
Consistency and Completeness 
of Tableau 



Consistency 

• Every term proveable by the tableau method 
is a tautology. 
 

• Build the tree for ~p, show that every branch 
is closed 
 

• Then the starting term p is a tautology 



Build a tableau by the rules 
• If it is closed, then it must be a tautology 

 
tabTree [] tree = tree 
tabTree (x:xs) tree = 
  case discrim x of 
    Lit p -> tabTree xs tree 
    Alpha a b -> tabTree (a:b:xs)  
                  (extendTree (double a b) tree) 
    Beta a b -> extendTree  
                  (Branch  
                    (tabTree (a:xs)(single a)) 
                    (tabTree (b:xs) (single b))) 
                  tree 



Branches in a Tableau Tree 

• A tableau tree has a number of branches 
• Let v be an assigment to all the variables 

mentioned any where in the tree. 
• A branch is defined to be True under v, if every 

term on the branch is True under v. 
• A tableau is true under v,  if some branch of its 

tree is true under v 



Property of algorithm 
• Note that in every case, the tree grows by extending the existing tree 
• -- invariant: elements of the list are in  
• -- the tree but not yet "used"  

 
tabTree [] tree = tree 
tabTree (x:xs) tree = 
  case discrim x of 
    Lit p -> tabTree xs tree 
    Alpha a b -> tabTree (a:b:xs)  
                  (extendTree (double a b) tree) 
    Beta a b -> extendTree  
                  (Branch  
                    (tabTree (a:xs)(single a)) 
                    (tabTree (b:xs) (single b))) 
                  tree 

 



Strategy 

• Show that if a tree T is true, and it is extended 
by the rules of the algorithm, then the new 
tree is true too! 

• Recall a tree is only extended by examining 
some node already in the tree. 

• Thus that node must already be true! 



Where is the tree extended? 

• Recall the tree is true, so at least one of its 
paths is true, call this path A 

• The tree is extended along some path, call it B. 
– If B is distinct from A, then the new node does not 

affect path A, and so the whole Tree is still True. 
– If B is the same path as A then we must conside 

the two cases that are possible. The Alpha and 
Beta cases 



Alpha case 
root 

Alpha  x  y 

end 

root 

Alpha  x  y 

end 

x 

y 

We know (Alpha x y) is 
True, so by prop1 both 
x and y are true, so the 
the new path on the 
extended tree is also 
True. 



Beta case 
root 

Beta  x  y 

end 

root 

Beta  x  y 

end 

x y 

We know (Beta x y) is 
True, so by prop1, 
either  x  or y are true, 
There are 2 new paths 
on the extended tree. 
One of which must be 
true so the tree 
remains True. 



By induction on the number of steps 

• If the initial tree node  is True, then the tree 
returned will also be True. 

• A closed tableau cannot be true (since every path 
has at least one conjugate pair), thus the original 
root node must be unsatisfiable. 

• But the original node was ~p 
solveT p =  
   (tabTree [NotP p]  
            (single (NotP p))) 

• So   p    must be a tautology. 



Completeness 

• Here we must show that every tautology has a 
a closed tableau tree 

• And that the algorithm will find it. 
• This is about being sure we have enough rules 

to complete a closed tableau for every kind of 
formula. 
 

• If X is a tautology,  will every complete tableau 
for ~X close? 



Definition of complete path 

• Consider a path in a tableau:  P = p1 p2 .. pn 

• We say P is complete, if for every pi,  
– if pi is an (Alpha x y) then both x and y are in the 

path 
– If pi is a (Beta x y), then either x is in P or y is in P 

• completed, if every path is either closed or 
complete 

• The algorithm always constructs complete 
paths 



Strategy 

• Let T be a tableau 
• If T is an open completed Tableau 

– i.e.  T is completed, but at least one path is still 
open 

• Then the root (or origin) of T is satisfiable. I.e. 
we can extend the open path (in fact we can extend 

all the open paths) to keep the root satisfiable. 



Theorem 

• Let P be an open complete path in T 
• Let S be the set of terms in the path P 
• The the set S satisfies the 3 following 

conditions for every (Alpha, Beta term) in S. 
– No signed variable and its conjugate are in S 
– If (Alpha x y) in S, then x in S and y in S 
– If (Beta x y) is in S, then either X in S or y in S 



Hintikka Sets 

• Any set obeying the 3 rules 
– No signed variable and its conjugate are in S 
– If (Alpha x y) in S, then x in S and y in S 
– If (Beta x y) is in S, then either X in S or y in S 

• Is called a Hintikka set. 



Hintikka’s lemma 

• Let S be a Hintikka set, then there exists and 
interpretation (assignment to its variables) in 
which every set in S is True. 
 

• Start by constructing the following assignment for 
every variable v that appears in the set. 
1. If  v in S, then assign v True 
2. If ~v in S then assign v False 
3. Otherwise give it any assignment you want (we will 

choose True for concreteness) 



Comments 

• 1 and 2 are not inconsistent, because S is a 
Hintikka set, and by definitions both v and ~v 
cannot be in S 
 

• We will now show that every p in S is true 
under this assignment 

• We do this by induction over the structure of 
p 



Case v or ~v 

• If the term is a varaible or a negated variable 
then it is clearly True, since we designed the 
assignment v to be True in this case. 



Other cases 

• If p is  ImpliesP, AndP, or OrP, or a Negation of 
one of these, then it is either an (Alpha x y) or 
a (Beta x y) 

• So by structural induction both x and y 
evaluate to True under the assignment v 



(Alpha x y) Case 

• Because S is a Hintikka set, then both x and y 
are in S, and by induction x and y evaluate to 
True under  v 

• So by the structure of discrim (there are three 
cases)  
– discrim (AndP x y) = Alpha x y 
– discrim (NotP (OrP x y)) = Alpha (NotP x)  (NotP y) 
– discrim (NotP (ImpliesP x y)) = Alpha x (NotP y) 

 

• (Alpha x y) must also evaluate to True by the 
definition of Hintikka set. 



(Beta x y) Case 

• Because S is a Hintikka set, then either x  or y 
are in S, and by induction the one in S must 
evaluate to True under  v 

• So by the structure of discrim (there are three 
cases)  
– discrim (OrP x y) = Beta x y 
– discrim (ImpliesP x y) = Beta (NotP x) y 
– discrim (NotP (AndP x y)) = Beta (NotP x) (NotP y) 

• (Beta  x y) must also evaluate to True by the 
definition of Hintikka set. 



Completeness Theorem 

• If X is a tautology then every tableau rooted with 
~X must close. 
 

• Suppose T is a complete tableau rooted at ~X. 
• If T is open, then by Hinitkka’s lemma we can find 

an assignment where ~X is satisfiable, that means 
X cannot be a tautology since there is an 
assignment that makes ~X  True. 

• Thus if X is a tautology, then the tableau for X 
must close. 
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