
2/26/2008

1

Robots Week 3a
Programming Lesson 2:
Modifiers Loops and JumpsModifiers, Loops and Jumps
Programming Solutions

Exercise 1: Solution
Play a beep for a random number of times.

Put the Play Sound icon in a loop

The dice modifier
gives a random number

Exercise 2: Solution
Turn on motor A in the forward direction at
power level 1 for 1 second, then on power
level 2 for 1 second, etc. Continue this pattern
up to power level 5 for 1 second, then stop
the motor.

Exercise 3: Solution
Turn on motor A in the forward direction for 3
seconds, then stop the motor. Then turn on
motor C in the forward direction for 3
seconds, then stop the motor. Repeat this
fforever.

To get 3 seconds, you need a
numeric constant modifier

When the program
reaches here...

…it jumps back to here.
This makes it repeat forever.

Lesson 2: Modifiers, Loops
and Jumpsand Jumps
Troubleshooting Tips

Problem 2a
Write a program that plays a beep three times
in a row.

This plays sound #3, NOT 3 sounds.

2/26/2008

2

Solution(s) 2a
Use 3 Play Sound icons, or use a loop that
loops 3 times.

Problem 2b
Turn on motor A at power level 1.

This is a numeric constant modifier NOT a
power level modifier. (Strangely enough, it does
not show a bad wire. Hmmmm…..)

Solution 2b
Use a Power Level 1 modifier.

Problem 2c
Write a program that beeps forever. What’s
wrong?

This is a yellow jumpBut this is a red land This is a yellow jumpBut this is a red land

Solution 2c
Make sure jump and land pairs are the same
color.

Problem 2d
Write a program that beeps forever. What’s
wrong now?

Start
Jump to
green land Land here End

Oops!

2/26/2008

3

Solution 2d
Be careful not to mix up the order of your
jumps and lands!

Jumps
Jumps are like GoTo commands in
other languages.
Program “jumps” on up arrow and
“l d ” d“lands” on down arrow.
Can create a loop. But it makes an
infinite loop, which goes on forever.
It is better to use the loop command for
that and to use jumps with forks.

Loops
Loops are conditionals (“if” statements).

They allow you to repeat sections of your
program over and over.
All start with a start loop commandAll start with a start loop command.
All terminate with an end loop command.
Can specify the number of times to repeat.
Default is to loop twice.
Can nest loops.

Forks
Forks are equivalent to “if-then-else” in
other languages.
All fork commands require a merge
f k b d l t (lik d if)fork be used later. (like end if)
All use a greater than/less than
condition.

You must wire a threshold value.
Touch sensors do not require a threshold,
they are just pushed in or not.

Equal forks
Icon on the far right of the forks sub-
menu.
Equal forks are the same as standard
f k b t th diti l t t t iforks but the conditional statement is
“equal to/not equal to” instead of
“greaterthan/less than”

Tips
Displaying data to the LCD panel is a
common way of debugging a program.

