
CS 311: Computational Structures

James Hook and Tim Sheard

October 1, 2013

2 Inductively Defined Sets

Infinite sets play a large role in the study of computational systems. A natural
way to define an infinite set is to use a set of inductive rules. Inductive rules
have a pattern that is easy to recognize. This pattern makes it possible to
easily define functions over infinite sets, and to prove many properties about
these infinite sets using the principle of induction. An inductively defined set
usually has several rules.

• A set of base rules, which enumerate primitive elements of the set.

• A set of inductive rules for combining smaller elements in the set to create
larger elements.

• A rule which clarifies that the other rules are the only way to define
elements in the set.

A natural example of this is the natural numbers.

2.1 Natural Numbers

Sipser defines the natural numbers as the set {1, 2, 3, . . .}. That definition is not
standard. In lecture we will generally refer to that set as the counting numbers.

We will include 0 in our set of natural numbers.

2.2 An Inductive Definition for the Natural numbers

To drive this point home, we will sometimes use the Peano representation of
the natural numbers, building them with the constant Z and the constructor S.
The inductive definition is as follows:

Let Z be a constant and S a function that takes one argument.
The Peano numbers are defined inductively as follows:

1. Z is a Peano number. (A base rule.)

2. If n is a Peano number then S(n) is a Peano number. (An
inductive rule).

1



3. There are no other Peano numbers.

Applying this definition, we can see that the set of Peano numbers includes:

Z, S(Z), S(S(Z)), . . .

2.2.1 Functions on inductive sets

By making the inductive structure of a definition explicit, we get two bene-
fits. We get a mechanism for defining functions and a mechanism for inductive
reasoning.

Consider defining the function isZero on the Peano numbers. From the
inductive definition we know we only need to consider two cases:

isZero(Z) = True

isZero(S(n)) = False

A more interesting example is to define addition on Peano numbers. We will
do this inductively (think, using recursion) on the first argument as follows:

Z + y = y

S(x) + y = S(x + y)

To see how this works, consider adding 2 + 2.

S(S(Z)) + S(S(Z)) = S(S(Z) + S(S(Z)))

S(S(Z) + S(S(Z))) = S(S(Z + S(S(Z))))

S(S(Z + S(S(Z)))) = S(S(S(S(Z))))

In the first line we expand the definition of + in the S case. That gives us a
simpler sub-problem (underlined on the right hand side). We write the whole
right handside on the left on the next line, but focus our attention on the
underlined sub-term. This subterm is also subject to the S case of +, and
we rewrite it to the even simpler sum (also underlined), which is expressed on
the third line. On the third line we get to apply the Z case of +, which is not
recursive. This gives a direct answer, not just a simpler instance of the problem.

Why is the definition of + a good definition? In particular, why is the S case
of + well defined? (Thinking of it as a program, why is this a terminating use
of recursion?) Note that while it looks like we have mostly the same symbols on
the right hand side of the equation, the first argument to + (in the underlined
sub-terms), which is the inductive argument of the definition, is simpler. This is
why in the calculation above, the first three left hand sides are simpler problems.

Also, note that because of the the seemingly silly third clause “there are no
other Peano numbers,” we know that by covering the Z case and the S case we
have covered all cases.

2



2.3 Lists as inductive sets

Many other well known sets can be defined inductively. The set of lists con-
taining natural numbers is an example. Let us define it inductively using the
pattern we learned defining the Natual numbers.

Let Nil be a constant and Cons a function that takes two argu-
ments. The Lists are defined inductively as follows:

1. Nil is a List. (A base rule.)

2. If n is a natural number and x is a list, then (Cons n x) is a
List. (An inductive rule).

3. There are no other Lists.

Example lists include: Nil , (Cons 3 Nil) , and (Cons 2 (Cons 1 Nil)).
Using the principle (pattern matching over the different ways to define some-

thing) we introduced for defining addition over the natural numbers we can
define the length function over lists as follows:

length(Nil) = 0

length(Cons n xs) = 1 + length(xs)

2.3.1 Reasoning about inductive sets

The inductive definition of the Peano numbers also gives us the familiar principle
of mathematical induction. Induction is not a just a property of the natural
numbers, it is a property of any set we can define inductively.

An induction princple is a logical pattern that lets us prove a property of
all elements of an inductively defined set. Whenever we have a base case of the
inductive definition, like the Z case of the Peano numbers, we get a base case
of induction princple. In those cases we show the property directly. When the
inductive definition is recursive, like the S case of the Peano numbers, we must
show that the property is preserved by applying the constructor.

Consider the associativity property of the + function:

a + (b + c) = (a + b) + c

We can prove this by induction over the variable a in two steps.

1. We must show it is true when a = Z

Z + (b + c) = (Z + b) + c

2. We must show that the property is preserved when applying the construc-
tor S.

a + (b + c) = (a + b) + c⇒ (Sa) + (b + c) = (S(a) + b) + c

3



A detailed proof carries out each step, justifying the step by one of the rules
that define +. The scheme for proof we use in this class has several parts.

1. The facts.

isZero(Z) = True

isZero(S(n)) = False

This often includes function defintitions over the inductively defiuned sets,
but may also include lemmas, axioms, or assumptions. For example we
may assume facts like x+ 0 = x. We are careful to be precise about what
we are assuming.

2. Precise statement of what is being proven.

Addition (+) is associative.

a + (b + c) = (a + b) + c

We often state the proposistion we are trying to prove in English, and also
a precise mathematical description.

3. The detailed steps, each justified by the facts, and a strategy or
proof idea we will use.

Proof by induction in two parts. One for the base case Z, and one for
the induction case S(a). For each part we will transform the lefthand side
into the right hand side, justfying each step by one of the facts.

Part 1. Base case where a = Z

Z + (b + c) = (Z + b) + c

Z + (b + c) = b + c (by the Z equation of +)

b + c = (Z + b) + c (by the Z equation of +, backwards)

Part 2. Induction case where a = S(a)

Assume:
a + (b + c) = (a + b) + c

Prove

(Sa) + (b + c) = (S(a) + b) + c

(Sa) + (b + c) = S(a + (b + c)) (by the S equation of +)

S(a + (b + c)) = S((a + b) + c) (by the assumption)

S((a + b) + c) = (S(a + b) + c) (by the S equation of + backwards)

(S(a + b) + c) = (S(a) + b) + c (by the Z equation of + backwards)

4



We can write down the general form of the induction rule for Peano numbers.
Let P(x) be some property of Peano numbers (x ranges over Peano numbers).
To show P(x) for all Peano numbers, show P(Z) and P(x)→ P(S(x)).

In symbols, this induction rule is written:

P(Z) P(x)→ P(S(x))
∀x.P(x)

Exercise 2.1 Write down the defintion of P for the associativity of + problem.

2.4 Trees as inductive sets

To see how other inductive structures besides Peano numbers give rise to prin-
ciples of inductive definition and induction, consider a structure for a binary
tree with integer labels on the nodes. For simplicity we will call this a tree.

Let E be a constant and T a three-place constructor. A tree is defined
inductively as follows:

1. The empty tree, E, is a tree.

2. If l and r are trees and i is an Integer, then T l i r is a tree. l is called the
left subtree, r the right subtree, and i the label.

3. There are no other trees.

Exercise 2.2 Draw the following trees as pictures:

1. E

2. T E 17 E

3. T (T E 3(T E 4 E))7(T E 9 (T E 17 E))

Exercise 2.3 Write functions that compute:

1. The depth of the tree.

2. The number of T nodes in the tree (count).

3. The sum of the labels.

4. The in-order traversal of the tree (called flat) that returns a list constructed
with Nil and Cons.

5. A predicate isOrdered that returns True exactly when the in-order traversal
is in asscending order.

Symbolically the induction principle for Trees is given

P(E) ∀i.(P(l) ∧ P(r))→ P(T l i r)
∀t.P(t)

Exercise 2.4 Prove that length(flat(t)) = count(t).

Exercise 2.5 Write down the induction principle for Lists defined in section
2.3.

5



2.5 Languages as inductive sets

Let the alphabet of our language be the set containing the left
and right parentheses: {(, )}

1. The empty string ”” is in the language of balanced parentheses.

2. If A and B are in the language of balanced parentheses, then
so is the concatentaion A B.

3. If A is in the language of balanced parentheses, then so is (A).

4. No other strings are in the language of balanced parentheses.

Sample strings include ””, ”()”, ”()()”. etc.

Exercise 2.6 Define a function that counts the number of left parentheses in a
string in the language of balanced parentheses.

Exercise 2.7 Define the inductive set of strings in the language consisting of
all sequences of the digits from the alphabet {1, 2, 3}.

2.6 Recursive definitions

Sometimes functions over infinite sets are mutually recursive. This means you
will have 2 or more functions that call each other. Each function is written by
cases, where the cases enumerate each of the rules in the inductive definition.

Exercise 2.8 1. Give an inductive definition of the function isEven on the
Peano numbers. It should return True if its argument is even and False
if its argument is false.

2. Give a definition of isOdd.

ONe can prove things about mutually recursive functions using conjunctions.

(isEven(x)→ isOdd(S(x))) ∧ (isOdd(x)→ isEven(S(x))

We want to prove this by induction on x.
The base case we get is

(isEven(Z)→ isOdd(S(Z))) ∧ (isOdd(Z)→ isEven(S(Z))

Assuming you developed reasonable definitions of isEven and isOdd , this be-
comes:

(True → True) ∧ (False → False)

Which is true.
The step case we get is:

((isEven(x)→ isOdd(S(x))) ∧ (isOdd(x)→ isEven(S(x)))
→ ((isEven(S(x))→ isOdd(S(S(x)))) ∧ (isOdd(S(x))→ isEven(S(S(x))))

In English, we might write this as:

6



Given inductive hypotheses

1. that isEven(x) implies isOdd(Sx)

2. that isOdd(x) implies isEven(Sx)

show that

3. isEven(Sx) implies isOdd(S (S x))

4. isOdd(Sx) implies isEven(S (S x))

Consider an arbitrary x, if x is even, then by induction hypothesis 1, Sx is odd.
In this case we use the definition of isEven to show conclue the S(Sx) is even,
establishing (4). If x is odd, then by induction hypothesis 2, Sx is even. By
definition of isOdd we conclude S(Sx) is odd, establishing (3) as required. This
completes the case analysis on x, and the simultaneous proofs of (3) and (4), as
required.

3 Formatting Proofs

In this class we will write many proofs. In an effort to make everyones lives
easier we will use a standard format for proofs. This way everyone will have a
common inderstanding of how to read and write a proof.

There are three parts to a proof

1. The facts or assumptions

2. The assertion we are trying to prove

3. The steps that comprise the proof

7


