BoolLike t) b, t)

instan(s v) --> (C,t)
--- VAR
s |- v --> (v#C v,t)

fresh w
unify dom xt
s |- x --> (x’,xt)
s |- f --> (f’,d -> r)
t = (f’ x’)
--- APP
s |- f x --> (cast xt d r)
where cast I d r = (liftI#(NumLike w) t,w)

cast B d r = (liftB#(BoolLike w) t,w)
cast n d r = (f’ x’,r)

Three points are worth making. First, in the rules INT and BOOL
every constant is lifted to an overloaded type. Second, in the rule
VAR every overloaded variable is instantiated and lifted to a fresh
type. Third, in the rule APP if an argument of an application has a
concrete type (I for Int and B for Bool), then the reconstructed
call is lifted to a fresh type.

