Proof Systems

Lecture 3 Logic and Programming Languages

Proof system

- A proof system is a formalized system for proving things.
- Most systems have several components
 - 1. A set of Axioms. Things that are known to be true without any work
 - 2. A set if inference rules for deriving larger true statements from smaller true statements
 - 3. A set of assumptions from which to work
- 1. In a mechanized logic, a proof is a data structure that can be checked by a machine

Consistency, completeness, normal forms

- Consistency
 - A system is consistent if falsehood is not provable (from the empty set of assumptions)
 - A system is complete if every theorem is provable from the inference rules of the logic
 - A Normal Form exists of there exists a unique smallest proof for every theorem, and other proofs of the same theorem "reduce" to this proof.

Natural Deduction

- A style of proof with several elements that have become widely used
 - 1. Introduction rules
 - 2. Elimination rules
 - 3. Hypothetical judgements
 - 1. Reasoning from assumptions
- 1. Proofs are represented by a tree of "true statements" rooted at the bottom.

Proof trees

- A proof tree has several parts
 - 1. A statement of what is proven (the root). Drawn below the line
 - 2. A set of sub trees that represent proofs of the required components. Drawn above the line
 - 3. A name for the inference rule used. Draw to the left of the line.
 - 4. A set of premises. Drawn in brackets

Introduction rules

 For each connective of the logic, there is an introduction rule, where the root (below the line) has that connective has its outermost form.

Elimination rules

 For each connective there is a rule that tells how to "consume" a formula with that connective to prove something else. Here the formula with that connective is above the line.

$$\frac{A \wedge B}{A} (\wedge E_1) \qquad \frac{\neg \neg A}{A} (\neg \neg E) \qquad \frac{A A \rightarrow B}{B} (\rightarrow E)$$

Hypothetical Judgements

- Somethings can be proven using a sort of conditional reasoning.
- We need a way to "temporarily" assume a new condition, and then cut of this assumption when we are done.
 - Assume some formula are true
 - Infer other things follow from these assumptions
 - These are consequences of the assumptions

$$\begin{array}{c}
A\\
\vdots\\
B\\
\hline
A\rightarrow B
\end{array}$$
($\wedge I$)

Natural deduction by the rules

• We will look at each connective, and then study both the introduction and elimination rules for it.

And

Or

Not

Semantics

- The statement below the line is a consequence of the premises, and if it is in a box, the assumption of the box.
- Natural deduction works by maintaining this invariant
- Every step keeps the invariant true

Natural Deduction as a mechanized proof system.

```
data NatDed n
```

= Premise (Prop n)

```
AndI (NatDed n) (NatDed n)
```

AndE1 (NatDed n)

AndE2 (NatDed n)

Neg2I (NatDed n)

Neg2E (NatDed n)

```
ImplyI (Prop n) (NatDed n)
```

```
ImplyE (NatDed n) (NatDed n)
```

```
OrI1 (NatDed n) (Prop n)
```

```
OrI2 (Prop n) (NatDed n)
```

```
OrE (NatDed n) (NatDed n) (NatDed n)
```

```
AbsurdE (NatDed n) (Prop n)
```

```
AbsurdI (NatDed n) (NatDed n)
```

```
NegI (Prop n) (NatDed n)
```

Using NatDed

- Building a term of type NatDed is a tree-like structure
- This tree might be a proof tree. If it maintains the invariant.
- A computer program can "check" if that is the case.

Constructing proof trees

- Constructing proof trees is a lot like programming.
- You are given some premises. These are input to the checker.
- You must build a NatDed data structure that relies only on the given premises.
- Building this tree is a lot like programming. You must build it out if the constructors of NatDed in such a way that the checker will succeed.

Representing the Premises as Data

data Sequent n = Seq [Prop n] (NatDed n)

Difficulties

- One must think to build a proof tree that will check.
- What pieces do you have?
 - What do they prove?
- What other pieces can you make?
- How can you put them together.
- Sometimes working bottom up helps.
- Mechanized help is useful.

Strategy

- Construct a term.
- Name it.
- Let the system check and print it.
- Does it prove what you expect?
- Did the check complain?
- Make some more terms
- Put them together.

Gentzen style Proofs

- In a Gentzen style proof, we build a tree of hypothetical judgments, instead of a tree of true statements.
- Here the set of assumptions (hypotheses, premises) is an explicit part of the proof.

• a |- a ∧ T

Gentzen approach

- Here we manipulate both the term to the right of the turnstile (|-) and the premises to the left of the turnstile.
- This approach is called the sequent calculus

The sequent calculus

- The rules are broken into 4 cases.
- Some of the cases (the last 2) are broken into left and right variants
- The cases
 - Axiom
 - Cut
 - Logical rules
 - Structural rules

Axiom and Cut

Cut:

$$\frac{1}{A \vdash A} \quad (I) \qquad \qquad \frac{\Gamma \vdash \Delta, A \qquad A, \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi} \quad (Cut)$$

Logical Rules

Left logical rules:

Right logical rules:

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \land B \vdash \Delta} (\land L_{1}) \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \lor B, \Delta} (\lor R_{1})$$

$$\frac{\Gamma, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} (\land L_{2}) \qquad \frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} (\lor R_{2})$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \Sigma, A \lor B \vdash \Delta, \Pi} (\lor L) \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma, \Sigma \vdash A \land B, \Delta, \Pi} (\land R)$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, \Sigma, A \to B \vdash \Delta, \Pi} (\to L) \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} (\to R)$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} (\neg L) \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash \neg A, \Delta} (\neg R)$$

Structural Rules

Left structural rules:

Right structural rules:

$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} (WL)$	$\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta} (WR)$
$\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} (CL)$	$\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta} (CR)$
$\frac{\Gamma_1, A, B, \Gamma_2 \vdash \Delta}{\Gamma_1, B, A, \Gamma_2 \vdash \Delta} (PL)$	$\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2} (PR)$

Intuition

 Logical rules introduce new formula either on the left or the right. They maintain a logical invariant just like the Natural Deduction rules.

– What is the invariant?

• Structural rules manipulate the formula regardless of the shape or connective that the formula have.

Intuiton 2

- Think of the rules as instructions for constructing a proof.
- Some of the instructions are ambiguous. There may be many ways to follow them
- Next time we will study automated methods for finding a proof.