
Proof Systems 

Lecture 3 
Logic and Programming Languages 



Proof system 

• A proof system is a formalized system for proving 
things. 

• Most systems have several components 
1. A set of Axioms. Things that are known to be true 

without any work 
2. A set if inference rules for deriving larger true 

statements from smaller true statements 
3. A set of assumptions from which to work 

1. In a mechanized logic, a proof is a data structure 
that can be checked by a machine 



Consistency, completeness, normal 
forms 

• Consistency 
– A system is consistent if falsehood is not provable 

(from the empty set of assumptions) 
– A system is complete if every theorem is provable 

from the inference rules of the logic 
– A Normal  Form exists of there exists a unique 

smallest proof  for every theorem, and other 
proofs of the same theorem “reduce” to this 
proof. 



Natural Deduction 

• A style of proof with several elements that 
have become widely used 
1. Introduction rules 
2. Elimination rules 
3. Hypothetical judgements 

1. Reasoning from assumptions 
 

1. Proofs are represented by a tree of “true 
statements” rooted at the bottom. 



Proof trees 
• A proof tree has several  parts 

1. A statement of what is  proven (the root). Drawn below the line 
2. A set of sub trees that represent proofs of the required 

components. Drawn above the line 
3. A name for the inference rule used. Draw to the left of the line. 
4. A set of premises. Drawn in brackets 

 
[p0 /\ p1]          
----------- /\e2     
    p1              [p2] 
------------------------ /\i 
        p1 /\ p2 
---------------------------- ~~i 
        ~~(p1 /\ p2) 



Introduction rules 

• For each connective of the logic, there is an 
introduction rule, where the root (below the line) 
has that connective has its outermost form. 



Elimination rules 

• For each connective there is a rule that tells 
how to “consume” a formula with that 
connective to prove something else. Here the 
formula with that connective is above the line. 



Hypothetical Judgements 

• Somethings can be proven using a sort of 
conditional reasoning. 

• We need a way to “temporarily” assume a new 
condition, and then cut of this assumption when 
we are done. 
– Assume some formula are true 
– Infer other things follow from these assumptions 

• These are consequences of the assumptions 



Natural deduction by the rules 

• We will look at each connective, and then 
study both the introduction and elimination 
rules for it. 



And 



Or 



Not 



Implies 



Semantics 

• The statement below the line is a 
consequence of the premises, and if it is in a 
box, the assumption of the box. 

• Natural deduction works by maintaining this 
invariant 

• Every step keeps the invariant true 



Natural Deduction as a mechanized proof system. 

data NatDed n  
  = Premise (Prop n) 
  | AndI (NatDed n) (NatDed n) 
  | AndE1 (NatDed n) 
  | AndE2 (NatDed n) 
  | Neg2I (NatDed n) 
  | Neg2E (NatDed n) 
  | ImplyI (Prop n) (NatDed n) 
  | ImplyE (NatDed n) (NatDed n) 
  | OrI1 (NatDed n) (Prop n) 
  | OrI2 (Prop n) (NatDed n) 
  | OrE (NatDed n) (NatDed n) (NatDed n) 
  | AbsurdE (NatDed n) (Prop n) 
  | AbsurdI (NatDed n) (NatDed n) 
  | NegI (Prop n) (NatDed n) 



Using NatDed 

• Building a term of type NatDed is a tree-like 
structure 

• This tree might be a proof tree. If it maintains 
the invariant. 

• A computer program can “check” if that is the 
case. 



Constructing proof trees 

• Constructing proof trees is a lot like 
programming. 

• You are given some premises. These are input to 
the checker. 

• You must build a NatDed data structure that 
relies only on the given premises.  

• Building this tree is a lot like programming. You 
must build it out if the constructors of NatDed in 
such a way that the checker will succeed. 



Representing the Premises as Data 

• data Sequent n = Seq [Prop n] (NatDed n) 
 



Difficulties 

• One must think to build a proof tree that will 
check. 

• What pieces do you have? 
– What do they prove? 

• What other pieces can you make? 
• How can you put them together. 
• Sometimes working bottom up helps. 
• Mechanized help is useful. 



Strategy 

• Construct a term. 
• Name it. 
• Let the system check and print it. 
• Does it prove what you expect? 
• Did  the check complain? 
• Make some more terms 
• Put them together. 



Gentzen style Proofs 

• In a Gentzen style proof, we build a tree of 
hypothetical judgments, instead of a tree of 
true statements. 

• Here the set of assumptions (hypotheses, 
premises) is an explicit part of the proof. 
 

•  a |- a ∧ T 



Gentzen approach 

• Here we manipulate both the term to the right 
of the turnstile ( |- )   and the premises to the 
left of the turnstile. 

• This approach is called the sequent calculus 



The sequent calculus 

• The rules are broken into 4 cases. 
• Some of the cases (the last 2) are broken into 

left and right variants 
• The cases 

– Axiom 
– Cut 
– Logical rules 
– Structural rules 



Axiom and Cut 



Logical Rules 



Structural Rules 



Intuition 

• Logical rules introduce new formula either on 
the left or the right. They maintain a logical 
invariant just  like the Natural Deduction rules. 
– What is the invariant? 

• Structural rules manipulate the formula 
regardless of the shape or connective that the 
formula have. 



Intuiton 2 

• Think of the rules as instructions for 
constructing a proof. 

• Some of the instructions are ambiguous. 
There may be many ways to follow them 

• Next time we will study automated methods 
for finding a proof. 
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