

Use cross braces to securely attach the RCX to the robot's body.

RCX Securely Attached

Use double beams on the underside for a better grip on the bottom of the RCX.

Light Sensor Low

If you use a light sensor be sure its low as possible to the ground so different room lighting conditions wouldn't affect it.

Inaccuracy, sensor is loose

Gears

Use gears to slow down your robot. Gears also give your robot more strength (torque). The wheel spins 5 times slower than the motor.

Some Math - Gear Ratios

10 teeth

It takes 5 revolutions of the 8 tooth gear to make the 40 tooth gear go around once.

40 / 8 = 5. The gear ratio is 5 to 1.

Some Math - Gear Ratios

24 teeth

The 40 tooth gear is on the same axle as the 24 tooth gear. It is meshed with another 24 tooth gear.

Gear ratio = 24 /24 = 1 to 1.

Some Math - Gear Ratios

The total gear ratio is... (5 / 1) x (1 / 1) = 5 to 1.

The wheel spins 5 times slower than the motor and has 5 times the torque (strength).

Using a pulley

Using an idler gear

Friction = BAD

Make sure all of your wheels can spin freely. Make sure the bushings or gears aren't pressed to tightly against the beams.

Didn't Drive Straight

Because one side of this robot had slightly more friction than the other when it would move, it would drift slightly to one side.

