Model Checking with BDDs

Sets as Propositions

e Consider the universe “ABCD”

[CCA",[-p2,~p1D),.("B",[~p2,p1])
,(°C*,[p2,~p1]).("D",[p2,p1])]

e Or the universe [1,5,6,79,13]

[(L,[-p3,~p2,~p1]1),(5,[~-p3,~p2,pl])
,(6,[~-p3.p2,~p1]).(79,[~-p3.p2,p1])
,(13,[p3,~p2,~pl1])]

Consider some subsets

subset "ABCD"™ "A"
~pl /\ ~p2

subset "ABCD'" "AC"
(-p1 /\ ~p2) \/ (—pl /\ p2)

subset "ABCD"™ "*ACDB"
(-p1 /\ ~p2) \/ (pl1l /\ ~p2) \/ (—pl /\ p2)
\/ (pl /\ p2)

subset "ABCD' """
Absurd

And their BDDs

° Set (IABCD” i’
e Absurd

O)&

[(C"a™,[-p2,~p1]),.("b",[~-p2,p1]),
("c*,I[p2,~p1]).(C"d",[p2,p1])]

subset "abcd'™ 'a“

~pl /\ ~p2

[(C"a™,[-p2,~p1]),.("b",[~-p2,p1]),
("c*,I[p2,~p1]).(C"d",[p2,p1])]

subset “abcd” “ad”

(-pl1 /\ ~p2) \/
(pl /\ p2)

[(C"a”,[-p2,~p1]),.("b",[~p2,p1]),
("c",[p2,~p1]).C"d",[p2.p1D)]

subset “abcd” “adbc”

(~p1l /\ ~p2) \/
(pl /\ -p2) \/

(-p1 /\ p2) \/
(p1 7\ p2)

initial xs = zip xs (reverse (g 1))
where n = numbits (length xs)
g:: Int -> [[Prop Int]]
gm | m>n=[[1]

g n = map (LetterP n:) ys ++ map ((NotP
(LetterP n)):) ys

where ys = (g (n+l))
subset univ set = foldr acc AbsurdP univ
where acc x prop | elem x set = orOpt (get x) prop
acc X prop = prop
mapping = initial univ
get n = case lookup n mapping of
Just literals -> andL literals

Membership test

Represent an element of a set as the singleton
subset

item univ x = subset univ [x]

Then membership uses the tautology
{x} elem zs iff {x} == {x}~zs

Lift to BDDs

subsetB X y = p2b (subset X y)
itemB X y = p2b(item X y)

mem univ X XS same temp (conj
temp (subsetB univ Xs))

where temp = (1temB univ X)

A relation between two items in a set

[("a™,[~p2,~pll),

(°b*,[~-p2,p1]),
("c*,[p2,~pll),
("d*,[p2,p1D)]

R(a,b) = True
R(b,c) = True
R(c,c) = True
R(,) = False

Graph transitions

e Consider the graph and its assignment of states to
boolean formula

Recall how we represent subsets

e ul=10,1,2,3]
e subl = subset ul [0O]
* ~p0/\~pl

Subset {s2,s3}

e ul=10,1,2,3]
e sub2 = subset ul [2,3]
* (PO /A~pl)V/ (pO /\ p1)

Subset {s3}

e ul=10,1,2,3]
e sub3 = subset ul [3]
* pO/\pl

Subset {s1,s2,s3}

e ul=10,1,2,3]
e sub4 = subset ul [1,2,3]
* (*p0/\pl1)V (PO /\~p1)\V (pO/\ pl)

* Introduce new variables p2 and

p3 that mirror p0and p1 The transition

relation

propl =

(-p0 /\ ~pl /\ ~p2 /\ p3)
\/

(-pO0 /\ ~pl /\ p2 /\ ~p3)
\/

(-p0 /\ pl1 /\ ~p2 /\ ~p3)
\/

(~=p0 /\ pl1 /\ p2 /\ ~p3)
\/

(pO /\ ~pl /\ p2

\/

(-p0 /\ pl /\ p2

\/

(pO /\ pl /\ p2 /

g0=~p0 /\ ~pl aka ~p2 [\ ~p:

']

s1=~p0 /\ pl aka ~p2 /' p:

g2=p0 /\ ~pl aka p2 /\ ~p3 g3=p0 A pl aka p2 A p3

@)ﬂ /v ~pl aka ~p2 D

p3

g3=p0 A pl aka p2 A p3

As a BDD

States reachable in one step

e Let sub be a set of states
 What is reachable in one step?

e step set = propl /\ set

To take a step
conjoin

2N ~p
S

e subl={s0O}

g0=-~p0 [\ ~pl aka ~p2 N\ ~p3
gl=~p0 /A pl aka ~p2 /\ p3

23=p0 A\ pl aka p2 M p3

Note the paths to
True

There are two of
them

Each corresponds
to one next state

The values of p2
and p3 tell what
states {s1,s2}

Consider the solutions

[[(O,False),(1,False),(2,False),(3,True)],
[(O,False),(1,False),(2,True),(3,False)]]

By throwing away the assignments to pO and p1, and be
renaming p2 to p0, and p3 to p1, we get to solutions

~p0/\ pl

p0 /\ ~pl | |
0=-10 /\ ~pl aka ~p2 f\ ~p3

Cooresponding H‘

to the states @ P

{s1,s2}

g2=p0 /\ ~pl aka p2 /\ ~p3 g3=p0 A pl aka p2 A p3

Start at the set {s2,s3}

 [[(O,True),(1,False),(2,True),(3,False)]

. ’:(O,True),(1,True),(2,True),(3,True)]]

 p0O/\~pl

Start at the subset {s1,s2,s3}

PO \/ (PO /\ pl1) \/ (pO /\ ~pl) \/ (~pO0 /\ ~-pl)

e This corresponds to the BDD

 Which is every state except s2, which is exactly
what can be reached from {s1,s2,s3}

g0=-p0 "\ ~pl aka ~p2 " ~p:

g2=p0 /\ ~pl aka p2 /\ ~p3

g3=p0 A pl aka p2 A p3

To take multiple steps

e Compute the states reachable in 1 step
e Union in the starting states
 And repeat

£0=-p0 \ ~pl

e subl={s0} S
e *LectureBDD> pnG (p2b sub1l) -

e *LectureBDD> pnG (p2b (step subl)) 200 Aol =p0 fpl
e *LectureBDD> pnG (p2b (step (step sub1l)))

e *LectureBDD> pnG (p2b (step (step (step sub1))))

e sub3 = {s3}
« *LectureBDD> pnG (p2b sub3)
« *LectureBDD> pnG (p2b (step sub3l))

	Model Checking with BDDs
	Sets as Propositions
	Consider some subsets
	And their BDDs
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Membership test
	Lift to BDDs
	A relation between two items in a set
	Graph transitions
	Recall how we represent subsets
	Subset {s2,s3}
	Subset {s3}
	Subset {s1,s2,s3}
	The transition relation
	As a BDD
	States reachable in one step
	To take a step conjoin
	Slide Number 21
	Consider the solutions
	Start at the set {s2,s3}
	Start at the subset {s1,s2,s3}
	p0 \/ (p0 /\ p1) \/ (p0 /\ ~p1) \/ (~p0 /\ ~p1)
	To take multiple steps
	
	

