Logic via Foundational Algorithms

James Hook and Tim Sheard
October 20, 2014

1 Finite Sets

With the advent of efficient SAT-solvers, it is possible to solve very large SAT-
problems with hundreds of variables and thousands of clauses. Interesting ques-
tions include: How does one create such problems? How is one assured that
the SAT-problems created faithfully encode the problem of interest? In gen-
eral, how does one create SAT-problems at a higher level of abstraction than
manipulating individual propositions?

One needs a mechanism for aggregating propositions, and high-level opera-
tors for operating on those aggregations to create new propositions. This is the
role of the FiniteSet module.

1.1 Finite Sets as Mappings

Every finite domain can be mapped to a contiguous finite prefix of the Natural
numbers. For example, given the data declaration for primary colors:

data Color = Red | Blue | Green deriving (Enum,Show,Read,Typeable)

One might map Color as follows: [(Red,0), (Blue,1),(Green,2)]. Here
we have indicated the mapping as an association list, mapping Red to 0, Blue to
1, and Green to 2. A finite set over a finite domain D can then be represented as
a characteristic function with type D -> Bool. Because the finite domain over
which a set is drawn is a finite mapping from D to Natural, we can represent
the characteristic function as a finite map Natural -> Bool by composing the
two mappings.

Primary Color Domain
[(Red,0), (Blue,1), (Green,?2)]

Set Mapping
{Blue} [(0,False), (1,True), (2,False)]
{Red} [(0,True), (1,False), (2,False)]

{Red,Green} [(0,True), (1,False), (2,True)]

Experience with such mappings show that the vast majority of such sets map
most of the Natural numbers to False. Thus, we can compress the mapping by
storing only those pairs that map to True. For example:

Primary Color Domain
[(Red,0), (Blue,1), (Green,?2)]

Set Mapping Compressed Mapping
{ = [(0,False), (1,False), (2,False)] [1
{Red,Green} [(0,True), (1,False), (2,True)] [(0,True), (2,True)]

A product of two finite sets can be represented in a similar manner. We
represent a binary product as a binary tuple, a triple as a ternary tuple, a
quadruple as 4-tuple, etc. An n-tuple is represented as a list. The tupling
occurs both with the finite domains, and with the domain of the characteristic
function.

Primary Color Domain Boolean Domain
[[(Red,0), (Blue,1),(Green,2)], [(False,0),(True,1)]]

Set Compressed Mapping

{r = (1

{(Red,True), (Green,False)} [([0,1],True), ([2,0],True)]
{(Blue,True)} [([1,1],True)]

It is a good metaphor to think of a set of n-tuples as an n-dimensional
matrix stored using a sparse array representation. The convention of storing
only the mappings to True in the characteristic function, really pays off for
storing higher dimensional data in many cases. Finally, in order to use a single
representation for the characteristic function for all tuple sizes, we exploit the
property that a product of finite domains can be mapped to a single Natural
number. For example, the product of a 3-point domain and a 2-point domain
can be numbered as a single Natural by row-major ordering as:

The set {(Red,True), (Green,False)} Row-major order
as a 2-dimensional sparse array. of array elements
o 1 o 1

+o——t———+ +o——d———+

0 | | T | o ol 1]
+o——t———+ o+

1| I | 1 12131
+o——t———+ +o——t———+

2 Tl | 2 1415
e e +o——t———+

Thus, sets of Color x Bool can be represented as follows

(Primary Color Domain,Boolean Domain)
[[(Red,0), (Blue,1),(Green,2)], [(False,0),(True,1)]]

Set Compressed Mapping Row-major Mapping
{3 = 1]

{(Red,True), (Green,False)} [([0,1],True), ([2,0],True)] [(1,True), (4,True)]
{(Blue,True)} [([1,1],True)] [(3,True)]

A last detail, rather than use an association list, we use a balanced-tree
representation (Data.Map.Map) of the characteristic function, which provides
logarithmic-time access to the boolean value given a row-major index. Thus,
A finite set is represented as a (possibly n-ary) domain and a mapping from
Natural to Bool.

We can represent sets of elements from base types. We encode this as:

data Base = Int | String | Char | Double | Bool | Enum String | Tuple [Basel
deriving Eq

Base types are basically scalar types, enumerations and tuples. An enu-
meration, like Color is reprsented as (Enum "Color"), and a tuple as a list of
Base. In the FiniteSet module a FiniteSet is declared by the following Haskell
definitions.

data Dimension = -- Invariant: (Dim n b xs) => length xs =
Dim Int Base [Literall

data FiniteSet a =
FA [Dimension] -- The n dimensions.
(Data.Map.Map Int a) -- Mapping of Row-major index to value.

A FiniteSet stores a metaphorical k-dimensional array as a 1-dimensional
partial sparse array. It combines the k indices to a single index (using row-
major order), and uses this as the key in a Data.Map. The array is partial and
sparse, because only the known indexes are stored. By specializing the type
parameter a to a boolean type we obtain an efficient representation of Sets of n-
ary tuples. Of course there is nothing to stop us from creating FiniteSets where
that parameter is not a boolean type, or to define types other than Haskell’s
Bool to use as a Boolean type (See Section 1.2).

The module provides a number of mechanisms for creating both Dimensions
and FiniteSets. We can create Dimensions a number of ways.

-- State the size, and we generate a mapping [0 .. n-1]
dim :: Int -> Dimension
dim n = Dim n Int [show x | x <- [0 .. n-1]]

-- Exhibit a list of strings that describes the mapping
dimS:: [String] -> Dimension
dimS xs = Dim (length xs) String xs

--Turn a list of anything that can be turned into a string into a dimension.
dimL :: (Show a) => [a] -> Dimension
dimL xs = Dim (length xs) String (map show xs)

-- Create a multi-Dimensional mapping where all the individual
-- mappings are over a O-based range of Int.

expand :: [Int] -> [Dimension]

expand xs = map dim xs

]
B

-- Any element of a type in the Enum class describes a dimension
-- over the finite set described by the full enumeration.
dimE :: (Show a,Enum a) => String -> a -> Dimension
dimE name x = Dim (length xs) (Enum name) (map (LCon name . show) xs)
where first = (toEnum 0)
theyHaveTheSameType = [first,x]
xs = enumFrom first

Here are some examples of Dimension creation, which were cut and pasted
from a Ghci interactive session. Lines with the prompt *FiniteSet> are input
by the user, and the other lines are the Dimensions printed by the evaluation
mechanism of Haskell.

*FiniteSet> dim 4
Int#[0,1,2,3]

*FiniteSet> dimS ["a","cde","tom"]
String#["a","cde","tom"]

*FiniteSet> dimL [True,False]
String#["True","False"]

*FiniteSet> dimE Color Blue
Color#[Red,Blue,Green]

*FiniteSet> expand [2,3]
[Int#[0,1],Int#[0,1,2]]

To create a finite set, the module provides two modes. The first mode lets
one choose the value associated with a particular list of indices by supplying
a function. The function is given the full tuple of indices, rather than the
row-major single index.

-- Use a function to choose if a tuple is present, and if so, what value is stored.
partial:: [Dimension] -> ([Int] -> Maybe a) -> FiniteSet a
partial dims pred =
FA dims
(fromList [(i,j)
| i <- flatInts dims
, Just j <- [pred (kIndex dims i)] 1)

—-- Supply a value for every tuple.
universe :: [Dimension] -> ([Int] -> a) -> FiniteSet a
universe dims initf = partial dims (Just . initf)

Here are some example uses of FiniteSet creation, cut and pasted from a
Ghci interaction session that illustrate the functions partial and universe.

*FiniteSet> partial (expand [2,2]) (\ [x,y]-> if even x then (Just True) else Nothing)
(Int#2,Int#2)

{(0,0) (0,1}

*FiniteSet> universe (expand [2,2]) (\ [x,y]l-> x+y)
(Int#2,Int#2)
{(0,0)=0 (0,1)=1 (1,0)=1 (1,1)=2}

Note that the first call associates a Bool, and the second associates an Int,
with every tuple. The system prints finite sets of Bool, as a characteristic
function, listing only those indicies where the True value is associated. It prints
finite sets of Int by printing the Int along with the index.

The second mode for finite set creation lets the user enumerate the elements
in the set by supplying a list.

-- supply a list of tuples, and make a set from them.

-- every tuple is associated with the same value ’v’
fromIndexList:: t -> [Dimension] -> [[Int]] -> FiniteSet t
fromIndexList v dim xss | any (badElements dim) xss =

error ("In ’fromIndexList’ one of the elements\n"++show xss++"\nis not appropriate for dimension "A
fromIndexList v dim xss = FA dim (fromList (map f xss))

where f xs = (flatIndex dim xs,v)

-- Uses Finite class magic to create Sets from lists of objects from a Finite type.
fromFiniteList ::

Finite a => b -> [Dimension] -> [a] -> FiniteSet b
fromFiniteList true ds xs = FA ds (fromList (map f xs))

where f t = (flatIndex ds (zipWith litToIndex ds (toLit t)),true)

The function fromIndexList allows the programmer to supply the a list of
Int representing the indices for each tuple.

*FiniteSet> fromIndexList ’z’ (expand [3,2]) [[0,1],[2,0],[1,1]]
(Int#3,Int#2)
{(0,1)=2z (1,1)=z (2,0)=z}

The fromIndexList function requires the user to supply appropriate tuples
as a list of Int indices. This is can be tedious if the dimensions are not Int
based. The function fromFiniteList uses the Haskell class system to turn lists
of single elements or lists of tuples into these indices. Lists of any type, t, where
t is an instances of the Finite class will do. The types Int, Bool, Integer,
String, and Char are instances of this class, as well as binary and ternary tuples
of these types. Users can add their own instances if they desire.

*FiniteSet> fromFiniteList True [dimE "Bool" True,dimE "Color" Red] [(True,Blue),(False,Red)]
(Bool#2,Color#3)
{(False,Red) (True,Blue)}

This depends upon the type Color being an instance of the Finite class
Adding a new enumeration type to the Finite class is trivial as the default
method definitions work for all types that are in the Show,Enum,Read, and
Typeable classes.

data Color = Red | Blue | Green deriving (Enum,Read,Show,Typeable)
instance Finite Color where

1.2 Relations as FiniteSet of Generalized Booleans

A (FiniteSet a) associates an a object with every tuple. If the type a is the
Haskell type Bool a natural interpretation is that tuples associated with True
are present in the set, and those associated with False are absent from the set.
Presence is an all or nothing situation.

In many cases presence is conditional. This motivates the class definition
Boolean, and allows the user to associate each tuple with something more dy-
namic than the Bool type. A perfect candidate is the (Prop a) type of the
Prop module which is used to represent the propositional calculus.

The strategy is to write operations on (FiniteSet b) where the type of
associated values is an instance of the Boolean class.

class Show b => Boolean b where

true :: b

false :: b

isTrue :: b -> Bool

isFalse :: b -> Bool

conj:: b ->b ->Db —-- conjunction
disj:: b > b -> Db -- disjunction
neg:: b -> b -- negation
imply:: b -> b -> b -- implication

The operations of the class allow us to combine FiniteSets to get richer
sets, where the association may denote conditional presence in the set. The
operations of the class are just a generalization of the traditional operations
on the type Bool. This strategy now supports our original goal of building
aggregate structures of propositional formula, equipped with a rich algebra for
combining the propositional formula inside the aggregates (see Section 1.3).

Of course it is now easy to make both the Bool type and the Prop type
instance of the Boolean class.

instance Boolean Bool where
true = True
false = False
isTrue x = x
isFalse = not

conj = (&&)
disj = (ID)
neg = not

imply x y = not x || y

instance (PPLetter n,Ord n) => Boolean (Prop n) where
true = TruthP
false = AbsurdP
isTrue TruthP = True
isTrue x = False
isFalse AbsurdP = True
isFalse x = False
conj = andB

disj = orB
neg = notB
imply = implyB

The functions andB, orB, notB, and implyB are versions of AndP, OrP, NotP
and ImpliesP that know about the special properties of these functions on
TruthP and AbsurdP. See the FiniteSet module implementation for exact de-
tails.

Given an overloaded expression of type Boolean b => (FiniteSet b) we
can choose the Bool instance to denote the all or nothing behavior, or the Prop
instance to denote the conditional presence behavior. The conditionality of the
elements will depend upon the value of the propositional LetterP components
of the value associated with every tuple.

Because the propositional interpretation of the FiniteSets is the one we
most often use, we make special instances of the construction functions, and
give the name Relation to the type (Prop Int).

type Relation = FiniteSet (Prop Int)

many: : [Dimension] -> [[Int]] -> Relation
many ds xs = fromIndexList true ds xs

manyD:: Finite a => [Dimension] -> [a] -> Relation
manyD ds xs = fromFiniteList true ds xs

manyL: : [Dimension] -> [Literal] -> Relation
manyL ds xs = fromLitList true ds xs

Here we construct a few Relations using these specialized constructors.

*FiniteSet> let units = many [dim 5] [[i] | i <- [0..4]]
*FiniteSet> units

(Int#5)

{(0)=T (1)=T (2)=T (3)=T (4)=T}

*FiniteSet> let pairs = manyD [dim 5,dimE True] [(3::Int,True), (4,False),(0,True), (1,False)]
*FiniteSet> pairs

(Int#5,Bool#2)

{(0,True)=T (1,False)=T (3,True)=T (4,False)=T}

The last important means of construction, is to construct FiniteSets where
the tuples are associated with propositional letters. This is the role of the func-
tion enum. The strategy is to associate every tuple with a unique propositional
letter, and to interpret that letter with the presence of its tuple. Experience
dictates that whether or not a tuple is associated with a propositional letter
depends upon the details of the problem being solved. So the enum function
allows the programmer to supply this information by passing enum a function.

enumPoly:: ([Int] -> a -> Maybe (a, t)) -> [Dimension] -> a -> (a, FiniteSet t)
enumPoly pred dims seed = finish (walk seed (flatInts dims))
where finish (last,zs) = (last,FA dims (fromList zs))
walk next [] = (mext,[])
walk next (i:is) = case pred (kIndex dims i) next of
Nothing -> walk next is
Just(new,j) -> (final, (i,j):ys)
where (final,ys) = walk new is

enum:: ([Int] -> Int -> Maybe (Int, t)) -> [Dimension] -> Int -> (Int, FiniteSet t)
enum = enumPoly

The function enum is a state transformer, taking an Int (the current letter)
and producing a new Int (for the next letter) and a Prop formula.

*FiniteSet> let (n’,square) = enum f [dim 2,dim 3] 1 where f xs n = Just(n+l,LetterP n)
*FiniteSet> square

(Int#2,Int#3)

{(0,0)=p1 (0,1)=p2 (0,2)=p3 (1,0)=p4 (1,1)=p5 (1,2)=p6}

*FiniteSet> n’
7

Note how the function enum returns a pair (n’,square) where n’ is the
next letter (in case one wants to continue using the same sequence of letters in
another FiniteSet) and a FiniteSet numbered with distinct LetterP.

1.3 Operations Over Aggregates - The Relational Algebra

The overloaded type Boolean b => FiniteSet (Prop b) provides a conve-
nient implementation for aggregating propositional formulas. All we need is
some operations over such aggregates. The module provides three types of op-
erations: Point-wise operators (which operate on the boolean values b one at a
time), the traditional set based operations: complement, union, intersection,
and difference; and the traditional relational operations over sets of tuples:
select, project, and join.

—-- Pointwise operations on FiniteSets
unary:: (Boolean bl, Boolean b2) =>

([Int] -> bl -> b2) -> FiniteSet bl -> FiniteSet b2
binary:: (Boolean a, Boolean b, Boolean c) =>

(a => b -> ¢) -> FiniteSet a -> FiniteSet b -> FiniteSet c

-- Traditional Set based operations

complement :: Boolean b => FiniteSet b -> FiniteSet b

intersect :: Boolean b => FiniteSet b -> FiniteSet b -> FiniteSet b
union :: Boolean b => FiniteSet b -> FiniteSet b -> FiniteSet b
difference :: Boolean b => FiniteSet b -> FiniteSet b -> FiniteSet b

-- Traditional Relational operations

project :: Boolean a => [Int] -> FiniteSet a -> FiniteSet a
select :: Boolean t => ([Int] -> Bool) -> FiniteSet t -> FiniteSet t
join :: Boolean a => Int -> FiniteSet a -> FiniteSet a -> FiniteSet a

In the case where the overloaded type parameter b is the all or nothing
instance Bool, these operations implement exactly the semantics their names
suggest. In the Prop Int instance they support a powerful means of specifying
conditional sets, where the conditionality of the input sets is accurately carried
over into the result.

We illustrate the all or nothing case by a series of Ghci interactions using
the above operations over the set p declared as follows. Note the use of True
as the second argument to fromFiniteList fixes the type of p as (FiniteSet
Bool). We interpret a tuple (p,c), as p is the parent of c.

people = ["Anita","Barbara","Caleb","Frank","George","Margareet","Tim","Walter"]

[("Frank","Tim"), ("Tim" , "Caleb"), ("Walter","Frank"),
("Anita","Tim"), ("Margareet","Barbara"), ("Barbara","Caleb")]

tuples

pd = dimS people
p = fromFiniteList True [pd,pd] tuples

Each interaction (except the first, where we just print p) begins by a local
introduction of a new variable by some operation over p, then by printing the
new variable.

*FiniteSet> p

(String#8,String#8)

{("Anita","Tim") ("Barbara","Caleb") ("Frank","Tim")
("Margareet","Barbara") ("Tim","Caleb") ("Walter","Frank")}

*FiniteSet> let children = project [1] p
*FiniteSet> children

(String#8)

{("Barbara") ("Caleb") ("Frank") ("Tim")}

*FiniteSet> let parents = project [0] p

*FiniteSet> parents

(String#8)

{("Anita") ("Barbara") ("Frank") ("Margareet") ("Tim") ("Walter")}

*FiniteSet> let both = intersect children parents
*FiniteSet> both

(String#8)

{("Barbara") ("Frank") ("Tim")}

*FiniteSet> let threeGen = join 1 p (project [1,0] p)
*FiniteSet> threeGen

(String#8,String#8,String#8)
{("Barbara","Caleb","Margareet") ("Frank","Tim","Walter")
("Tim","Caleb","Anita") ("Tim","Caleb","Frank")}

*FiniteSet> let grandparents = project [2] threeGen
*FiniteSet> grandparents

(String#8)

{("Anita") ("Frank") ("Margareet") ("Walter")}

To illustrate the conditional interpretation we define a new set q which has
type (FiniteSet (Prop Int)) where every tuple is labeled by a unique propo-
sition letter. We use the enum function to do this.

(_,q9) = enum f [pd,pd] 1
where f xs n = if elem xs indexes
then Just(n+l,LetterP n) else Nothing

indexes = (map (kIndex [pd,pd] . toIndex [pd,pd]) tuples)

Note how q associates proposition letters to each tuple when we print it.

*FiniteSet> q

(String#8,String#8)

{("Anita","Tim")=p1 ("Barbara","Caleb")=p2 ("Frank","Tim")=p3
("Margareet","Barbara")=p4 ("Tim","Caleb")=p5
("Walter","Frank")=p6}

When we operate on sets like this, the conditionality of the inputs flows into
the output. For example, joining 0 columns, is a simple way to implement the
cross product operation. When we take the product of q2 with itself, we get the
following. We elide some of the tuples (indicated by the ”...”) for brevity.

*FiniteSet> join 0 q q
(String#8,String#8,String#8,String#8)

{("Anita","Tim","Anita","Tim")=pl
("Anita","Tim","Barbara","Caleb")=pl /\ p2
("Anita","Tim","Frank","Tim")=pl /\ p3
("Anita","Tim","Margareet","Barbara")=pl /\ p4

Note how the tuple (Anita,Tim,Barbara,Caleb) is conditioned by the
proposition p1 /\ p2. The tuple (Anita,Tim,Barbara,Caleb) will appear
in the product, only if the tuple (Anita,Tim)=p1l appears in q and the tuple
(Barbara,Caleb)=p2 appears in q. The other operations propagate condition-
ality similarly.

The pointwise unary and binary operations act as generic maps applying
functions to the Boolean values associated with each tuple individually. For
example to conjoin every associated value with the propositional variable p99
we could write.

10

*FiniteSet> unary (\ xs p -> conj (LetterP 99) p) q
(String#8,String#8)

{("Anita","Tim")=p1 /\ p99 ("Barbara","Caleb")=p2 /\ p99
("Frank","Tim")=p3 /\ p99 ("Margareet","Barbara")=p4 /\ p99
("Tim","Caleb")=p5 /\ p99 ("Walter","Frank")=p6 /\ p99}

1.4 Propositions from Sets

Finite sets aggregate many individual propositions, but a SAT-solver finds a
satisfying solution for only a single proposition. The last step in the strategy for
specifying SAT-problems at a high level of abstraction, is to extract properties
from finite sets. Fortunately there are a number of natural ways to extract
a single proposition from a set. We have implemented four general kinds of
extraction functions. First, propositions about the size of a set. Second, asking
if one set is a subset of another. Third, for a set of tuples representing a relation,
asking if any column(s) functionally determines another columns(s). Fourth, a
simple kind of universal quantification.

-- Cardinality questions

some :: (Boolean b) => FiniteSet b -> b
none :: (Boolean b) => FiniteSet b -> b
full :: Boolean b => FiniteSet b -> b
one :: (Boolean t) => FiniteSet t > t
-- Subset

subset:: (Boolean t) => FiniteSet t -> FiniteSet t -> t

—-- Functional dependency between columns of a Relation
funDep:: (Boolean b) => [Int] -> [Int] -> FiniteSet b -> b

-— Quantification
forall:: (Boolean b) => FiniteSet t -> (FiniteSet t -> b) > b

We will illustrate these operations on sets using the parent-child FiniteSets
p and g from the running example above, as well as the set six defined below.

counter xs n = Just(n+1l,LetterP n)
(_,six) = enum counter [dim 3, dim 2] 1

The set six associates a unique variable for each of its six tuples.

*FiniteSet> six
(Int#3,Int#2)
{(0,0)=p1 (0,1)=p2 (1,0)=p3 (1,1)=p4 (2,0)=p5 (2,1)=p6}

One. The predicate one asks if the set has exactly one element. For that to
be true, exactly one of the variables p1 to p6 must be true. The one predicate
generates a clause for each variable. In the generated clause, that variable is
true, and all the others are negated.

11

*FiniteSet> one six

(p1 /\ "p2 /\ “p3 /\ “p4 /\ "p5 /\ "p6)
Xpl /\ p2 /\ “p3 /\ “p4 /\ “p5 /\ "p6)
E{pl /\ "p2 /\ p3 /\ “p4 /\ "p5 /\ "p6)
Xpl /\ "p2 /\ "p3 /\ p4 /\ "p5 /\ "p6)
Xpl /\ "p2 /\ “p3 /\ “p4 /\ p5 /\ "p6)
E{pl /\ "p2 /\ "p3 /\ "p4 /\ “p5 /\ p6)

The size of the proposition generated grows quickly as the number of vari-
ables grows. For a set with many variables the one predicate may be too large
to solve effectively.

None. The none predicate asks if the set is empty. It generates a clause
which negates the proposition associated with each tuple in the set.

*FiniteSet> none six

“pl /\ "p2 /\ "p3 /\ “p4 /\ “p5 /\ "p6

Under our presence interpretation, none of the tuples are present, so the
relation must be empty. The size of the proposition generated is equal to the
sum of the sizes of all propositions in the set.

Some. The some predicate asks if the set has at least one tuple. It generates
a clause which is a disjunction of the propositions associated with each tuple in
the set.

*FiniteSet> some six
pl \/ p2 \/ p3 \/ p4 \/ p5 \/ p6

Full. The full predicate asks if the set is the universe. I.e. if every possible
tuple for the given domain is present in the set. It generates a clause which
is a conjunction of the propositions associated with each tuple in the set. It
also conjoins the “missing” tuples not stored explicitly in the characteristic set.
Many times the proposition can be determined to be AbsurdP because a tuple
is not explicitly stored.

*FiniteSet> full six
pl /\ p2 /\ p3 /\ p4 /\ p5 /\ p6

Subset. A set y1 is a subset of a set y2 iff element present in y1 is also
present in y2. In terms of the propositions associated with each tuple, the
proposition of each tuple in y1 must imply the proposition associated with the
same tuple in y2. This is illustrated by the Ghci interaction below.

(ii,y1) = enum counter [dim 4] 1
(_,y2) = enum counter [dim 4] ii

12

*FiniteSet> yi1
(Int#4)
{(0)=p1 (1)=p2 (2)=p3 (3)=p4}

*FiniteSet> y2
(Int#4)
{(0)=p5 (1)=p6 (2)=p7 (3)=p8}

*FiniteSet> subset yl y2
(p1 => p5) /\ (p2 => p6) /\ (p3 => p7) /\ (p4 => p8)

Functional Dependency. A very useful predicate over a set of tuples
is whether one column functionally determines another column. A column 4
determines a column 7, if for all pairs of tuples, when the values in the ¢ position
are the same in both, then in both those tuples, the values in the j position are
also the same. For example, given the parent-child relation p:

*FiniteSet> p

(String#8,String#8)

{("Anita","Tim") ("Barbara","Caleb") ("Frank","Tim")
("Margareet","Barbara") ("Tim","Caleb") ("Walter","Frank")}

*FiniteSet> funDep [0][1] p
True

*FiniteSet> funDep [1][0] p
False

Column 0 (the parent) determines column 1 (the child), because every parent
has exactly one child. But the column 1 (the child) does not determine column
0 (the parent), because two children, Caleb and Tim, have two parents.

1.5 Examples

In this section we apply the tools we have learned to code several problems
as SAT-problems. The idea is to define a few conditional relations, and a list
of predicates that must hold between the relations. We then generate a SAT-
problem from the list. The generation phase consists of extracting a proposition
from each predicate in the list, transforming each proposition into conjunctive
normal form (CNF), conjoining them all together, and passing the resulting
formula in CNF to the MiniSat SAT-solver. If a solution exists, the solution is
in terms of a satisfying assignment mapping every propositional letter to either
True or False. When this assignment is applied to the original relations, a
solution to the problem can be read from the result.

1.5.1 The Map Coloring Problem

The map coloring problem is to assign colors to countries on a map. The
constraint that must be met is that no two adjacent countries should be drawn

13

with the same color. The key to solving the problem is to imagine the map as
a graph, where the countries are the vertices, and the adjacency information is
represented by the edges. For a planar graph (where the graph can be drawn in
two dimensions and no edges cross) 4 colors is always sufficient. But for non-
planar graphs the minimum number of colors depends upon the graph geometry.

In this example we will choose a particular graph called the Peterson Graph,
and develop our instruction by experimenting with that graph. We will then
develop a general solution.

numC = 4

graph:: [(Int,Int)]

graph = [(1,2),(2,3),(3,4),(4,5),
(5,1),(1,6),(2,7),(3,8),
(4,9),(5,0),(6,8),(7,9),
(8,0),(9,6),(0,7)1]

colors = take numC
o A e ["Red","Blue","Green",
N "Yellow","Purple","Orange",
\ "Violet","Indigo"]

edges = manyD [dim 10,dim 10] graph
color = manyD [dimS colors] colors

Figure 1: The Peterson Graph is represented by the edge list stored in graph.
The number of colors, numC, is 4. The variable colors selects the first numC
out of all possible colors. The Relation, edges, represents the graph as a
FiniteSet, and the Relation, color, represents the set of colors we will try
and color the graph with.

In Figure 1 is a drawing of the Peterson Graph and a few lines of code that
represents the graph as a pair of finite sets. Our strategy is to try a different
numbers of colors, so we have created a long list of colors, and then we select
some shorter prefix for each try. For our first try we select 4.

The key to the solution is to represent the association between a Vertex
and a Color as a relation. We initialize such a relation where every possible
relationship is represented by a unique propositional letter.

(_,coloring) = enum f [dim 10,dimS colors] 1
where f [i,j] n = Just(n+l,LetterP n)

A listing of the tuples in the relation are listed for reference.

*FiniteSet> coloring

(Int#10,String#4)

{(0,"Red")=p1 (0,"Blue")=p2 (0,"Green")=p3 (0,"Yellow")=p4
(1,"Red")=p5 (1,"Blue")=p6 (1,"Green")=p7 (1,"Yellow")=p8
(2,"Red")=p9 (2,"Blue")=p10 (2,"Green")=pll (2,"Yellow")=p12

14

(3,"Red")=p13
(4,"Red")=p17
(5,"Red")=p21
(6,"Red")=p25
(7,"Red")=p29
(8,"Red")=p33
(9, "Red")=p37

(3,"Blue")=pl4
(4,"Blue")=p18
(5,"Blue")=p22
(6,"Blue")=p26
(7,"Blue")=p30
(8,"Blue")=p34
(9,"Blue")=p38

(3,"Green")=p15
(4,"Green")=p19
(5,"Green")=p23
(6,"Green")=p27
(7,"Green")=p31
(8,"Green")=p35
(9,"Green")=p39

(3,"Yellow")=p16
(4,"Yellow")=p20
(5,"Yellow")=p24
(6,"Yellow")=p28
(7,"Yellow")=p32
(8,"Yellow")=p36
(9,"Yellow")=p40}

The key constraint we want to hold is: No two adjacent vertexes have the
same color. Our strategy is to construct a ternary relation, same, of two Vertices
and one Color. A triple will be present in this relation only if the two vertices are
adjacent, and they both have the same color. We will require that this ternary
relation is empty. A concise way of specifying the relation same is a prolog-like

program:

same(x,y,cl)

coloring(x,cl) ,edge(x,y),coloring(y,c2),cl=c2

This has a straight-forward translation into the relational algebra, where we
have indicated as a comment the “shape” of the tuples in the set computed by
the expression on each line.

same = project

[2,0,1] (

select (\ [y,c2,x,c1] -> cl==c2) (

join 1

coloring

(project [2,0,1]
(join 1

coloring

edges))))

(x,y,cl)
(y,cl,x,cl)
(y,c2,x,cl)
(y,c2)
(y,x,cl)
(x,cl,y)
(x,cl)
(x,y)

We list a few tuples from the original coloring relation and a few tuples
from the same relation. Note how the tuple (0,7,Red) is present only if the
tuples (0,Red)=p1l and (7,Red)=p29 are present in the coloring relation. This
is indicated by the proposition p1 /\ p29 associated with the tuple (0,7 ,Red).

*FiniteSet>
(0,Red)=p1
(0,Blue)=p2

coloring

(0,Green)=p3
(0,Yellow)=p4

(7 ,Red)=p29

(7,Blue)=p30
(7,Green)=p31
(7,Yellow)=p32

*FiniteSet> same
(0,7,Red)=p1 /\ p29
(0,7,Blue)=p2 /\ p30
(0,7,Green)=p3 /\ p31

The next step is to describe a list of constraints that must hold. The obvious
constraint is that the same relation is empty, since that relations holds pairs of
adjacent vertices with the same color. If this is the only constraint we use, we
get a satisfying solution that assigns all 40 proposition letters from coloring

15

to false. This means the coloring relation itself is empty as none of its tuples
are present. It is not enough that the same relation is empty, we want a color
assigned to every edge. The set of all edges is just the zeroth projection of the
coloring relation. We want every edge to be assigned some color, so we want
the set of edges to be the full relation. This leads to the following.

-- Extracted propositions
colorProp = [none same
, full (project [0] coloring)]

Finally we conjoin the list of propositions, and then turn that constraint into
conjunctive normal form.

colorCnf = cnf (andL colorProp)

*FiniteSet> colorCnf

[[p1,p2,p3,p4], [p5,p6,p7,p8], [p9,p10,p11,p12], [p13,p14,p15,p16], [p17,p18,p19,p20], [p21,p22
,P23,p24], [p25,p26,p27,p28], [p29,p30,p31,p32], [p33,p34,p35,p36], [p37,p38,p39,p40], ["p1, "p2
11, ["p1,7p29]1, ["p1,~p33], ["p2,"p22], ["p2, p30], ["p2, "p34], ["p3, "p23], ["p3, "p31], ["p3, "p35]
, ["p4,7p24], ["p4, p32], ["p4, p36], ["p5, p9l, ["p5, "p21]1, ["p5, p25], ["p6, "p10], ["p6, "p22], [~
p6, p26]1, ["p7, p11], ["p7, p23], ["p7, p27], ["p8, p12], ["p8, "p24], ["p8, "p28], ["p9, "p13], ["p9
,"p29], [*p10,~p14], [*p10,~p30], [*pi1,~p15], [“p11,~p31], [*p12,~p16], [*p12,~p32], [*p13, p17]
, ["p13,7p33], ["p14,~p18], [“p14,~p34], ["p15, p19], ["p15,~p35], ["pl6,~p20], [“pl16, p36], ["pl7
,~p211, [*p17,~p371, [*p18,~p221, ["p18,~p38], ["p19,~p23]1, [*p19,p39]1, [~p20, ~p24], [~p20, "p40]
, [“p25,~p331, ["p25,~p37], ["p26, "p34], [“p26,~p38], [*p27,~p35], ["p27, " p39], ["p28, "p36], [“p28
,~p401, [*p29,~p371, ["p30, p38], [*p31,~p39], ["p32, p40]]

We then write that formula in CNF to a file in Dimacs CNF format appro-
priate for the MiniSat solver.

colorFile = putClauses "color.cnf" colorCnf

The function putClauses creates the file color.cnf. The first few lines of
which are listed here.

p cnf 40 70
12340
56780
9 10 11 12 0
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
-1 -210
-1 -29 0

O OO O O oo

16

The first line states that the file is in Dimacs CNF form with 40 variables
and 70 clauses. Each clause is implicitly a disjunction, one clause per line. The
last clause listed is an encoding of “p1 \/ ~“p29. The trailing 0 is a sentinel
and ends every clause. Negated literals are represented by negative numbers.
There are 70 lines in all. We can solve the problem by calling MiniSat from
a shell command line. Entering the correct directory we call MiniSat with
parameters to point it to the input and name a file where the output should
be stored. MiniSat writes some information to the standard output. A short
listing follows. I typed the commands following the prompt ($), the rest was
produced by MiniSat.

$ cd /cygdrive/d/work/sheard/Courses/LogicAndProglang/web/hw/FiniteSets

$ MiniSat color.cnf color.sol

[MINISAT]
Conflicts	ORIGINAL	LEARNT	Progress
	Clauses Literals	Limit Clauses Literals Lit/Cl	
0	70 160	23 0 0 nan	0.000 %
restarts HE
conflicts : 0 (nan /sec)
decisions : 21 (inf /sec)
propagations : 40 (inf /sec)
conflict literals : 0 (nan % deleted)
Memory used : 86.81 MB
CPU time : 0s
SATISFIABLE

$ more color.sol

SAT

-1-23-4-5-67 -89 -10 -11 -12 -13 -14 15 -16 -17 18 -19 -20 21 -22 -23 -24 -25 26 -2
7 -28 -29 30 -31 -32 33 -34 -35 -36 37 -38 -39 -40 0

The file color.sol contains the satisfying assignment. It assigns the vari-
ables 3, 7, 9, 15, 18, 21, 26, 30, 33, and 37 to true, and the other variables to
false. When this assignment is applied to the coloring relation, only a few
tuples are present. These tuples indicate one solution to coloring the Peterson
graph.

(0,Green)=T
(1,Green)=T
(2,Red)=T
(3,Green)=T
(4,Blue)=T
(5,Red)=T
(6,Blue)=T
(7,Blue)=T

17

(8,Red)=T
(9,Red)=T

The picture of the graph in Figure 1 is dislayed using these colors. Although
we initialized the number of colors to 4, we found a solution with 3 colors. Is
it possible to color the graph with just 2 colors? This is an easy experiment to
carry out. Change the Haskell variable numC to 2 and repeat all the steps. With
fewer colors the problem is smaller, the coloring relation has only 20 (10 x 2)
propositional letters, and the CNF formula has only 40 clauses. But there is no
solution. Here is the transcript of running MiniSat on this problem.

[MiniSat]
Conflicts	ORIGINAL	LEARNT	Progress
	Clauses Literals	Limit Clauses Literals Lit/Cl	
0	40 80	13 0 0 nan	0.000 %
restarts H
conflicts : 2 (133 /sec)
decisions : 1 (67 /sec)
propagations : 30 (2000 /sec)
conflict literals 1 (0.00 % deleted)
Memory used : 62.31 MB
CPU time : 0.015 s
UNSATISFIABLE

1.5.2 The 8 Queens Problem

The traditional 8-queens problem asks is there any way to place 8 queens on an
8 X 8 board such that no queen places another queen in check? To solve this
problem we will first experiment with a smaller problem of placing 4 queens on
a 4 x 4 board. Here is a picture of one solution.

s et e T

I I Q| |
to——t— o ——t———t
I Ql | I |
Fo——t——— b ——t———+
I 1 Q
do— b ——t———+

Lral 1|

Fom—tm ot

An obvious start to a solution would be to generate a 4 x 4 relation. If a
tuple (i,j) is present in the relation, then the i*" row and j* column has a
queen. Using our expertise in creating finite sets this is easy.

gsize = 4
(_,queens) = enum f (expand [gsize,qgsize]) 1
where f [i,j] n = Just(n+l,LetterP n)

18

Queens place in check any piece in the same row, or the same column, or
on the same diagonal. A partial constraint states that there must be exactly 1
queen in every row, and 1 queen in every column. Having one queen in row 0
could be expressed as: (one (select ([i,j]->i==0) queens)). A sample
interaction shows the result of this strategy.

*FiniteSet> (select (\ [i,j]->i==0) queens)
(0,0)=p1
(0,1)=p2
(0,2)=p3
(0,3)=p4

*FiniteSet> one (select (\ [i,j]l->i==0) queens)

(p1 /\ "p2 /\ “p3 /\ “pd)

\/

"pt /\ p2 /\ “p3 /\ “pd)

\/

(p1 /\ "p2 /\ p3 /\ “p4) \/ (Cpi /\ "p2 /\ "p3 /\ pd)

We would need eight such constraints, and as the problem grew from 4 to 8
queens we would need 16 such constraints. Another consideration is the poor
behavior of the one constraint, it grows quite quickly. A better solution is to
use functional dependency. A single queen in each row and each column means
that for a relation with tuples (i,j), i determines j, and j determines i.

fdCol r = funDep [0] [1] r

fdRow r = funDep [1] [0] r

Thus we are left with the diagonal constraints. How can we express this? A
position (a,b) on a grid is on the same diagonal as another position (i,j), if
there exists a n such that both the row and column position differ by the same
n. We can write a Haskell program to express this.

diag a b [i,j] n = (a==i+n && b==j+n)||(a==i-n && b==j-n) ||
(a==i+n && b==j-n) || (a==i-n && b==j+n)

Armed with such a predicate, given a position, say (2,2), we can select the
subset of positions on the board, on a diagonal from (2,2) as follows.

*FiniteSet> select (\ xs -> any (diag 2 2 xs) [1.. n]) queens
(Int#4,Int#4)
{€0,0)=p1 (1,1)=p6 (1,3)=p8 (3,1)=pi14 (3,3)=p16}

Provided that n is at least as large as the maximum dimension of the binary
relation. Here is a generic function that works for any 2-D relation.

diagonal a b (r@(FA [n,m] tab)) = select alongDiag r
where alongDiag xs = any (diag a b xs) [1.. (max (dimSize m) (dimSize n))-1]

19

The diagonal constraint can be expressed as follows. For every tuple, if it
contains a queen, then the subset of the queens relation on the diagonal of that
tuple must be empty.

noneOnDiag r = full(unary f r)
where f [a,b] p = imply p (none(diagonal a b r))

Note that the full constraint specifies that this must hold for every possible
tuple in the relation r. Fortunately, the imply makes it vacuously true when
a queen isn’t present in a tuple (a,b). A partial listing of the set noneOnDiag
queens is listed below.

*FiniteSet> noneOnDiag queens

(p1 => ("p6 /\ “pil /\ "p16)) /\ (p2 => ("p5 /\ ~p7 /\ "p12)) /\
(3 => ("p6 /\ "p8 /\ "p9)) /\ (p4 => (Cp7 /\ “pl10 /\ “p13)) /\
(5 => ("p2 /\ “p10 /\ ~"pi5)) /\

(p6 => (“p1 /\ "p3 /\ ~“p9 /\ "pii /\ ~pi6)) /\

(p7 => ("p2 /\ ~“p4 /\ ~pl0 /\ ~pi2 /\ ~p13)) /\

(P8 => ("p3 /\ “pi1 /\ "p14)) /\ (p9 => ("p3 /\ "p6 /\ "pi14)) /\
(p10 => ("p4 /\ ~“p5 /\ “p7 /\ ~“p13 /\ ~pi15)) /\

(p11 => ("p1 /\ “p6 /\ "p8 /\ ~pld /\ ~pi16)) /\

(p12 => ("p2 /\ ~p7 /\ “p15)) /\ (p13 => (“p4 /\ "p7 /\ ~p10)) /\
(p14 => ("p8 /\ "p9 /\ “pi1)) /\ (p15 => ("p5 /\ ~p10 /\ ~p12)) /\
(p16 => ("p1 /\ “p6 /\ “pil))

If a tuple is associated with p1, and p1 is true, then the propositional vari-
ables associated with the tuples on its diagonal must all be false.

One last constraint is needed, the constraints we have specified are all satis-
fied by the empty set, so we need some statement that at least one of them has
a non-vacuous solution. An easy such statement is that every row has at least
1 queen (the functional dependency will ensure it has exactly one queen).

eachRow r = full(project [0] r)

queenProp = [eachRow queens,
fdCol queens,fdRow queens,noneOnDiag queens]

Following the same strategy as before, we create and then write the conjunc-
tive normal form to a file in DIMACS CNF format.

queenCNF = cnf (andL queenProp)
queenFile = putClauses "queen.cnf" queenCNF

Running MiniSat at the shell command line we see the following

$ MiniSat queen.cnf queen.sol

[MiniSat]
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Clauses Literals | Limit Clauses Literals Lit/Cl |

20

| 0 | 108 224 | 36 0 0 nan | 0.000 % |

restarts HE

conflicts : 3 (200 /sec)
decisions : 12 (800 /sec)
propagations : 40 (2667 /sec)
conflict literals 7 (0.00 % deleted)
Memory used : 61.31 MB

CPU time : 0.015 s

SATISFIABLE

sheard@fox2 /cygdrive/d/work/sheard/Courses/Logic/dev
$ more queen.sol

SAT

-1-23-45-6-7-8-9-10 -11 12 -13 14 -15 -16 0O

When this solution is applied to the queens relation we obtain the solution

*FiniteSet> instantiate queenlSol queens
(0,2)=T
(1,0)=T
(2,3)=T
(3,1)=T

To solve the 8 queens problem just change the Haskell variable gsize to
8. There are now 64 propositional variables and the formulae are considerably
larger: 1016 clauses (rather than 108), but a solution is still found.

(0,2)=T Rt EEtt S e e fatatt
(1,8)=T I e T T T
(2,3)=T e s e e e e e it 2
(3,1)=T L I e
4,7)=T R e i R 3
(5,4)=T e e
(6,6)=T e et e e e e Attt
(7,0)=T N e e T T T
e it e e S At J
L e I e O v
s e e Attt Elt
Lt rraer o r
e et e R ittt LT)
N e e B
e e e e e Bttt Elt
O e T T

e B e At S S

21

1.5.3 Embedding MiniSat in Haskell

As we can see from the two examples above, once we have constructed the list of
constraints the steps necessary to use MiniSat to find a solution are mechanical.
Thankfully Haskell is a great scripting language and it is easy to automate these
steps. The module MiniSat automates a few commonly used actions. It exports
three functions and one variable minisat.

minisat:: String

putClauses:: (Ord a, Show a) => FilePath -> [[Prop a]l -> I0 ()
solveWithMiniSat:: FilePath -> FilePath -> [Prop Int] -> I0 (Maybe [Int])
cycleMiniSat:: a -> ([Int] -> I0 a) -> FilePath -> FilePath -> [Prop Int]

It is important that you alter the value of the variable minisat to
contain the path of where MiniSat is installed on your machine.

We have seen the use of putClauses to write a DIMACS CNF format file.
A function call (solveWithMiniSat cnf sol ps) does the following.

e Turns a list of propositions, ps, (each encoding a single constraint) into
conjunctive normal form.

e Writes the clauses to the file cnf.

e Calls MiniSat on the files cnf and sol.

e Reads the potential solution created by MiniSat from the file sol.
e Returns the result.

If MiniSat fails to find a solution it returns Nothing, otherwise it returns
(Just xs) where xs is a satisfying solution. The solution uses negative numbers,
-i, to encode negated literals (NotP (LetterP i)), and positive numbers, j,
to encode propositional letters (LetterP j).

Many problems have more than one solution and we can use cycleMiniSat
to browse through them. A function call (cycleMiniSat noSolution action
cnf sol ps) does the following.

e Repeatedly calls solveWithMiniSat.
e If the formula is unstaisfiable, return noSolution.
e For each satisfying solution, call action, and pause.

e If the user types in a line that starts with the charcter 'n’, the cycle and
look for the next solution, otherwise quit and return the current solution.

For example, we write the following, where the action prints the solution,
uses it to instantiate queens, prints the instantiated queens.

22

-> 10 a

zzz = cycleMiniSat queens action "queenl.cnf" "queenl.sol" queenProp
where action xs = do { print xs
; let ans = (instantiate xs queens)
; print ans
; return ans }

The short transcript below, runs the 4-queens problem. At this size there are
only two distinquishable solutions (each one a reflection about the center axis
of the other). When we cycle, after the second solution is found, the next cycle
discovers that the extended problem (looking for more solutions) is unsatisfiable.

*FiniteSet> zzz

[MiniSat]
Conflicts	ORIGINAL	LEARNT	Progress
	Clauses Literals	Limit Clauses Literals Lit/Cl	
0	108 224	36 0 0 nan	0.000 %
restarts 1
conflicts : 3 (200 /sec)
decisions ;12 (800 /sec)
propagations : 40 (2667 /sec)
conflict literals 7 (0.00 % deleted)
Memory used : 62.31 MB
CPU time : 0.015 s
SATISFIABLE

Solution 1
[-1,-2,3,-4,5,-6,-7,-8,-9,-10,-11,12,-13,14,-15,-16]

(0,2)=T
(1,0)=T
(2,3)=T
(3,1)=T
n
[MiniSat]
Conflicts	ORIGINAL	LEARNT	Progress
	Clauses Literals	Limit Clauses Literals Lit/Cl	
0	109 240	36 0 0 nan	0.000 %
restarts HE
conflicts : 6 (400 /sec)
decisions ;13 (867 /sec)
propagations 1 64 (4267 /sec)
conflict literals : 16 (11.11 % deleted)
Memory used : 62.31 MB
CPU time : 0.015 s
SATISFIABLE
Solution 2

23

[-1,2,-3,-4,-5,-6,-7,8,9,-10,-11,-12,-13,-14,15,-16]

(0,1)=T
(1,3)=T
(2,0)=T
(3,2)=T
n
[MiniSat]
Conflicts	ORIGINAL	LEARNT	Progress
	Clauses Literals	Limit Clauses Literals Lit/Cl	
0	110 256	36 0 0 nan	0.000 %
restarts 1
conflicts : 9 (600 /sec)
decisions ;13 (867 /sec)
propagations : 82 (5467 /sec)
conflict literals : 18 (10.00 % deleted)
Memory used : 62.31 MB
CPU time : 0.015 s
UNSATISFIABLE
Solution 3
[-1,2,-3,-4,-5,-6,-7,8,9,-10,-11,-12,-13,-14,15,-16]
(0,1)=T
(1,3)=T
(2,0)=T
(3,2)=T

2 Acknowledgements

Many of the ideas in the FiniteSet module are based upon the paper, Kodkod:
A Relational Model Finder, by Emina Torlak and Daniel Jackson.

24

