
Consistency and Completeness
of Tableau

Consistency

• Every term proveable by the tableau method
is a tautology.

• Build the tree for ~p, show that every branch
is closed

• Then the starting term p is a tautology

Build a tableau by the rules
• If it is closed, then it must be a tautology

tabTree [] tree = tree
tabTree (x:xs) tree =
 case discrim x of
 Lit p -> tabTree xs tree
 Alpha a b -> tabTree (a:b:xs)
 (extendTree (double a b) tree)
 Beta a b -> extendTree
 (Branch
 (tabTree (a:xs)(single a))
 (tabTree (b:xs) (single b)))
 tree

Branches in a Tableau Tree

• A tableau tree has a number of branches
• Let v be an assigment to all the variables

mentioned any where in the tree.
• A branch is defined to be True under v, if every

term on the branch is True under v.
• A tableau is true under v, if some branch of its

tree is true under v

Property of algorithm
• Note that in every case, the tree grows by extending the existing tree
• -- invariant: elements of the list are in
• -- the tree but not yet "used"

tabTree [] tree = tree
tabTree (x:xs) tree =
 case discrim x of
 Lit p -> tabTree xs tree
 Alpha a b -> tabTree (a:b:xs)
 (extendTree (double a b) tree)
 Beta a b -> extendTree
 (Branch
 (tabTree (a:xs)(single a))
 (tabTree (b:xs) (single b)))
 tree

Strategy

• Show that if a tree T is true, and it is extended
by the rules of the algorithm, then the new
tree is true too!

• Recall a tree is only extended by examining
some node already in the tree.

• Thus that node must already be true!

Where is the tree extended?

• Recall the tree is true, so at least one of its
paths is true, call this path A

• The tree is extended along some path, call it B.
– If B is distinct from A, then the new node does not

affect path A, and so the whole Tree is still True.
– If B is the same path as A then we must conside

the two cases that are possible. The Alpha and
Beta cases

Alpha case
root

Alpha x y

end

root

Alpha x y

end

x

y

We know (Alpha x y) is
True, so by prop1 both
x and y are true, so the
the new path on the
extended tree is also
True.

Beta case
root

Beta x y

end

root

Beta x y

end

x y

We know (Beta x y) is
True, so by prop1,
either x or y are true,
There are 2 new paths
on the extended tree.
One of which must be
true so the tree
remains True.

By induction on the number of steps

• If the initial tree node is True, then the tree
returned will also be True.

• A closed tableau cannot be true (since every path
has at least one conjugate pair), thus the original
root node must be unsatisfiable.

• But the original node was ~p
solveT p =
 (tabTree [NotP p]
 (single (NotP p)))

• So p must be a tautology.

Completeness

• Here we must show that every tautology has a
a closed tableau tree

• And that the algorithm will find it.
• This is about being sure we have enough rules

to complete a closed tableau for every kind of
formula.

• If X is a tautology, will every complete tableau
for ~X close?

Definition of complete path

• Consider a path in a tableau: P = p1 p2 .. pn

• We say P is complete, if for every pi,
– if pi is an (Alpha x y) then both x and y are in the

path
– If pi is a (Beta x y), then either x is in P or y is in P

• completed, if every path is either closed or
complete

• The algorithm always constructs complete
paths

Strategy

• Let T be a tableau
• If T is an open completed Tableau

– i.e. T is completed, but at least one path is still
open

• Then the root (or origin) of T is satisfiable. I.e.
we can extend the open path (in fact we can extend

all the open paths) to keep the root satisfiable.

Theorem

• Let P be an open complete path in T
• Let S be the set of terms in the path P
• The the set S satisfies the 3 following

conditions for every (Alpha, Beta term) in S.
– No signed variable and its conjugate are in S
– If (Alpha x y) in S, then x in S and y in S
– If (Beta x y) is in S, then either X in S or y in S

Hintikka Sets

• Any set obeying the 3 rules
– No signed variable and its conjugate are in S
– If (Alpha x y) in S, then x in S and y in S
– If (Beta x y) is in S, then either X in S or y in S

• Is called a Hintikka set.

Hintikka’s lemma

• Let S be a Hintikka set, then there exists and
interpretation (assignment to its variables) in
which every set in S is True.

• Start by constructing the following assignment for
every variable v that appears in the set.
1. If v in S, then assign v True
2. If ~v in S then assign v False
3. Otherwise give it any assignment you want (we will

choose True for concreteness)

Comments

• 1 and 2 are not inconsistent, because S is a
Hintikka set, and by definitions both v and ~v
cannot be in S

• We will now show that every p in S is true
under this assignment

• We do this by induction over the structure of
p

Case v or ~v

• If the term is a varaible or a negated variable
then it is clearly True, since we designed the
assignment v to be True in this case.

Other cases

• If p is ImpliesP, AndP, or OrP, or a Negation of
one of these, then it is either an (Alpha x y) or
a (Beta x y)

• So by structural induction both x and y
evaluate to True under the assignment v

(Alpha x y) Case

• Because S is a Hintikka set, then both x and y
are in S, and by induction x and y evaluate to
True under v

• So by the structure of discrim (there are three
cases)
– discrim (AndP x y) = Alpha x y
– discrim (NotP (OrP x y)) = Alpha (NotP x) (NotP y)
– discrim (NotP (ImpliesP x y)) = Alpha x (NotP y)

• (Alpha x y) must also evaluate to True by the
definition of Hintikka set.

(Beta x y) Case

• Because S is a Hintikka set, then either x or y
are in S, and by induction the one in S must
evaluate to True under v

• So by the structure of discrim (there are three
cases)
– discrim (OrP x y) = Beta x y
– discrim (ImpliesP x y) = Beta (NotP x) y
– discrim (NotP (AndP x y)) = Beta (NotP x) (NotP y)

• (Beta x y) must also evaluate to True by the
definition of Hintikka set.

Completeness Theorem

• If X is a tautology then every tableau rooted with
~X must close.

• Suppose T is a complete tableau rooted at ~X.
• If T is open, then by Hinitkka’s lemma we can find

an assignment where ~X is satisfiable, that means
X cannot be a tautology since there is an
assignment that makes ~X True.

• Thus if X is a tautology, then the tableau for X
must close.

	Consistency and Completeness of Tableau
	Consistency
	Build a tableau by the rules
	Branches in a Tableau Tree
	Property of algorithm
	Strategy
	Where is the tree extended?
	Alpha case
	Beta case
	By induction on the number of steps
	Completeness
	Definition of complete path
	Strategy
	Theorem
	Hintikka Sets
	Hintikka’s lemma
	Comments
	Case v or ~v
	Other cases
	(Alpha x y) Case
	(Beta x y) Case
	Completeness Theorem

