
Proof Systems

Lecture 3
Logic and Programming Languages

Proof system

• A proof system is a formalized system for proving
things.

• Most systems have several components
1. A set of Axioms. Things that are known to be true

without any work
2. A set if inference rules for deriving larger true

statements from smaller true statements
3. A set of assumptions from which to work

1. In a mechanized logic, a proof is a data structure
that can be checked by a machine

Consistency, completeness, normal
forms

• Consistency
– A system is consistent if falsehood is not provable

(from the empty set of assumptions)
– A system is complete if every theorem is provable

from the inference rules of the logic
– A Normal Form exists of there exists a unique

smallest proof for every theorem, and other
proofs of the same theorem “reduce” to this
proof.

Natural Deduction

• A style of proof with several elements that
have become widely used
1. Introduction rules
2. Elimination rules
3. Hypothetical judgements

1. Reasoning from assumptions

1. Proofs are represented by a tree of “true
statements” rooted at the bottom.

Proof trees
• A proof tree has several parts

1. A statement of what is proven (the root). Drawn below the line
2. A set of sub trees that represent proofs of the required

components. Drawn above the line
3. A name for the inference rule used. Draw to the left of the line.
4. A set of premises. Drawn in brackets

[p0 /\ p1]
----------- /\e2
 p1 [p2]
------------------------ /\i
 p1 /\ p2
---------------------------- ~~i
 ~~(p1 /\ p2)

Introduction rules

• For each connective of the logic, there is an
introduction rule, where the root (below the line)
has that connective has its outermost form.

Elimination rules

• For each connective there is a rule that tells
how to “consume” a formula with that
connective to prove something else. Here the
formula with that connective is above the line.

Hypothetical Judgements

• Somethings can be proven using a sort of
conditional reasoning.

• We need a way to “temporarily” assume a new
condition, and then cut of this assumption when
we are done.
– Assume some formula are true
– Infer other things follow from these assumptions

• These are consequences of the assumptions

Natural deduction by the rules

• We will look at each connective, and then
study both the introduction and elimination
rules for it.

And

Or

Not

Implies

Semantics

• The statement below the line is a
consequence of the premises, and if it is in a
box, the assumption of the box.

• Natural deduction works by maintaining this
invariant

• Every step keeps the invariant true

Natural Deduction as a mechanized proof system.

data NatDed n
 = Premise (Prop n)
 | AndI (NatDed n) (NatDed n)
 | AndE1 (NatDed n)
 | AndE2 (NatDed n)
 | Neg2I (NatDed n)
 | Neg2E (NatDed n)
 | ImplyI (Prop n) (NatDed n)
 | ImplyE (NatDed n) (NatDed n)
 | OrI1 (NatDed n) (Prop n)
 | OrI2 (Prop n) (NatDed n)
 | OrE (NatDed n) (NatDed n) (NatDed n)
 | AbsurdE (NatDed n) (Prop n)
 | AbsurdI (NatDed n) (NatDed n)
 | NegI (Prop n) (NatDed n)

Using NatDed

• Building a term of type NatDed is a tree-like
structure

• This tree might be a proof tree. If it maintains
the invariant.

• A computer program can “check” if that is the
case.

Constructing proof trees

• Constructing proof trees is a lot like
programming.

• You are given some premises. These are input to
the checker.

• You must build a NatDed data structure that
relies only on the given premises.

• Building this tree is a lot like programming. You
must build it out if the constructors of NatDed in
such a way that the checker will succeed.

Representing the Premises as Data

• data Sequent n = Seq [Prop n] (NatDed n)

Difficulties

• One must think to build a proof tree that will
check.

• What pieces do you have?
– What do they prove?

• What other pieces can you make?
• How can you put them together.
• Sometimes working bottom up helps.
• Mechanized help is useful.

Strategy

• Construct a term.
• Name it.
• Let the system check and print it.
• Does it prove what you expect?
• Did the check complain?
• Make some more terms
• Put them together.

Gentzen style Proofs

• In a Gentzen style proof, we build a tree of
hypothetical judgments, instead of a tree of
true statements.

• Here the set of assumptions (hypotheses,
premises) is an explicit part of the proof.

• a |- a ∧ T

Gentzen approach

• Here we manipulate both the term to the right
of the turnstile (|-) and the premises to the
left of the turnstile.

• This approach is called the sequent calculus

The sequent calculus

• The rules are broken into 4 cases.
• Some of the cases (the last 2) are broken into

left and right variants
• The cases

– Axiom
– Cut
– Logical rules
– Structural rules

Axiom and Cut

Logical Rules

Structural Rules

Intuition

• Logical rules introduce new formula either on
the left or the right. They maintain a logical
invariant just like the Natural Deduction rules.
– What is the invariant?

• Structural rules manipulate the formula
regardless of the shape or connective that the
formula have.

Intuiton 2

• Think of the rules as instructions for
constructing a proof.

• Some of the instructions are ambiguous.
There may be many ways to follow them

• Next time we will study automated methods
for finding a proof.

	Proof Systems
	Proof system
	Consistency, completeness, normal forms
	Natural Deduction
	Proof trees
	Introduction rules
	Elimination rules
	Hypothetical Judgements
	Natural deduction by the rules
	And
	Or
	Not
	Implies
	Semantics
	Natural Deduction as a mechanized proof system.
	Using NatDed
	Constructing proof trees
	Representing the Premises as Data
	Difficulties
	Strategy
	Gentzen style Proofs
	Gentzen approach
	The sequent calculus
	Axiom and Cut
	Logical Rules
	Structural Rules
	Intuition
	Intuiton 2

