Consistency and Completeness of Tableau
Consistency

• Every term proveable by the tableau method is a tautology.

• Build the tree for ~p, show that every branch is closed

• Then the starting term p is a tautology
Build a tableau by the rules

- If it is closed, then it must be a tautology

```haskell
tabTree [] tree = tree
tabTree (x:xs) tree =
    case discrim x of
        Lit p -> tabTree xs tree
        Alpha a b -> tabTree (a:b:xs)
            (extendTree (double a b) tree)
        Beta a b -> extendTree
            (Branch
                (tabTree (a:xs) (single a))
                (tabTree (b:xs) (single b)))
    tree
```
Branches in a Tableau Tree

• A tableau tree has a number of branches
• Let \(v \) be an assignment to all the variables mentioned anywhere in the tree.
• A branch is defined to be True under \(v \), if every term on the branch is True under \(v \).
• A tableau is true under \(v \), if some branch of its tree is true under \(v \).
Property of algorithm

- Note that in every case, the tree grows by extending the existing tree
- -- invariant: elements of the list are in
- -- the tree but not yet "used"

```haskell
tabTree [] tree = tree

tabTree (x:xs) tree =
  case discrim x of
    Lit p -> tabTree xs tree
    Alpha a b -> tabTree (a:b:xs)
      (extendTree (double a b) tree)
    Beta a b -> extendTree
      (Branch
        (tabTree (a:xs) (single a))
        (tabTree (b:xs) (single b)))
  tree
```
Strategy

• Show that if a tree T is true, and it is extended by the rules of the algorithm, then the new tree is true too!

• Recall a tree is only extended by examining some node already in the tree.

• Thus that node must already be true!
Where is the tree extended?

• Recall the tree is true, so at least one of its paths is true, call this path A

• The tree is extended along some path, call it B.
 – If B is distinct from A, then the new node does not affect path A, and so the whole Tree is still True.
 – If B is the same path as A then we must consider the two cases that are possible. The Alpha and Beta cases
We know \((\text{Alpha } x \ y)\) is True, so by prop1 both \(x\) and \(y\) are true, so the new path on the extended tree is also True.
We know \((\text{Beta } x \ y)\) is True, so by prop1, either \(x\) or \(y\) are true, There are 2 new paths on the extended tree. One of which must be true so the tree remains True.
By induction on the number of steps

• If the initial tree node is True, then the tree returned will also be True.
• A closed tableau cannot be true (since every path has at least one conjugate pair), thus the original root node must be unsatisfiable.
• But the original node was \(\sim p \)

 \[
 \text{solveT } p =
 \]

 \[
 (\text{tabTree } \text{[NotP } p])
 \]

 \[
 \text{(single } (\text{NotP } p))
 \]

• So \(p \) must be a tautology.
Completeness

• Here we must show that every tautology has a closed tableau tree
• And that the algorithm will find it.
• This is about being sure we have enough rules to complete a closed tableau for every kind of formula.

• If X is a tautology, will every complete tableau for \(\sim X \) close?
Definition of complete path

• Consider a path in a tableau: \(P = p_1 \ p_2 \ldots \ p_n \)
• We say \(P \) is complete, if for every \(p_i \),
 – if \(p_i \) is an (Alpha x y) then both x and y are in the path
 – If \(p_i \) is a (Beta x y), then either x is in \(P \) or y is in \(P \)
• \textit{completed}, if every path is either closed or complete
• The algorithm always constructs complete paths
Strategy

- Let T be a tableau.
- If T is an open completed Tableau
 - i.e. T is completed, but at least one path is still open
- Then the root (or origin) of T is satisfiable. I.e. we can extend the open path (in fact we can extend all the open paths) to keep the root satisfiable.
Theorem

- Let P be an open complete path in T
- Let S be the set of terms in the path P
- The set S satisfies the 3 following conditions for every $(\text{Alpha, Beta term})$ in S.
 - No signed variable and its conjugate are in S
 - If $(\text{Alpha } x \ y)$ is in S, then x in S and y in S
 - If $(\text{Beta } x \ y)$ is in S, then either X in S or y in S
Hintikka Sets

• Any set obeying the 3 rules
 – No signed variable and its conjugate are in S
 – If (Alpha x y) in S, then x in S and y in S
 – If (Beta x y) is in S, then either X in S or y in S
• Is called a Hintikka set.
Hintikka’s lemma

• Let S be a Hintikka set, then there exists and interpretation (assignment to its variables) in which every set in S is True.

• Start by constructing the following assignment for every variable v that appears in the set.
 1. If $v \in S$, then assign v True
 2. If $\neg v \in S$ then assign v False
 3. Otherwise give it any assignment you want (we will choose True for concreteness)
 Comments

• 1 and 2 are not inconsistent, because S is a Hintikka set, and by definitions both v and $\sim v$ cannot be in S

• We will now show that every p in S is true under this assignment

• We do this by induction over the structure of p
Case \(v \) or \(\sim v \)

- If the term is a variable or a negated variable then it is clearly True, since we designed the assignment \(v \) to be True in this case.
Other cases

• If \(p \) is \(\text{ImpliesP} \), \(\text{AndP} \), or \(\text{OrP} \), or a Negation of one of these, then it is either an \((\text{Alpha} \ x \ y) \) or a \((\text{Beta} \ x \ y) \)

• So by structural induction both \(x \) and \(y \) evaluate to True under the assignment \(v \)
(Alpha x y) Case

• Because S is a Hintikka set, then both x and y are in S, and by induction x and y evaluate to True under ν

• So by the structure of discrim (there are three cases)
 – discrim (AndP x y) = Alpha x y
 – discrim (NotP (OrP x y)) = Alpha (NotP x) (NotP y)
 – discrim (NotP (ImpliesP x y)) = Alpha x (NotP y)

• (Alpha x y) must also evaluate to True by the definition of Hintikka set.
(Beta x y) Case

• Because S is a Hintikka set, then either x or y are in S, and by induction the one in S must evaluate to True under v

• So by the structure of discrim (there are three cases)
 – discrim (OrP x y) = Beta x y
 – discrim (ImpliesP x y) = Beta (NotP x) y
 – discrim (NotP (AndP x y)) = Beta (NotP x) (NotP y)

• (Beta x y) must also evaluate to True by the definition of Hintikka set.
Completeness Theorem

• If X is a tautology then every tableau rooted with \(\sim X \) must close.

• Suppose T is a complete tableau rooted at \(\sim X \).
 • If T is open, then by Hinitkka’s lemma we can find an assignment where \(\sim X \) is satisfiable, that means X cannot be a tautology since there is an assignment that makes \(\sim X \) True.
 • Thus if X is a tautology, then the tableau for X must close.