What makes a machine a robot?

Sensing Planning Acting

Information about the environment

Where is the truck?

Action on the environment

Robotics Academy 2002. All Rights Reserved.

What is sensing?

Sensing is converting a quantity that you want to measure into a useable signal (usually electronic).

Perception is the interpretation or understanding of these signals.

Example:

Sensing: Sound waves -> vibrating eardrums -> signals to brain

Perception: Understanding that I am talking to you about sensors.

Robotics Academy 2002. All Rights Reserved.

Why do robots need sensors?

What is the angle of my arm?

θ?

internal information

Robotics Academy 2002. All Rights Reserved.

Why do robots need sensors?

Where am I?

Robotics Academy 2002. All Rights Reserved.

Why do robots need sensors?

Will I hit anything?

obstacle detection

Robotics Academy 2002. All Rights Reserved.
Sensing for specific tasks

Where is the cropline?

Autonomous harvesting

Sensing for specific tasks

Where are the forkholes?

Autonomous material handling

Sensing for specific tasks

Where is the face?

Face detection & tracking

Common Sensors in Robotics

Rotation sensors (also called encoders) measure the rotation of a shaft or axle. They are used to measure the angle of a robotic arm, or how far a mobile robot’s wheel has turned.

Global Positioning Systems (GPS) receive signals from orbiting satellites that pinpoint the location of an outdoor robot on the Earth.

Common Sensors in Robotics

Laser range finders use laser beams to measure the distance to objects. They are used for obstacle detection and navigation.

Cameras are a very common sensor. Computer Vision is the field of study of interpreting camera images for a variety of purposes.

Lego Sensors

We will be using 3 types of Lego sensors.

Rotation sensor

Touch sensor

Light sensor
Light Sensor

Measures the level of light as a number between 0% (total darkness) and 100% (very bright).

Can differentiate light levels reflected from bright and dark surfaces.

Inside the light sensor is a **photo-transistor**.

The photo-transistor acts like a valve for electricity. The more light energy it senses, the more electricity flows.

Uses:
- Navigation - follow a black line on a white surface (or vice versa).
- FireflyBot - find a very bright object in a room or area (light bulb).
- Color sorter - tell the difference between black Lego bricks and yellow Lego bricks.
- Input Device - different colors or gray levels on a piece of paper.

Connections

- A touch sensor works like a light switch in your house.
- When the button is pressed, an electrical circuit is closed inside the sensor. This lets electricity flow.
- When the button is released, the circuit is broken and no electricity flows.
- The RCX can sense this flow of electricity, so it knows if the touch sensor if pressed or released.

A touch sensor works like a light switch in your house.

- When the button is pressed, an electrical circuit is closed inside the sensor. This lets electricity flow.
- When the button is released, the circuit is broken and no electricity flows.
- The RCX can sense this flow of electricity, so it knows if the touch sensor if pressed or released.

Touch Sensor

Uses:
- Detect contact between the robot and external objects like walls.
- Detect contact with internal moving parts in the robot (arm or gripper).
- TableBot - detect contact with the ground so the robot doesn’t fall off the table.
- Input Device - push button or “remote” control.

Connections

- It is important to connect the cable to the touch sensor in the correct way.
- Which one of these is right?
Touch sensors are programmed to detect when their buttons have been pushed in or released. You need to specify which sensor port a touch sensor is connected to. This icon causes the program to wait forever until the touch sensor on port 1 has been pushed in.

Touch sensors can be used to control the motors. This program waits forever until the touch sensor has been pushed in. When this happens, motor A is commanded to turn on. Motor A continues to run until the touch sensor has been released, and motor A is commanded to stop.

In this program, if the touch sensor is pushed in, then motor A is turned on and motor C is commanded to stop. If the touch sensor is released, then motor C is turned on and motor A is stopped. Remember that a fork statement needs a fork merge at the end of the decision.

Touch sensor forks (more advanced)

The touch sensor fork can be used to have the program do different things depending on if the touch sensor is pushed in or released.

Lesson 3: Sensor Wait-for’s Troubleshooting Tips
Problem 3a
Why won't the light sensor work?

This is a motor port.

Solution 3a
Sensors need to be connected to Sensor ports 1, 2 or 3.

Problem 3b
What's wrong with this set up?

The touch sensor is connected to port 1.

But the software says the touch sensor is on port 3.

Solution 3b
Connect the touch sensor to port 3.
Or, change the port number in the software.

Problem 3d
What isn't too great about the way the light sensor is mounted?

Solution 3d
If the light sensor is too high, it has a harder time distinguishing between black and white. Mounting it lower to the ground will help.
Work Cited

Most of this from Carnegie Mellon University, Robots Academy (open source)
http://www.rec.t.cmu.edu/education/content/products/index.html (12/7/2004)
Format and layout changed to fit Power Point.