FunLog
Example problems

• Combinatorial auction
 – sell all the items
• Towers of Hanoi
• Rectangle packing
• Shortest route.
• 8 queens
• Soduko
• Maximizing (minimizing) costs
Finding a solution with given property

• The property relates known entities with parts of the solution.
• The property ensures that the solution is useable
• The property can be expressed as a small higher order function.
• The problem combines computation and search.
Computational Modality

• Evaluate (reduction)
 – Modality of languages like: C, Haskell, Datalog

• Find (Existential search)
 – Modality of languages like: Prolog, Alloy, IDP

• Combined
 – Curry: both reduction and search via Narrowing.
Modality v.s. Expressivity via Language

<table>
<thead>
<tr>
<th></th>
<th>Evaluate</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple</td>
<td>Haskell, C, ...</td>
<td>Prolog</td>
</tr>
<tr>
<td>FiniteSet</td>
<td>Datalog</td>
<td>IDP, Alloy</td>
</tr>
<tr>
<td>Algebraic</td>
<td>Haskell, ML, Curry</td>
<td>Curry</td>
</tr>
<tr>
<td>Array</td>
<td>C, Fortran,</td>
<td></td>
</tr>
</tbody>
</table>
Language via Algorithm

<table>
<thead>
<tr>
<th>Language</th>
<th>Computational Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolog</td>
<td>Backtracking, unification</td>
</tr>
<tr>
<td>Haskell, C, ML</td>
<td>Reduction</td>
</tr>
<tr>
<td>Datalog</td>
<td>SemiNaive fixpoint evaluation</td>
</tr>
<tr>
<td>Curry</td>
<td>Narrowing</td>
</tr>
<tr>
<td>Alloy</td>
<td>SAT, symmetry</td>
</tr>
<tr>
<td>IDP</td>
<td>SAT, grounding</td>
</tr>
</tbody>
</table>
FunLog

• FunLog is a language designed for a mixed modal language
• Data
 – Int, Bool (eval & find)
 – Pressburger Arithmetic (eval & find)
 – Tuples (eval & find)
 – FiniteSets (eval & find)
 – Algebraic Data (eval only)
• Succinctness - \(\lambda \)–calculus expressions and datalog formula (denotes SPJ operations on sets)
• Abstraction – lexically scoped lambda calculus can abstract over anything.
• Computation modality is overloaded and determined by context.
Evaluate

dim i4 = [0,1,2,3]
input = set (i4,i4,i4) [(0,3,3),(1,1,1),(1,2,0),(2,1,0),(2,2,3),(3,3,0)]
quadrantL =
 [(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,2),(1,0,3),(1,1,2),(1,1,3)
 ,(2,2,0),(2,2,1),(2,3,0),(2,3,1),(3,2,2),(3,2,3),(3,3,2),(3,3,3)]
quadrant = set (i4,i4,i4) quadrantL

Find: grid(i,j,n).
Where: input(i,j,n) <= grid(i,j,n).
Such That:
 full grid(0,j,k) & full grid(1,j,k) & full grid(2,j,k) & full grid(3,j,k)
 & full grid(i,0,k) & full grid(i,1,k) & full grid(i,2,k) & full grid(i,3,k)
 & full quadrant(0,i,j),grid(i,j,k) & full quadrant(1,i,j),grid(i,j,k)
 & full quadrant(2,i,j),grid(i,j,k) & full quadrant(3,i,j),grid(i,j,k)
 & grid(i,j,n) | (i,j) -> k .
Syntax

• FunLog is a declarative language
• Declarations introduce new named objects
 – name(x,y) <- formula
 • Rules introduce Finite Sets (Relations)
 – name = expression
 • Equations introduce values
 – Exists name Where: _ SuchThat: _
 • Introduces Search, name is a lazy list
• Functions (lambda abstractions) can abstract over any named object.
Notation

• Funlog uses two different notations
 – Functions (like Haskell) Expressions
 – Relations (like Prolog and Datalog) Formulas

• The two notations use different conventions to determine the scope of a variable.

• One switches from one notation to the other by the use of the escape ($) operator,
Functional - Expressions

- Expressions denote a value
- A value can be many things
 - A primitive Int, Float, Char, String, Boolean,
 - A tuple of values (4,True,even)
 - A function
 - An algebraic data type.
 - A finite set
Example expressions

• Literals - 5, 2.3, "abc"
• Variable – x, date, tail
• Function calls – (f x 5)
• Lambda abstraction (\ x -> x + 3)
• Tuples – (2,3)
• Sets – set #(dim,width) [(2,"a")]
• Comprehensions [x + 4 | x <- [2..6]]
Relational - Formulas

• A formula denotes a finite set of tuples that range over primitive data.
• An Atomic formula (atom) is a relation symbol followed by a parenthesized list of patterns.
 – $R(p_1,p_2,p_3)$ the largest subset of R where each element of a tuple (a,b,c) matches the patterns.
 – I.e. a matches p_1, b matches p_2, and c matches p_3.
• Compound formulas
Compound formulas

• Conjunction
 – son(y) <- father(x,y), male (y)
• Disjunction
 – parent(x) <- father(x,y); mother(x,z)
• Negation
 – !father(x,y)
• Projection
 – {((y,x) <- r(x), z(x,y,z)}
Lexical Scoping

• The normal rules of lexical scoping apply to the expression part of the language.
• Rules and formula use implicit conventions to determine scoping.
• \(f \ (x_1 \ldots) \ < - \ rhs \)
 – \(f \) is introduced by the rule, and is in scope in rhs
 – Free variables in the \(x_1 \) are universally quantified and are bound in rhs
 – Free variables in rhs are existentially scoped and are bound in rhs.
 – So how do we “import” variables bound in an outer scope?
The Escape ($) annotation

transClosure \(f = \)

\[
\text{let } \text{anc}(x,y) \\
\quad \leftarrow f(x,y); \\
\quad f(x,z),\text{anc}(x,y). \text{ in anc}
\]

row \(n \ x = \text{let } f(k) \leftarrow x(n,j,k). \text{ in f}

col \(n \ x = \text{let } f(k) \leftarrow x(i,n,k). \text{ in f}
Dimensions

• Dimensions a finite sets over scalar data
 – Int, float, char, string, Bool, and enumerations
 – dim small#Int [0,1,2,3]
 – data week = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• Dimensions can be multidimensional
 – #(small,week)

• Dimensions are used to limit the elements in finite sets
 – Set #(small,week) [(0,Mon), (1,Tue)]
Materializing functions in small domains

\[
\text{dim } i6 = [0,1,2,3,4,5]
\]

\[
\text{lift1 } d \ f = \text{set } (d,d) \ [(x, f x) \mid x \leftarrow d]
\]

\[
\text{lift2 } d \ f = \text{set } (d,d,d)
\]

\[
\quad \ [(x,y,f x y) \mid x \leftarrow d, y \leftarrow d]
\]

\[
\text{plus} = \text{lift2 } i4 \ (+)
\]

\[
\text{minus} = \text{lift2 } i6 \ (-)
\]

\[
f(x,y) \leftarrow g(x,i), h(y,j), \text{plus}(i,j,7).
\]
Language Adjectives

• Expressive
 – What can the language compute

• Succinct
 – How many key-strikes does it take to write it

• Abstract
 – Finding patterns, naming them and re-using them
 – Functional abstraction is one example
 – Modality abstraction is another
Datalog v.s. Relational Algebra

- Datalog and Relational Algebra are equally expressive.
- Datalog is more succinct.
 \[\text{parent}(x,y), \text{parent}(y, \text{``Tom''}) \]
 vs
 \[\text{select } ((x,y) \rightarrow y = \text{``Tom''}) \]
 (Join (project (((y,z) \rightarrow (z,y)) parent)
 parent)
- Neither is abstract over transitive closure
An Expressivity Hierarchy

- **Int**: 0, 1, ...
- **Bool**: T, F
- **FiniteSet**: \{(a,b), (c,d)\}
- **Tuple**: (a,b,c)
- **Arithmetic**: +, -, *
- **Boolean**: \&, \lor, \neg
- **Relational**: select, project, join
- **Algebraic**: Cons, Nil
- **Array**: X[i]
- **List, Tree**: select, project, join
Points to note

• Its is a real hierarchy

• Any point lower in the hierarchy can be lifted to a point higher in the hierarchy

• Computations lower in the hierarchy always have translations into richer computations higher in the hierarchy
Functional Abstraction & the \(\lambda \)-calculus

- Find a pattern, name it, and reuse it
 \[
 \text{inRange } x \; lo \; hi = \; lo \leq x \; \&\& \; x \leq hi
 \]
 \[
 \text{inRange } 5 \; 2 \; 6 \rightarrow T
 \]
 \[
 \text{inRange } 7 \; 2 \; 6 \rightarrow F
 \]

- Not all languages have this kind of abstraction

 \[
 \text{anc}(x,y) \leftarrow \text{parent}(x,y); \text{parent}(x,z),\text{anc}(z,y).
 \]
 \[
 \text{reach}(x,y) \leftarrow \text{path}(x,y); \text{path}(x,z),\text{reach}(z,y).
 \]
Modality abstraction

• A term of type Bool can be interpreted as
 – A set of reduction steps to get T or F
 – A specification for a search based tool like minisat

• By using constrained types, its is possible to overload a term to do both things.
• The context of the term determines its modality.
• A value in the Evaluate modality is a value in the Find modality (the search is trivial)
A language with modality abstraction

Evaluate

dim i10 = [0,1,2,3,4,5,6,7,8,9]
dim colors = ["Red","Blue","Green","Yellow"]

graph = [(1,2),(2,3),(3,4),(4,5),
 (5,1),(1,6),(2,7),(3,8),
 (4,9),(5,0),(6,8),(7,9),
 (8,0),(9,6),(0,7)]

edges = set (i10,i10) graph
color = toSet colors
twoHop(x,y) <- edges(x,z),edges(z,y).

Find coloring(n,c)
Where same(x,y,c) <- color(c)coloring(x,c),
 edges(x,y),coloring(y,c).

Such That: none same(x,y,c) & full (w(n) <- coloring(n,c)).
Mixed Modality

• Operators for each point in the Expressivity hierarchy are given over loaded types.
• Mode of use determines how they are interpreted.
• Automatic conversion from Evaluate -> Find
• Conversion from Find to Evaluate is non deterministic. I.e. a search may find many results. Answers are encapsulated in a lazy list. New answers are computed only on demand.
class Boolean b where

 true :: b

 false :: b

 isTrue :: b -> Bool

 isFalse :: b -> Bool

 conj :: b -> b -> b -- conjunction

 disj :: b -> b -> b -- disjunction

 neg :: b -> b -- negation

 imply :: b -> b -> b -- implication
Pressburger Arithmetic

class (Num n) => Arithmetic n where
 lit :: Int -> n
 (+) :: n -> n -> n
 (-) :: n -> n -> n
 (*) :: Int -> n -> n

class (Arithmetic n, Boolean b) =>
 (Relational f n b) where
 (<) :: f n -> f n -> f b
 (<=) :: f n -> f n -> f b
 (=) :: f n -> f n -> f b
 (/=) :: f n -> f n -> f b
FiniteSet Examples

select::

 (Boolean b) =>
 ([Int] -> Bool) -> FiniteSet b -> FiniteSet b

project ::

 (Boolean b) =>
 [Int] -> FiniteSet b -> FiniteSet b

join::

 (Boolean b) =>
 Int -> FiniteSet b -> FiniteSet b -> FiniteSet b

none:: (Boolean b) => FiniteSet b -> b

some:: (Boolean b) => FiniteSet b -> b

funDep::

 (Boolean b) =>
 [Int] -> [Int] -> FiniteSet b -> b
Using the hierarchy

• Every term has an overloaded type.
• Every instance of the overloaded type determines a computation strategy.

\[
\text{range } e \text{ lo hi } = \\
\quad \text{conj} \ (\text{lo } \leq e) \ (e \leq \text{hi})
\]

\[
\text{range} ::
\quad (\text{Relational } f \ n \ b, \ \text{Boolean} \ (f \ b)) \Rightarrow f \ n \ → \ f \ n \ → \ f \ b
\]
instance Boolean (Value Bool)
instance Relational Value Int Bool

Given the overloaded type

range::
 (Relational f n b, Boolean (f b)) =>
 f n -> f n -> f n -> f b

Used at the instances above

range 6 4 10 -> True
instance Boolean (SMT Bool)
instance Relational SMT Int Bool

Given the overloaded type

range::
 (Relational f n b, Boolean (f b)) => f n -> f n -> f b

Used at the instances above

range x1 x2 x3 ->
 (x2 <= x1) \ (x1 <= x3)
Mixed Computation

Overloaded \(xs, \) \(\text{conj}, \) \(\text{true}, \) \(/= \)
Not overloaded \textcolor{red}{\text{less}}

distinct \(xs = \)
\[
\text{foldr conj true} \[i /= j \mid i<-xs, j<-xs, \text{less } i \ j\]
\]
distinct \([x_1, x_2, x_3] \) :: SMT Bool
\((x_1 /= x_2) \land (x_1 /= x_3) \land (x_2 /= x_3)\)
Current points in the hierarchy

- Sat
- finite set \{ (a,b) (c,d) \}
- Tuple
- Int 0,1 ...
- Arithmetic
- Boolean
- Value Int
- Bool T, F
- SMT Int SMT Bool
- Array
- Algebraic List, Tree
- Relational
- List, Tree
- Array
- Value Int
- Array
- Value Int
- Array
- Value Int
Conclusions

- Abstracting over computational modality is a good thing
- Eval modality can always be lifted to Find
- Find can be lifted to Eval using lazy lists
- Constrained types isolate exactly the expressivity needed to state the problem
- Use the lowest tool (known instance of the constrained type) to solve the problem
- Functional abstraction is a great glue to tie together many different approaches.
- Materializing functions in small domain lets us add arithmetic to the FiniteSet expressivity point for free.