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Combining Programming Languages and Logical Reasoning Systems
Project Summary

There is a huge semantic gap between what the programmer knows about his program and the way he
has to express this knowledge to a system for reasoning about that program. While many reasoning tools are
built on the Curry-Howard isomorphism, it is often hard for the programmers to conceptualize how they can
put this abstraction to work. We propose the design of a language that makes this important isomorphism
concrete — proofs are real objects that programmers can build and manipulate without leaving their own
programming language. Such proofs can express important semantic properties of their programs. We believe
that this increases by orders of magnitude the probability that programmers will actually construct programs
that they reason about, and this will make measurable differences in the quality of the code produced. It is
not that programmers cannot reason about their programs; rather, it is that they find the barriers to entry
so high that they would rather not.

Intellectual Merit: In order to make this vision real, we have chosen to explore a new point in the design
space of formal reasoning systems. We propose the use of a programming language with a type system in
which the user expresses equality constraints between types, which the type checker then enforces. This
simple extension to the type system allows the programmer to describe properties of his program in the
types of witness objects which can be thought of as concrete evidence that the program has the property
desired. The addition of two other type extensions, rank-N polymorphism and extensible kinds, creates a
powerful new programming idiom for writing programs whose types enforce semantic properties.

This idiom enforces a coding style which experienced users of theorem provers may find tedious — the
programmer must be explicit about many things the theorem prover does automatically. But the automation
hides crucial details that make using the theorem prover hard for beginners. By making these issues explicit,
we ease the user into accepting the need for a reasoning system. We further argue, that the use of a reflection
mechanism, can re-automate many of these tasks. So, we can have the best of both worlds.

We propose that a language with these features is both a practical programming language and a logic.
This marriage between two previously separate entities further increases the probability that users will
apply formal methods to their programming designs. This kind of synthesis creates the foundations for the
languages of the future. We further propose that a language with these features makes an ideal meta-language
that can be used to combine and reason about multiple layers of system design. Such a meta-language can
play an important role in scripting and connecting more powerful tools (such as logical frameworks, theorem
provers, generic analysis frameworks, and model checkers) when needed to further enhance system trust.

Broader Impact: Defective software has a tremendous societal cost. First are the obvious up-front costs
of applying a continual stream of patches to installed software, combating viruses, and productivity lost
when work has to be done again or performed in a sub-optimal manner. Second are the opportunity costs of
defective software: projects that are never attempted, or whose scope is significantly reduced, because the
cost of software failure is too high to contemplate. Finally, there are the well-documented costs of major
software disasters. The research outlined in this proposal lays the foundation for building software that
works.

As a graduate-only institution, OGI is in a unique position to promote and advance the introduction of
new ideas into the work force. Our students are by and large employed professionals, uniquely motivated by
the problems that they have experienced. Our close connections with industry mean not only that we are
acutely aware of the problem of faulty software, but also that we have access to the industrial-strength tools
that are being developed to solve them. The effort required to leverage these tools was one of the prime
motivations for the research proposed. OGI has a tradition teaching research oriented topics in advanced
graduate level courses, and in building and maintaining widely distributed tools.
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1 Introduction

The ultimate goal of the proposed research is to construct tools and processes that can support the building
of large software systems that are secure, reliable, and that have predictable properties. Achieving this goal
is difficult because large systems are necessarily complex, and complex systems are hard to reason about.
To control complexity we build systems in layers. Without a means of ensuring that important semantic
properties of software are preserved across layer boundaries, any benefit (in terms of controlling complexity)
gained by layering may be more than offset by the resultant loss in predictability, reliability and trust.

Fortunately, there are many mechanisms for specifying properties of systems (models, first order logic,
higher order logic, modal logics), and there are many tools to prove that such specifications are sound
(theorem provers like PVS, Isabelle, HOL98, and ACL2; and logical frameworks like Elf and Twelf). The
problem is that the semantic gap between these formal tools and the languages in which the applications
are implemented is huge. This gap prevents the application of formal methods to software design on all but
the most important applications. If we are ever to build systems that we can trust on a large scale, we must
develop programming languages that narrow this semantic gap. We propose research into the design of the
programming languages of the future. Such languages will have the following properties.

e They will allow programmers to describe and reason about semantic properties of programs from within
the programming language itself, mainly by using powerful type systems. But, the languages will be
designed to interoperate with other external reasoning or testing systems as well.

e The languages will be within reach of the vast majority of programmers. Using the reasoning capability
of the language will not be too time consuming, nor will the learning curve for learning how to use
such features be too high.

e They will be practical, supporting all the capabilities we now expect in a programming language. But,
they may organize these capabilities in new ways that better control potentially unsafe features. They
will use static analyses to separate powerful but risky features from the rest of the program, and will
clearly mark the boundaries between the two. They will spell out the obligations required to control
the risk, and support and track how these obligations can be met.

e They will be efficiently implementable, but perhaps in new and novel ways. Rather than relying on
a strict compile-time/run-time distinction to perform a single heroic optimization, they will provide
a flexible hierarchy of stages from within the programming language. Staging will deal uniformly
with notions of compile-time, link-time, run-time, and run-time code generation. This will allow the
computation system to take advantage of important contextual information no matter when it becomes
available. The staging separation will also track semantic properties across stages. It will be possible
to know that a stage ¢ program always builds a stage ¢ + 1 program with some known property p.

The goals of this proposal are: (1) To take the first steps in the design of the programming languages
of the future. (2) To demonstrate that reasoning capabilities can be built into a practical programming
language by strengthening the type system in ways that are easy for the programmer to understand. (3)
To apply such a programming language to applications that require a heightened levels of predictability and
trust.

What we are proposing. As a step in this direction, we propose to explore a new point in the design
space of formal reasoning systems: the development of the language Qmega. (dmega is both a practical
programming language and a logic. These sometimes irreconcilable goals are made possible by embedding
the Qmega logic in a type system based on equality qualified types. This design supports the construction,
maintenance, and propagation of semantic properties of programs using powerful old ideas about types in
novel new ways.

How is this different from previous work? Theorem provers and logical frameworks have many of
the same goals, but we believe there are qualitative differences between them and the proposed work.



First, Qmega is a practical programming language. It supports practical programming features such
as input/output and side-effects, but uses its type system to cleanly separate these potentially dangerous
features from the core language of the logic.

Second, Qmega uses a single computational model for both its logic and its programming. It uses a
strict functional model with monads to separate effects from computation. This model suffices to describe
both programs and properties. Contrast this with logical frameworks where programs are purely functional
and the logic employs prolog style back chaining (EIf), or higher order pattern matching (Twelf). A similar
dichotomy arises in LCF style theorem provers such as Coq. In such systems, programs must be extracted
from proofs, which are themselves constructed in highly unnatural ways using tactics and proof combinators.
We believe that this two model paradigm is unnatural, and that the single model of Qmega is easier to learn
and use by ordinary programmers. We discuss this in more detail in Section 3.

Third, (2mega incorporates several powerful extension mechanisms. In Coq and other related systems,
proofs correspond to programs. In Qmega proofs are programs (with equality qualified types). More effi-
cient implementations can often be extracted from proofs by a form of type erasure. Unlike Coq[61], and
Isabelle[39] where type erasure is fixed and inflexible, type erasure in Qmega is implemented by the use of
explicit staging. The conjunction of staging and logical systems provides a powerful new tool. By using
staging, extraction of efficient programs from proofs is under the control of the programmer, and can be
targeted at any object-language. Staging can also be used to perform specialization and partial evaluation.
A second extension mechanism is Qmega’s ability to reflect representations of its types into the value world
and to perform arbitrary computations on these representations in a type safe manner. Because the logic of
Qmega is embedded in its type system, the sound reflection mechanism supports extension of Qmega’s logic
to deal with a wide variety of properties, both logical (semantic), and physical (resource usage).

Why now? We have already developed a preliminary version of Qmega. Its design has been heavily
influenced by a set of recent advances in the programming language community. The ability to combine type
inference with type checking and arbitrary rank polymorhism[22; 25, 53]; the semantics of staged computation
systems|7, 60, 49, 57]; and the use of simplified form of dependent typing called indezed types[70, 9, 10] have
combined to create a powerful new way to embed properties of programs in their types.

Why here? The P.I. is a pioneer in staged computation and meta-programming systems. In 2 previous
NSF supported projects Type Safe Program Generators (CCR-9625462, 10/96-03/00), and Heterogeneous
Meta Programming Systems (CCR-0098126 10/01-06/04), the P.I. and his students and collaborators have
been instrumental in the design and implementation of staged systems. This proposal is the logical next
step of applying these ideas to reason about real world systems.

Why this approach? Qmega is not just another functional programming language. 2mega is clearly
descended from Haskell. Its syntax and type system are similar, but it has features that Haskell does not. It
is strict, it has polymorphic kinds, kind extension, staging, and types qualified by equality predicates. But
it also drops some features of Haskell. This was done to simplify its semantics so that it is easier to reason
about. The features dropped include laziness, which can be simulated by staging; and the class system, which
can be simulated by (2mega’s richer types. (2mega opens intriguing possibilities for the design, exploration,
and implementation of programs with semantic properties. We believe exploring this point in the design
space of programming languages and reasoning systems makes progress towards the goals outlined above.

2 How Types Capture Properties

An important role of type systems in programming languages is to guarantee the property that programs do
not use data (including functions) in inappropriate ways. But types can also be used to ensure much more
sophisticated properties. Types have been used to ensure the safety of low level code such as Java Byte
Code[55, 3] or typed assembly language[33, 34]. These systems use types to model the shape of the stack
or register bank to ensure that low level code sequences are used properly (e.g. no stack underflow). Types
have also been used to model information flow[45, 63, 35] to ensure security properties of systems. Types
have been used to track resource control, such as the possibility of non-termination [24], or to place upper
bounds on the time consumed by a computation[11, 62]. Types have been used as a means of removing
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Figure 1: Classification of values(Nil,Cons,Base,and Step), types (Z,Succ,Sum, and Seq), and kinds (Nat) defined in Figure 2

dynamic error tests — for example, to enforce data structure invariants[69] (such as ensuring red-black trees
are well formed) or to make code more efficient by removing unnecessary run-time array bounds checks[70].
Finally, types have been used to track access control, which allows removing (or minimizing) stack inspection
overhead as a means of managing capabilities[65, 4].

As far as the proposer can tell from the literature, each of these systems was built using a general purpose
programming language. While the properties of these systems could be modelled by a formal system such as
a logical framework or theorem prover such as Coq[61], Isabelle[39], or Twelf[41], the properties are a meta-
logical property of the program and external to the implementation. In Qmega they could be a property
of the implementation, which could thus be enforced by the programming language. Rather than model an
existing application in a formal system, or use a formal system to build a model of an as-yet-unimplemented
application and then derive or generate an implementation from this model, we can both implement and
reason in a single paradigm with Qmega.

While formal reasoning systems are very good at what they do, they were not designed to be program-
ming languages. These tools are too expressive. There is something to be gained by being selective, choosing
features wisely, and maintaining the pragmatic properties of a system. Powerful tools are very useful and
have their place in system design, but there is a missing point in the continuum of tools between practical
and formal, and Qmega is designed to fill this gap. By doing so wisely, much is to be gained, in terms of
ease of use, a more gradual learning curve, and increased interoperability with other systems.

We have coined a new slogan for the process of designing trustworthy systems: Mostly types — just a
little theorem proving. We argue that many properties that can be modeled in a theorem prover or logical
framework, can also be modelled more straightforwardly in a programming language whose type system has
been strengthened in just a few simple ways. This allows properties of systems to be modelled in a more
light-weight manner, yet still be completely formal. Adding rank-N polymorphism, equality qualified types,
extensible kinds, and staging support makes this light-weight formality possible. Programmers who use
languages like O’Caml, Standard ML, or Haskell will find these extensions familiar. For these programmers
the learning curve will be small. Those already familiar with the use of a theorem prover or logical framework
will find that many of the powerful ideas behind these tools have been moved to a practical programming
language and have become more widely applicable. Thus, we can save the power and frustration of using a
theorem prover for when we really need it.

3 An Introduction to (2mega

In this section we introduce 2mega by comparing it to other different formal reasoning systems: Coq, and
Twelf. We claim that Qmega’s single computational model makes it easier to state and maintain semantic
properties of programs than using either of the other two. To be concise, we use a simple example, but our
experience has shown the results to be similar in much larger examples as well. The example is sequences
of elements with the semantic property that the length of the sequence is encoded in its type. For example
the sequence [a1, az,a3] has type (Seq a 3), and the type of the Cons operator that adds an element to the
front of a sequence would be a — Seq a n — Seq a (n + 1). The type of the append operator would be



data Seq a n
kind Nat = Z | S Nat = Nil where n = Z
| exists m . Cons a (Seq a m) where n = S m
data Sum w x y

= Base where w=7Z , x=y app :: Sumnmp -> Seq an -> Seq am -> Seq a p
| exists mn . Step (Sum m x n) app Base Nil ys = ys
where w=S m, y=S n app (Step p) (Cons x xs) ys = Cons x (app p xs ys)

Qmega encoding

Inductive nat : Set := Z : nat | S : nat -> nat. Inductive Seq [A:Set] : nat -> Set :=
Nil : (Seq A Z)

Definition plus : nat->nat->nat := |Cons : (n:nat; x:A; xs : (Seq A n))(Seq A (S n)).
Fix plus
{plus [n:nat] : nat->nat := Definition app [A:Set] : (m,n:nat)
[m:nat]Cases n of (Seq A m) -> (Seq A n) -> (Seq A (plus m n)).
Z=>mn Intros. Induction H. EApply HO. Simpl.
| (8 p) => (S (plus p m)) Apply (Cons A (plus nO n) x HrecH). Defined.
end}.

Coq encoding

elem : type.

el : elem. seq : nat -> type.

nil : (seq z).
nat : type. cons : elem -> (seq A) -> (seq (s A)).
Z : nat.
S : nat -> nat. app : (plus A B C) -> (seq A) —>

(seq B) -> (seq C) -> type.

plus : nat -> nat -> nat -> type. app_1 : app base nil X X.
base : plus z Y Y. app_2 : app (step P) (cons X XS) YS (coms X ZS)
step : plus (s X) Y (s 2) <- app P XS YS Zs.

<- plus X Y Z.
Twelf encoding

Figure 2: Comparison of three formal systems encoding lists whose types record their lengths.

Seq an — Seqam — Seqa (n+m). In order to type such functions it is necessary to do arithmetic at the
type level. In Figure 2 this is done in three different formal systems. The first encoding is in our preliminary
version of Qmega. The (Qmega example introduces two new types (Sum and Seq), a new function (app), and
anew kind (Nat). The new kind Nat introduces two new type constructors Z and S which encode the natural
numbers at the type level.

Kinds are similar to types in that, while types classify values, kinds classify types. We indicate this
by the classifies relation (::). For example: 5 :: Int :: *0 . We say 5 is classified by Int, and Int
is classified by *0 (star-zero). *0 is the kind that classifies all types that classify values (things we actually
can compute). *0 is classified by *1, etc. We sometimes write * as a shorthand for *0. There is an infinite
hierarchy of classifications. We call this hierarchy the strata. In fact this infinite hierarchy is why we chose
the name Qmega. The first few strata are: values and expressions that are classified by types, types that
are classified by kinds, and kinds that are classified by sorts, etc. In Figure 1 We illustrate the relationship
between values, types, kinds, and sorts introduced in Figure 2.

Constructor functions (Nil, Cons, Base, and Step) construct elements of data types. The type of
a constructor function is described in the data declaration. For example, the clause in the Seq declara-
tion: exists m.Cons a (Seq a m) where n = S m introduces the Cons constructor function. Without
the where qualification, the constructor function Cons would have type (Cons::a -> Seq a m -> Seq a
n). Equality Qualification (indicated by the where in the clauses for Nil, Cons, Base, and Step) and existen-
tial quantification (indicated by exists in the clauses for Cons, and Step) help encode semantic properties.
The where qualifies Cons’ type, in effect saying (Cons::a -> Seq a m -> Seq a n) provided n=S m. We
capture this formally by writing Cons: : (forall a n m.(n=S m)=>a -> Seq a m -> Seq a n). The equa-



tions behind the fat arrow (=>) are equality qualifications. Since n is a universally quantified type variable,
there is only one way to solve the qualification n=S m (by making n equal to S m). Because of this unique
solution, Cons also has the type (forall a m.a -> Seq a m -> Seq a (S m)). This type guarantees that
Cons can only be applied in contexts where n=S m. Existential quantification of the type variable m names the
intermediate length of the sublist of Cons, which if not introduced in this way would appear as an unbound
type variable.

Equality constrained types are a relatively new feature in the world of programming languages, and were
only recently introduced by Hinze and Cheney[10]. We can use the mechanism to model relations between
types, other than equality, by defining witness types. A witness is a value constructed by the constructor
functions (like Base and Step) of some data definition (like Sum). The type of such a value encodes the
property. The very existence of the witness implies that the property must be true. Witnesses to untrue
properties cannot be constructed since such values would be ill-typed. A value of type (Sum m n o) witnesses
the ternary arithmetic relation m+n=o.

Qmega’s types are used to enforce the property that the length of appending two lists is the sum of
the length of the two lists appended (app::Sum n m p -> Seq a n -> Seq a m -> Seq a p). The first
argument to app is a witness to the crucial property. Consider the first clause defining the append function
app Base Nil ys = ys — how is this typed? We know app’s type, so the first argument Base must have
type (Sum n m p), and the second argument Nil must have type Seq a n, and the third argument ys must
have type (Seq a m). The right-hand-side of the equation should then have type (Seq a p). But, since the
right-hand-side is the same as the second argument, this clause appears ill-typed. In short we write:

{Base :: Sumn m p, Nil:: Seqan, ys:: Segam} F ys:: Seqap
The key to type checking this clause, is to recognize that the constructor functions Nil and Base have
equality qualified types. In particular when they were constructed it must have been the case that n=Z (from
Nil) and that n=Z and m=p (from Base). So the complete typing judgment becomes:

{Base :: Sumn m p, Nil:: Seqan, ys:: Seqam, n=2, m=p}tys: Seqap
which is easily shown to be true.

The propagation and solving of equality qualifications is handled by the compiler and type checker. The
user is simply required to introduce equalities by using the where clause in data definitions, and stating the
type of the function by giving its type signature (i.e. app::Sum n m p -> Seq a n -> Seq a m -> Seq a
p) and the compiler does the rest. If a type signature is not supplied, the compiler will attempt to infer a
Hindley-Milner polymorphic type for the function. Hindley-Milner inference for app would fail since it uses
polymorphic recursion. The important thing to note is that Qmega uses a combination of type inference
and type checking. The presence of type signatures indicates that a function should be type checked. We do
not believe that supplying type signatures for such functions is overly burdensome. Since the types encode
properties of the object-language, the user ought to know what type his functions have, since it corresponds
to the properties he is trying to model. If the function type checks, then the user has a proof that the
program has the property described by the equalities between types.

3.1 A Comparison of Formal Reasoning Systems

We now come to the comparison part of this section. In the Coq and Twelf encodings in Figure 2 we see a
similar encoding of natural numbers at the type level, and an encoding of sequences with encoded lengths.
In Coq the definition of plus is defined by structural induction over nat types, but the definition of append
is given by a series of commands (Introduction, EApply, Simpl etc.) that guide the Coq theorem prover
to construct a proof object with the given type. The append function is then extracted (not shown) from
this proof object. In the Twelf encoding the plus function and the append function are encoded as logic
programs.

The big advantage of the (2mega approach is that the program is the logic. There is no translation
between programming notation to some external reasoning tool. Second, there is no need to switch gears
when reasoning about the system. Rather than thinking in terms of our implementation programming
language, in Coq we must think in terms of proof tactics, and in Twelf (given that the vast majority of



data V s t
= exists m . Z where s = (t,m) -- x0 V (t,m) t
| exists mx . S (Vmt) where s = (x,m) -- Xn Vmt >V (x,m) t

data Exp s t

= IntC Int where t = Int -- 5 Int -> Exp s Int
| BoolC Bool where t = Bool -- True Bool -> Exp s Bool
| Plus (Exp s Int) (Exp s Int) where t = Int -- x + 3 Exp s Int -> Exp s Int -> Exp s Int
| Lteq (Exp s Int) (Exp s Int) where t = Bool -- x <=3 Exp s Int -> Exp s Int -> Exp s Bool
| Vvar (V s t) - x Vst->Expst
data Com s
= exists t . Set (Vs t) (Exp s t) -——x :=e Vst->Expst->Coms
| Seq (Com s) (Com s) -- {s1; s2; } Com s -> Com s -> Com s
| If (Exp s Bool) (Com s) (Com s) -- if e then x else y Exp s Bool -> Com s -> Com s -> Com s
| While (Exp s Bool) (Com s) -- while e do s Exp s Bool -> Com s -> Com s
| exists t . Declare (Exp s t) (Com (t,s)) ——{ int x =5; s } Exp st -> Com (t,s) -> Com s

Figure 3: Typed, statically scoped, abstract syntax for the while language. The left hand column illustrates
the Qmega code that introduces data structures that represent the new object-language, and the middle
column (following the comment token --) suggests a concrete syntax that the abstract syntax represents.
The right hand column gives the type of the constructor function as described in the text below.

programs are not written in Prolog) we must think in terms of logic programs.

To be fair, we point out two caveats to the above arguments we address later. First, in Qmega we must
implement the Sum witness in a logical style. This style is closer to Twelf’s logical style than Coq’s functional
style, so in Qmega it appears we must think logically rather than functionally (at least at the type level).
This is a consequence of the mechanism used to solve equality constraints. Second, (this will probably only
make sense to those familiar with Coq) we could have defined append as a set, rather than a proposition,
and then defined it by induction as we did in Qmega. Had we done so we could no longer extract an efficient
program from this definition. By combining the programming language and the logic we can address both
these issues. In Section 8 we discuss removing the relational bias from the type system, and in Section 6 we
discuss extracting efficient programs.

4 A Type-Safe and Statically-Scoped While Language

We now turn to a richer example: modelling a simple imperative while language with semantic properties of
static scoping and type safety[38, 40]. Every while-program represented as an Qmega data structure is a proof
that every variable in that program refers to some binding site (static scoping), and that the program is also
well typed. The power of Qmega is that modelling these static semantic properties requires approximately
the same amount of time and intellectual effort one uses to model context free syntactic properties using other
means. In addition any Qmega program that manipulates a while-program data structure, is guaranteed
to maintain these properties. Qdmega programs that do not maintain the scoping and typing are statically
determined to be ill-typed and are thus rejected.

In Figure 3 we introduce data structures to represent the while language. The data declarations intro-
duce three new parameterized types V, Exp and Com for variables, expressions, and commands. These are
type constructors, and an actual element of the new types will have types like (V (Int,Bool) Bool), (Exp
(Int,Bool) Int), or (Com (Int,Bool)). We interpret (Exp s t) as an expression with type t in store s.
The type of a store captures the types of the variables currently in scope. A similar interpretation is given
to variables (V s t). Commands don’t have result types, but are interpreted in the store (Com s). The
declarations also introduce constructor functions Z, S, IntC, BoolC, etc. whose types are given as comments
in Figure 3. Readers familiar with type systems will notice that the types of the constructor functions look
a lot like typing judgments. We have used the equality constrained types to encode and reason about these
inference rules in the programming language.



update :: (Vs t) >t ->s -> s exec :: (Com st) -> st -> st

update Z n (x,y) = (n,y) exec (Set v e) s = update v (eval e s) s
update (S v) n (x,y) = (x,update v n y) exec (Seq x y) s = exec y (exec x s)
exec (If test x1 x2) s =
eval :: Exps t ->s >t if (eval test s) then exec x1 s else exec x2 s
eval (IntC n) s = n exec (While test body) s = loop s
eval (BoolC b) s = b where loop s = if (eval test s)
eval (Plus x y) s = (eval x s) + (eval y s) then loop (exec body s)
eval (Lteq x y) s = (eval x s) <= (eval y s) else s
eval (Var Z) (x,y) = x exec (Declare e body) s = store
eval (Var (S v)) (x,y) = eval (Var v) y where (_,store) = (exec body (eval e s,s))

Figure 4: Interpreters for the while language. These functions illustrate pattern matching over constructor
functions, and semantics preserving meta-functions. All of update, eval, and exec manipulate while-
programs in a way that respects their semantic properties. In fact, because all while-programs are well
typed these interpreters are tagless[59], and they return values whose types correspond to the types of the
while-programs.

An observation about the type parameters of (dmega type constructors. The parameters of
type constructors in the while-language play a qualitatively different role than type parameters in other data
structures. Consider the declaration for a binary tree datatype:

data Tree a = Tip a | Fork (Tree a) (Tree a).
In this declaration the type parameter a is used to indicate that there are sub components of Trees that are
of type a. In fact, Trees are polymorphic. Any type of value can be placed in the “sub component” of type
a. The type of the value placed there is reflected in the Tree’s type. Contrast this with (Com s). Here there
are no sub components of type s. Instead, the parameter s is used to stand for an abstract property (the
types of the statically reachable object-variables). The where qualifications restrict the legal instances of s.
Type parameters used in this way are sometimes called index types[68, 70].

Manipulating while-programs. In Figure 4 a small interpreter for the while language is given.
Expressions are interpreted by the function eval: :Exp s t -> s -> t. The function eval, given a term of
type (Exp s t) producers a function from s to t. eval gives meaning to the term. Given store: :s, a data
structure which stores values for the expression’s variables, then we can produce the value of the expression
by applying eval to the expression and store. The type of the store models the types of the reachable
variables in the object-program. In this model variables are modeled by integers (using a de Bruijn-like
notation), and stores are modelled by nested pairs. The nested pairs have the following shape (0, (1, (2,
...))) where the 0, 1, and 2 indicate the index of the variable that “reaches” to the corresponding location
in the nested pair. Because of the natural number-like definition of the type (V s t) we see that (Var Z)
models the variable with index 0, (Var (S Z)) models the variable with index 1, and (Var (S (S 2)))
models the variable with index 2, etc. Thus if the type of the store is (Int, (Bool,a)) then variable with
index 0 has type Int and the variable with index 1 has type Bool.

Under this interpretation it is easy to understand the functions update, eval, and exec. Consider:
(update (S Z) False (12,(True,0)). This should return a new nested pair where the location of the
index ((S Z) which is 1) has been replaced by False giving (12, (False,0)). This proceeds by
(update (S Z) False (12,(True,0)) — (12,update Z False (True,0)) — (12, (False,0)). Note
how pattern matching chooses the correct clause to execute.

In a similar fashion the eval function when applied to a variable (Var i) “extracts” the i value from a
nested pair. (eval (Var (S 7)) (12, (True,0)) — (eval (Var Z) (True,0)) — True. The execution
function for commands (exec::Com s -> s -> s) is a store transformer, transforming the store according
to the assignments executed in the command.

Since the properties of the object-programs are captured in their types, respecting these types ensures
that the meta-programs maintain the properties of the object programs. For example given that the meta-
level variables x and sum are defined by sum = Z and x = S Z, observe:

prog :: Com (Int,(Int,a))



prog = Seq (Set sum (Int 0)) -- { sum = 0;

(Seq (Set x (Int 1)) - x=1;

(While (Lteq (Var x) (Int 5)) -- while (x <= 5)
(Seq (Set sum (Plus (Var sum) (Var x)))  -- { sum = sum + x;
(Set x (Plus (Var x)(Int 1)))))) - x=x+1; } }

The term prog has a meta-level type that states that it is well-typed at the object-level, only if the
object-level store has an Int at indexes 0 and 1. If one tries to create an ill-typed object-level term a static
type checking error occurs. For example consider the command (if x then x := 0 else x := 1) where
the variable x needs to be typed as both an Int and a Bool.

badlf = If (Var x) (Set x (IntC 0)) (Set x (IntC 1))

In the expression: Set x (IntC 0) the result type: Com (a,(Int,b))
was not what was expected: Com (a, (Bool,c))
Int does not unify with Bool

Possible Enhancements. Enhancing object-languages with type safety can be accomplished in two
dimensions: a richer language or a richer type system. We have done both. We have also modelled several
different styles of language semantics other than the big-step style given for the while language. One of
our most interesting semantics consisted of a typed small step semantics. Since this small step semantics is
typed, it amounts to a machine checked subject reduction proof[67].

5 Extrapolating to a Realistic Example

The Border Gateway Protocol (BGP) is the protocol used to exchange path routing information between
different autonomous systems (i.e. sub networks administrated by different companies such as ISP’s or
backbone suppliers). BGP is a dynamic routing mechanism as the path information evolves over time. BGP
tries to meet two sets of competing demands. On one hand, the protocol must reliably establish paths
between network addresses over a constantly changing network configuration. On the other hand, it must
allow the administrators of each autonomous system to make decisions about when and how to advertise
paths that meet their entrepreneurial goals (i.e. preferring routes over their own networks or those of their
partners with which they have financial agreements). System administrators meet both sets of goals by using
the BGP protocol to write policy functions. The construction of bad policy functions (either by accident
or by malicious intent) has dire consequences. Such policies can break the network (making some addresses
unreachable), or cause large financial losses. There has been much recent interest in devising domain specific
policy languages (DSPL) that guarantee network integrity (such as eventual convergence to stable or optimal
paths) while allowing the freedom to craft policies to meet entrepreneurial goals. The guarantees supported
by these DSPLs are generally based upon mathematical models of path vector protocols[19, 54]. One such
model, proposed by Sobrinho[54] models path vector protocols by an algebra, and shows if the algebra
has certain necessary properties then any network protocol built with that algebra will have some desired
properties. The key to applying these techniques is to design DSPL’s such that every DSPL program is
guaranteed either (1) to fit within some known algebra (easy but restrictive) or (2) can be described by some
as yet unknown algebra that also has the desired property. The latter is harder, as the algebra often has
to be constructed and then proved to have the required property, but is more flexible. Constructing such
an algebra requires sophisticated algorithms, and proving its properties relies on using automated decision
procedures such as BDD’s or SAT-solvers.

Qmega can be invaluable in this process by modeling the syntax and static semantics (type system) of
the DSPL as shown in the previous section. 2mega can then be used as a programming language to derive
a program specific algebra. Omega can then be used to prove that the constructed algebra supports the
necessary properties. If it does the DSPL program is compiled, or if it does not, Qmega can reconstruct an
error message from the failure trace to provide a domain specific error message explaining why the DSPL
program is not safe. Q2mega’s use of property encoding types will disallow certain classes of semantic errors,
and catch other kinds of errors earlier.



x =127

y=8S12 eval2 :: Exp s t -> Store s -> Code t
el = Lteq (Plus (Var x) (Var y)) eval2 (IntC n) s = lift n
(Plus (Var y) (IntC 1)) eval2 (BoolC b) s = 1lift b
eval2 (Plus x y) s =
data Store s [l $(eval2 x s) + $(eval2 y s) |]
= M (Code s) eval2 (Lteq x y) s =
| forall a b . N (Code a) (Store b) [l $(eval2 x s) <= $(eval2 y s) |]
where s = (a,b) eval2 (Var Z) (N a b) = a

eval2 (Var (S v)) (N a b) = eval2 (Var v) b
test e = [| \ (x,(y,2)) ->\
$(eval2 e (N [IxITWLIylTMIIz11)))) 1] -- test el -——> [I \ (x,(y,2)) > x+y<=y+1]]

app3 :: Sum n m p -> Code(Seq a n) -> Code(Seq a m) -> Code(Seq a p)
app3 Base xs ys = ys
app3 (Step p) xs ys = [| case $xs of Cons z zs -> Cons z $(app3 p [lzsl] ys) |]

test2 :: Sum u v w -> Code (Seq a u -> Seq a v -> Seq a w)
test2 witness = [| \ xs ys -> $(app3 witness [lxs|] [lysl1) |]

-- test2 (Step (Step Base)) --->
-—— [l \'xs ys -> case xs of (Cons z zs ) -> Cons z (case zs of (Cons w ws) -> Cons w ys) |]

Figure 5: Illustrating Staging, removal of interpretive overhead (top), and witness removal (bottom).

6 Staging Supports Efficient Implementations

Staged programs proceed in stages. Each stage “writes” a program that is executed in the next stage.
Practical examples of staged systems include run-time code generation [14, 42, 26, 29|, dynamic compi-
lation [5, 6, 18, 17], and program generators[30]. Staging is the key technology that supports efficient
implementations without interpretive overhead. In 2 previous NSF supported projects Type Safe Program
Generators (CCR-9625462, 10/96-03/00), and Heterogeneous Meta Programming Systems (CCR-0098126
10/01-06/04), the proposer has reported on the design[60], use[47, 48], semantics[57], type systems[7, 32, 51],
implementation[31, 49, 8], and open problems[50] of meta-programming systems.

Staging is an programming language interface to code generation. We have built two large sophisticated
systems that implement staging. MetaML[47], a system with run-time code generation, and Template
Haskell[49], a system with compile-time code generation (think macros, quasi-quotes, and type safety). In
Figure 5 we use the staging mechanism of Qmega. It consists of the annotations brackets ([l _ 1) and
escape ($( - )). Brackets introduce a new code template and specify that the expression inside the brackets
should be generated as a program for the next stage. Within brackets, escape specifies a hole within a
template. The escaped expression is executed (resulting in a piece of code), and the resultant code is spliced
into that hole. Staging makes a perfect complement to equality qualified types for two reasons. First, many
applications can be encoded as domain specific languages (DSLs). Such languages can be given meaning
by writing a simple interpreter (like the eval and exec functions from Figure 4). Staging an interpreters
produces an efficient compiler as the interpretive overhead or traversing the abstract syntax is removed. This
is illustrated in the top of Figure 5 for the Exp fragment of the while-language.

Second, staging can implement program extraction from proofs. Both Coq and to some extent Isabelle
support program extraction from proofs. These features are limited because the target languages are hard-
wired and the generated programs must conform to the type system of the target language. This often
requires discarding important information about the source program, or run time passing of static informa-
tion. If we consider the app function from Figure 2 as a proof (because it takes a witness Sum type as well as
two lists) staging can remove the witness in an early stage, resulting in a new piece of code which can rely
on all the (now) static information encoded in the witness. Note how once given the witness (Step (Step
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Code producer Code consumer

Figure 6: Proof carrying code process

Base)) the staged function app3 can unroll the loop. So not only is the witness removed in the second stage,
but the resulting program is no longer even recursive!

The ability to control extraction is important. Two different programs extracted from the same proof
object may have very different physical properties (i.e. heap space usage). Staging allows users to extract
programs in a manner that fits their needs.

7 Example: Proof Carrying Code

Peter Lee, on his web site states[27]: Proof-Carrying Code (PCC) is a technique by which a code consumer
(e.g., host) can verify that code provided by an untrusted code producer adheres to a predefined set of safety
rules ... The key idea behind proof-carrying code is that the code producer is required to create a formal safety
proof that attests to the fact that the code respects the defined safety policy. Then, the code consumer is able
to use a simple and fast proof validator to check, with certainty, that the proof is valid and hence the foreign
code is safe to execute.

In Figure 6 we illustrate how this might be implemented using (2mega. The code producer produces
code whose safety policy is embedded in the type of the object-code as we have illustrated in the previous
section. The producer than marshalls (pretty prints) this code into some flat untyped representation that can
be transported over the Internet (a String in the figure). On the consumer side, the consumer unmarshalls
(parses) this string into an untyped annotated abstract syntax tree. The check is a dynamic (i.e. at run-time)
attempt to reconstruct the typed object-code (a static property) from the annotated untyped AST. If this
succeeds then the consumer has a proof that the object code has the desired safety property, since all well
typed object-programs have the safety property. The only difficult step in this process is the reconstruction
of the typed object-code from the untyped annotated AST. In order to describe how this is done we introduce
additional features of QQmega, polymorphic kinds and representation types. We apply these features to the
dynamic construction of the statically typed Exp datatype from the while-program example (Figure 4).

In Figure 7 we define two untyped algebraic datatypes TyAst and ExpAst that we will use as our
annotated abstract syntax types. The type TypeR is a representation type. It reflects objects that live in the
type world (Int, Bool, and pairs) into the value world. Note how IntR:: (TypeR Int) is a value, but its type
completely distinguishes what value it is. This notion has been called singleton types[56, 46], but we think
representation types is a more appropriate name. Writing a program that manipulates representation types
allows the programmer to encode operations that the type system (with its limited computation mechanism
— essentially solving equalities between types) cannot. It cannot be over-emphasized how important this
ability is. Typing problems that cannot be solved by the type system can be programmed by the user when
necessary.

We choose to represent Int, Bool and pairs because these types either appear as type indexes to Exp
and Com or describe the shape of the store as a nested pair. The key to dynamic reconstruction of static
type information is the Eq data type. The Eq type constructor has a polymorphic kind (Eq: :forall (k:*1)
(k1:%1) . k ~> k1 ~> *0). This kind means that the arguments to Eq can range over any two types
classified by k and k1 that are themselves classified by *1. This includes types like Int and Bool, as well as
type constructors like Tree and List.
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data TyAst = I | B | P TyAst TyAst
checkT :: TyAst -> TJudgment

data ExpAst checkT I = TJ IntR
= IntCA Int checkT B = TJ BoolR
| BoolCA Bool checkT (P x y) =
| PlusA ExpAst ExpAst case (checkT x,checkT y) of
| LteqgA ExpAst ExpAst (TJ a, TJ b) -> TJ(PairR a b)
|

VarA Int TyAst
-- Judgments for Expressions
-- Equality Proofs and Type representations data EJudgment s = exists t . EJ (TypeR t) (Exp s t)
data Eq a b = EqProof where a=b
checkE :: ExpAst -> TypeR s -> Maybe (EJudgment s)

data TypeR t checkE (IntCA n) sr = succeed(EJ IntR (IntC n))
= IntR where t = Int checkE (BoolCA b) sr = succeed(EJ BoolR (BoolC b))
| BoolR where t = Bool checkE (PlusA x y) sr =
| exists a b . PairR (TypeR a) (TypeR b) do { EJ t1 el <- checkE x sr

where t = (a,b) ; EqProof <- match tl IntR
; EJ t2 e2 <- checkE y sr

match :: TypeR a -> TypeR b -> Maybe (Eq a b) ; EQProof <- match t2 IntR

match IntR IntR = succeed EqProof ; succeed(EJ IntR (Plus el e2))}

match BoolR BoolR = succeed EqProof checkE (VarA O ty) (PairR s p) =

match (PairR a b) (PairR c d) = do { TJ t <- succeed(checkT ty)
do { EqProof <- match a ¢ ; EqQProof <- match t s

; EqProof <- match b d ; succeed(EJ t (Var Z))}
; succeed EqProof } checkE (VarA n ty) (PairR s p) =
match _ _ = fail "match fails" do { EJ t’ (Var v) <- checkE (VarA (n-1) ty) p
; TJ t <- succeed(checkT ty)
-- Judgments for Types ; EqQProof <- match t t’
data TJudgment = exists t . TJ (TypeR t) ; succeed(EJ t’ (Var (S v)))}

Figure 7: Implementing the check function for the proof carrying code example.

The constructor function (EqProof::forall (k:*1) (u:k) (v:k).(u = v) => Eq u v)) is a first-
class (dynamic) witness to the fact that the static types u and v are equal. Equality witnesses can be created
in a static context where u is equal to v then passed around as data to a new context where this information
is needed. One way to create these witnesses is the use of the function match::forall u v.TypeR u ->
TypeR v -> Maybe(Eq u v). The function match dynamically tests whether two representation types are
equal. If they are, rather than return a boolean value, it returns either a successful equality witness or it
returns a failure. The witness can be used in a pattern matching context to guard an expression with this
new piece of static information (that u=v). For example, given that x has the type Eq u v, in the case
expression: (case x of { Eq -> ... }), the case arm indicated by ... can be type checked under the
static assumption that u=v.

The standard typing rules for equality qualified types provide this mechanism. There is nothing new
here, only a new way of using the old techniques. The datatypes EJudgment and TJudgment are forms
of TypeR and Exp that existentially hide some of the type indexes to those type constructor functions.
EJudgment also encapsulates a representation of the type t that it encapsulates.

The functions match, checkT, and checkE are examples of partial functions. They might succeed,
producing some result ans, but they also might fail. In Qmega this is indicated by a result type (Maybe
ans). They are programmed using the do notation which makes it easy to program partial functions that
are comprised of sub computations that might also fail. A sequence of partial computations do { p; <-
€1; ... ; Pn < e, } succeeds only if all the e; succeed. If any of them fails then the whole sequence
fails. If the e; succeeds with a structured data object, then the p; can be used to pattern match against the
result if it is successful. If the e; is successful but the object returned doesn’t match against the p; then the
whole sequence fails as well.
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We explain one clause of the definition of checkE. Consider checkE (PlusA x y) sr = ... First,
recursively check the subterm of the annotated AST, x. This returns a judgment encapsulating a typed term
(el::Exp s _a) and a representation of its type (t1::TypeR _a) where _a is an existentially quantified
type variable. Test if this representation matches IntR. If it succeeds the witness (EqProof::Eq Int _a) is
pattern matched and the rest of the computation can proceed under the static assumption that _a is equal
to Int. In a similar fashion check and then test y, and finally succeed with a new judgment.

Possible Enhancements. We believe this technique can be extended to the full while language
including the Com language. In that case the judgment for commands must include representations for stores
in the way that the judgment for expressions contained representations for types. The same techniques can
be used to infer well typed object-code terms from untyped abstract syntax trees without annotations, but
the details become more complicated. The reflection of the type world into the value world is a powerful
idea. It lets the user dynanmically construct objects with static properties that the static type system may
not be able to infer with its limited computational mechanism.

8 Research Plan

The research proposed falls into three broad categories: theoretical, implementation, and applications. We
plan to enhance our preliminary design based upon our theoretical investigations, build a robust implemen-
tation incorporating useful meta-programming features, and develop a corpus of design patterns of the use
of Qmega as a means of documenting its use. We also plan to teach the use of Qmega in our graduate level
degree program in High Assurance Software. We discuss our plan in each of these areas in the following sub
sections.

8.1 Theoretical Issues

The features of rank-N polymorphism, equality qualified types, and polymorphic kinds are all well studied.
The knowledge of how to incorporate them into a programming language in a safe manner is a very recent
accomplishment. Qmega is a synthesis of these and other ideas. This synthesis leads to some theoretical
questions. In this section we discuss the recent work and theoretical issues yet to be resolved.

Rank-N Polymorphism. Polymorphism is a powerful technique. Combining it with parametricity[43,
44, 64] allows types to be used to express interesting properties of programs. Rank-N polymorphism supports
functions (and data structures) that take polymorphic functions as arguments (as opposed to Hindley-Milner
polymorphism where all polymorphism is at the outer level of a type). System F[16] captures rank-N
polymorphism but it requires type annotations on every binding site just to do type checking, and in most
interesting cases type inference is undecidable. Discovering a practical mechanism that supports rank-N
polymorphism, requiring type annotations only when rank-N types are desired, and performs Hindley-Milner
type inference elsewhere, in a manner that is understandable by humans is a very recent accomplishment[25,
53]. Qmega’s support of rank-N polymorphism is based upon an unpublished paper Practical type inference
for arbitrary-rank types [22] by Simon Peyton Jones and Mark Shields. This paper was particularly useful as
it explained in practical terms how to build such a type checker — in particular how to set up the subsumption
relation that describes which types are more polymorphic than others.

Research issues still to be resolved revolve around the use of rank-N polymorphism and Higher-order
Type constructors. The current system supports rank-N types (as described in [22]) only on the back-end
of the arrow type constructor (for example: (forall a . a -> a) -> T Int). This is sufficient to model
the examples we have done so far but extending this to arguments of other type constructors (i.e. T Int
(forall a . a -> a) Bool) requires extending the notion of subsumption to type constructors other than
the type arrow. We hope to find inspiration in other work [25, 53] in this area.

Equality Qualified Types. Expressing that two types are equal in a manner controllable by the
programmer is the key to embedding semantic properties of object-programs. The first work based expressing
equality between types in a programming language was based on the idea of using Leibniz equality to build
an explicit witness of type equality. In Qmega we would write (data Eq a b = Witness (forall f.f
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kind Nat = Z | S Nat {Plus Z y} =y
{Plus (S x) y} = S {Plus x y}

app :: ({Plus n m} = p) =>
Seg an ->8eq am->Seq ap data Seq a n
app Nil ys = ys = Nil where n = Z
app (Cons x xs) ys = Cons x (app xs ys) | exists m . Cons a (Seq a m) where n = S m

Figure 8: Type functions restricted to equality qualifications

a -> f b)). The logical intuition behind this definition is that two types are equal if, and only if, they
are interchangeable in any context (the arbitrary type constructor £). Note how this relies heavily on the
use of higher rank polymorphism. The germ of this idea originally appeared in 2000[66], and was well
developed two years later in 2002[1, 20]. Programming with witnesses requires building explicit casting
functions Cfa] — C[b] for different contexts type C. This is both tedious and error prone. Programming
with witnesses has some problems for which no solution is known!. Using type equality became practical with
the introduction of equality qualified types by Hinze and Cheney[10]. The implementation of Qmega is based
on this key idea. We know that a type system built on top of equality constrained types is sound because of
work by Hinze and Cheney[10]. What happens with the addition of rank-N polymorphism, extensible and
polymorphic kinds, and staging?

Logical Soundness. The soundness of the type system ensures that well-typed programs do not go
wrong at run-time. But, this is not enough. We need logical soundness as well. When a type indicates a
program has a property, this really must be the case. It is possible to spoof a property when the semantics
of the language includes non-terminating computations. Divergent computations can often be given any
type. In this situation, the type of a program may only indicate that it contains a divergent computation,
rather than having the desired property indicated by the type. Thus it becomes important to track non-
termination. As we see it, there are two possible approaches to tracking non-termination. First, use the type
system itself to track non-termination as suggested in the work of Launchbury and Paterson[24]. The second
approach is to use a separate termination analysis on the definition of every function along the lines as is
done in ACL/2[23]. It may even be possible to combine the two approaches. Ensuring logical soundness is
the biggest research challenge posed by this proposal.

Polymorphic Kinds. The use of kinds to classify types has a long history[2, 21, 33]. Adding extensible
kinds (and higher classifications) to a practical programming language like Qmega was a natural next step.
Research in this area revolves around use of polymorphic kinds, in particular the use of types that have
polymorphic recursive kinds. This occurs when an data type definition is given a polymorphic kind signature,
and the type being defined is used in its own definition at more than one instance of its (polymorphic) kind.

Removing the Relational Bias in the Type System. We believe strongly that a functional
approach to specifying properties is easier to teach and to learn and has a much smaller learning curve than
a relational approach, especially for beginners. Unfortunately, while 2mega is functional, the approach we
have outlined so far relies on a relational model at the type level. An example illustrates this best. In Figure
2 we defined polymorphic sequences whose lengths are recorded in their types. Thus a term with type (Seq
Int (S Z)) is a sequence of integers whose length is one. In order to define an append function on this
type, we needed to encode addition on types of kind Nat. We did this using a relational approach. The
value of type (Sum w x y) is a witness that w + x = y. This relational approach was made necessary by
the equality qualified type system. The mechanism for solving equality qualifications depends crucially on
congruence laws. For example, from the equality (Tree x) = (Tree y) we can conclude that x = y. Such
congruence laws must hold for all type constructors. Thus if we allowed functions to be defined at the type
level we could express the type of app as Seq a n -> Seq a m -> Seq a (Plus n m), but we’d lose the
congruence laws since we cannot conclude Z = (S z) from (Plus Z (S Z)) = (Plus (S Z2) 2).

We believe it is still possible to remove the relational bias, and retain the congruence laws by putting

.e. given a witness with type (Eq (a,b) (c,d)) it was not known how to construct another witness with type (Eq a c)
or (Eq b d). This should be possible since it is a straightforward consequence of congruence.
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some restrictions on the formation of types. This is illustrated in Figure 8. Here we separate type constructors
(like Tree and Seq) from type functions (like Plus) by enclosing applications of type functions in braces.
Congruence holds for type constructors only. We restrict type function applications to the qualifications
of types (behind the fat arrow (=>) only). We allow type functions to be defined by pattern matching
equations, just as we define functions at the value level, but we use the brace notation to indicate type
function application. Such equations are only used to simplify equations before solving. We have only begun
to think about how to implement such a system. We must also prove the soundness of the type system under
such a drastic change, and prove the decidability of solving equations that derive from the use type function
application.

8.2 Implementation

We have built a prototype of Qmega as a proof of concept. It is just an interpreter. A robust implementation
would include a compiler and additional meta-programming features. Features such as parsing[28] and
freshness[15] seem too important not to include in a language designed to be a meta-language.

Freshness. Some object languages that have binding constructs which have a notion of alpha equiv-
alence (i.e. the renaming of local variables does not matter). In such a case, a good meta-language should
not distinguish between two alpha equivalent object-programs. In our examples in the previous sections we
finessed this problem by using de Bruijn indices to represent binding. Other new powerful techniques built on
the notions of freshness and the permutation of names have recently been defined using a Fraenkel-Mostowski
universe of sets with atoms[52]. This kind of system has been shown to provide a good, syntax-independent
mathematical model of fresh bindable names and a-conversion [15]. Adding freshness to Qmega will make
it a more useful meta-language. Does this have any effect on the properties we desire for Qmega? We are
particularly concerned about the effects freshness will have on the inclusion of staging.

Practical features. Because the logic of the system is embedded in the types, proof failures manifest
themselves as type checking errors. An interactive type exploration mechanism could allow users to explore
the internal state of a failed type checking run to debug their proofs. Other features such as a foreign
function interface are also necessary if Qmega is ever to become a practical language as we desire. Other
practical concerns such as efficiency and useable error messages also pose significant engineering challenges.

8.3 Applications

A handbook of examples illustrating how to apply 2mega to paradigmatic object-languages, or how to use
Qmega to build bridges to other tools may be the most valuable artifact of the research. Examples of
programming paragons include the use of representation types to move computation into the value world,
the use of de Bruijn like indices to handle binding, the use of data types as witnesses of relationships between
types, and the use of the Eq type (Section 6) to make dynamic tokens of static relationships. One can think
of these as Meta-programming patterns. Other important patterns we would like to investigate include:

Property preserving transformation. Formal properties of languages can be mapped across layers
written in different object languages by the use of property preserving transformation. In this scheme
important properties are captured in two layers (often using different mechanisms in each layer) and the
translation between layers preserves the property. An example motivated by the paper From System F to
Typed Assembly Language[33] would be to introduce a typed assembly object-language, and demonstrates
how the while language can be mapped into the assembly language in a way that preserves its semantic
properties.

Efficient Implementation of DSLs Using Staging. Staging supports runtime code generation[60,
47]. By the use of staging and typed object languages we can create object language implementations that
have neither interpretive overhead, nor tagging overhead [59, 58]. We believe it is possible to use these
techniques to implement DSLs with all the usual features such as functions and procedures, data structures,
pattern matching[37, 36], and polymorphism, as well as unusual features such as modal [12, 13] types.
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Generic Programming. Generic programming is the ability to write one program to operate over
data structures of many different types. By exploiting type representations (like TypeR in Figure 7) Qmega
supports generic programs such as printing (print::TypeR t -> t -> String) and equality functions
(equal::TypeR t -> t -> t -> Bool). By using staging we can program generators (equalGen :: TypeR
t -> Code(t -> t -> Bool)) that build efficient implementations without interpretive overhead.

Dynamic Typing. The need for programs that interact across a network is becoming more and more
important. Programs which can perform dynamic type checks on untrusted input once, and then run in a
type-safe mode thereafter will be more efficient[51] and safe than those that use continuous dynamic type
checking. The use of type representations as dynamic witnesses of static properties provide a wide range of
freedom in building systems which use a combination of static and dynamic checking [1].

9 Broader Impacts

The OGI School of Engineering is in a unique position to make a broad impact in the design of trustworthy
software. The feature that distinguishes OGI’s CSE department from other leading departments with similar
levels of research activity is our close connection with industry. This is reflected not only in industrial support
for our research, but also in our student body. Many of our Ph.D. students come to us from industry, and the
majority of the students in our MS program are either part-time students currently employed in industry, or
full- time students who have worked for some years in industry and have decided to continue their studies at
a higher level. As such our students are motivated by the real problems of commercial software development,
and are open to trying new and better ways of developing software.

At OGI we have recently proposed to redesign the Master of Science in Computer Science degree (as
taught at OGI) to focus on constructing reliable and secure software (NSF education proposal 0417615).
We are not proposing adding a few new courses, that would necessarily be electives taken by a minority of
students, but a thorough re-design of our whole masters curriculum. The new curriculum will ensure that
every student is familiar with the ideas needed to construct reliable and secure software, and has mastered the
principles behind them (discrete mathematics, logic, modeling, model checking, theorem proving, programs
as data, type theory, and systematic testing). Many of these key ideas are language based mechanisms, and
we envision Qmega as an integral tool for teaching them. Our industrial collaborators are making available
to us powerful verification tools as well as compelling examples of how these they can be used to change the
nature of software development, and 2mega can be profitably used to script these tools. We plan to use
our preliminary version of the Qmega interpreter in our graduate course The Design and Development of
Domain Specific Languages in the spring of 2004.

10 Conclusion

We have proposed to explore a new point in the design space for formal reasoning systems. Our choice is
closer to the world of programming languages than many other reasoning systems. We see this as a positive
benefit and conjecture that systems built along the proposed lines will be more widely used and thus lead
to better and more trustworthy software.

The logic of the system is embedded in the type system. Semantic properties of programs, which
before could only be expressed at a meta-logical level (and were thus necessarily external to the world of
the programmer) can now be expressed in the programming language. While the proposed system leads
to a proof construction style that is more explicit than in other systems, we believe this is an asset for
programmers who are new to formal reasoning about software. The explicit nature of the proofs localizes
failed proof attempts, and makes it easier to reason about the failure. , The explicit nature of the programs
also minimizes the size of the state that needs exploration when failure occurs.

Advanced users can employ a reflective mechanism that enables intensional analysis of reflected types,
and thus allows them to write tactic level proof scripts at the value level on these reflections. The tactics
can then be reflected back into the type system in a sound manner. We conjecture this can lead to a system
with the best features of both worlds.
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Tim Sheard and Simon Peyton Jones. Template Meta-programming for Haskell. Haskell Workshop,
Pittsburgh, October 3 2002. ACM Press.

Tim Sheard and Nathan Linger. Search-Based Binding Time Analysis using Type-Directed Pruning.
Asian Symposium on Partial Evaluation and Sematics-Based Program Manip[ulation (Pepm’02), pp.
20-31. September 12-14, 2002. Aizu Japan. ACM Press.

Tim Sheard. Generic Unification via Two-Level Types and Parameterized Modules. Sixth ACM SIG-
PLAN International Conference on Functional Programming (ICFP’01). ACM Press. Florence, Italy,
September 3-5, 2001. pp 86-97

Tim Sheard. Accomplishments and Research Challenges in Meta-Programming. Invited talk - Second

International Worksop on Semantics, Applications, and Implementation of Program Generation. Septem-
ber, 2001. Springer-Verlag, LNCS volume 2196.

Walid Taha and Tim Sheard. MetaML: Multi-Stage Programming with Explicit Annotations. Special
issue of the journal Theoretical Computer Science on Partial Evaluation and Semantics-Based Program
Manipulation. Volume 248/1-2, November 2000.

OTHER SIGNIFICANT PUBLICATIONS:

Bill Harrison and Tim Sheard. Dynamically Adaptable Software with Metacomputations in a Staged
Language. Second International Worksop on Semantics, Applications, and Implementation of Program
Generation. September, 2001. Springer-Verlag, LNCS volume 2196.

Leonidas Fegaras and Tim Sheard. Revisiting Catamorphisms over Datatypes with Embedded Func-
tions. Proceedings, 23rd ACM-SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Jan. 1996.



John Launchbury and Tim Sheard. Warm Fusion: Deriving Build-Cata’s from Recursive Definitions.
Proceedings of the conference on Functional Programming and Computer Architecture, La Jolla, Ca.,
Jun. 1995. pp. 314-323

Tim Sheard and Leonidas Fegaras. A Fold for All Seasons. Proceedings of the conference on Functional
Programming and Computer Architecture, Copenhagen, Jun. 1993.

SYNERGISTIC ACTIVITIES:

MetaML is a freely distributed staged programming language. It includes all the features of Standard
ML except the module system, including eq types, references, exceptions, and the value restriction. It
also implements a number of extensions to ML such as rank-2 polymorphism, extensible records (flex
types), existential types, polymorphic recursion, higher order kinds, and a special syntax for the use of
monads.

MetaML was first released in March of 2000, and can be downloaded by visiting:
http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html

Course ware. Tim sheard has developed, taught, and published (via the web) three advanced graduate
level courses that support his research.

e Design and Development of Domain Specific Languages.
http://wuw.cse.ogi.edu/ sheard/cse583W2000/index.html.

e Advanced Functional Programming.
http://www.cse.ogi.edu/ sheard/courses/StagedCompW01/index.html

e Fundamentals of Staged Computation.
http://www.cse.ogi.edu/ sheard/cse581W01/index.html

The three courses encompass over 1800 pages of published notes, assignments, solutions, readings, and
bibliographies.

Director of PacSoft. The Pacific Software Research Center is a software research organization con-
sisting of faculty, professional staff, post-doctoral associates and graduate students at the OGI School of
Science and Engineering at OHSU. The Center promotes collaborative research focused on the develop-
ment of innovative methods to solve software problems. A key emphasis is the transition of technology
from the academic community to industrial and government organizations through partnerships and joint
projects.

COLLABORATORS AND OTHER AFFILIATIONS.:
Collaborators: Zino Benaissa (Intel, Austin), Leonidas Fegaras (Univ. Texas San Antonio), William Harrison

(OGI School of Science & Engineering), Paul Hudak (Yale), John Launchbury (OGI School of Science &
Engineering), Eugenio Moggi (Univ. of Genoa), Emir Pasalic (OGI School of Science & Engineering),
John Peterson (Yale), Simon Peyton-Jones (Microsoft Cambridge), Mark Shields (OGI School of Science
& Engineering), Walid Taha (Chalmers), Andrew Tolmach (Portland State Univ.)

Graduate and Postdoctoral Advisors: David Stemple, retired.
Graduate Advisees: Walid Taha, George Moberly, Emir Pasalic, Nathan Linger.
Postdocs Supervised: Zino Benaissa, William Harrison.



Budget Justification
Combining Programming Languages and Logical Reasoning Systems

Period of Performance
The proposed period of performance for the program is October 1, 2004 through September 30, 2007.

Personnel

Projected faculty, staff, and graduate research assistant salary rates and the level of effort committed to the project
are indicated on the budget. Annual salary increases are in accordance with OHSU’s Human Resource policy.
Fringe benefits are calculated in accordance with OHSU’s approved fringe benefits rates. Note the budget includes
funds to support one and a half students only, but the budget input page only allows whole numbers to be entered.
Also, included in the personnel budget are funds to support an undergraduate intern for 12 weeks in year one of the
project. The student intern will work full-time at an hourly rate of $15.00 and receive a $1000 travel allowance.

Travel

The budget includes $22,973 for travel. This amount includes an average of two domestic trips and one international
trip per year. This amount also includes a $1000 travel allowance for the undergraduate student intern in year one.
The purpose of travel will be for project personnel to attend professional conferences and workshops to disseminate
research results as well as to attend project review meetings as necessary.

We have estimated travel costs by comparison to past experience with travel expenses within the Pacific Software
Research Center. OGI School of Science and Engineering, OHSU’s travel policy states that per diem costs are given
at $36 per day in the United States and Canada. Upon receipt of actual receipts a higher amount may be expensed.
For International per diem rates, we use those established by the Secretary of State and set forth in the federal travel
regulations. Mileage rates are based on the OGI School of Science and Engineering, OHSU’s standard of 37.5 cents
per mile. OGI School of Science and Engineering, OHSU’s travel policy requires the traveler to complete a detailed
expense claim for travel costs incurred on company business. Workshop sites yet to be determined.

Foreign travel funds are being requested to allow for attendance at annual research conferences held outside the U.S.
Travel funds are estimated to cover airfare, lodging, per-diem, conference registration, and ground transportation.
Premier international conferences in the research area of this project include International Joint Conference on
Automated Reasoning (IJCAR), Principles of Programming Languages (POPL), European Joint Conferences on
Theory and Practice of Software (ETAPS), Formal Methods Europe (FME) and Federated Logic Conference
(FLoC).

In the event that we need to hire additional research staff, some of the funds listed above will be used for recruiting
and relocation. In order to find candidates with the state-of-the-art knowledge necessary for this project, it is likely
that it will be necessary to search for candidates outside the US.

Materials & Supplies

Materials and supplies to be purchased include computer hardware and software necessary to perform the research
as well as publications, subscriptions, and technical books related to the research. Costs have been estimated by
comparison to past experience with similar expenses in OGI School of Science and Engineering, OHSU’s
Department of Computer Science and Engineering.

Tuition
The budget includes tuition for one and a half graduate students. The projected graduate student tuition amounts are
calculated based on the following tuition rates:

October 04 — September 05 $5,680/quarter/student
October 05 — September 06 $5,964/quarter/student
October 06 — September 07 $6,262/quarter/student
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Computer Systems Support

The budget includes a charge for the support of the computing and networking facilities to be used for the proposed
research. OGI School of Science and Engineering, OHSU’s Department of Computer Science maintains a computer-
networking infrastructure for the use of its researchers and academic personnel and provides the services of data
storage backup, hardware and software maintenance and troubleshooting on a cost-recovery basis. All users of the
network facilities and of backup and maintenance facilities are billed on a uniformly pro-rated basis. The charges to
a particular contract depend upon the percent of time that researchers bill to the contract and on the number of
machines under dedicated use by these researchers that are maintained by the computing facilities team. The
purchase of computers is a responsibility of individual research Centers or programs, the CSE Department and its
educational programs.

Support Levels and corresponding fees are listed below. The rate is set to recover the cost that OGI School of
Science & Engineering at OHSU has determined are imposed by the research. We have budgeted a 5% increase in
these fees annually, effective July 1.

Supported Center Server $1,260 per year
Fully Supported High Maintenance $1,260 per year
Fully Supported Low Maintenance $ 630 per year
Regular User account $2,016 per year
PhD Student User account $2,016 per year
Masters Student User Account $1,260 per year
Remote Collaborator account $ 101 per year
Other

The budget includes $142 for other direct expenses of the research project such as copying, telephone, fax usage,
and postage & shipping. Telephone charges include long distance telephone charges for key personnel and students.
Costs have been estimated by comparison to past experience with similar expenses in OGI School of Science &
Engineering at OHSU’s Department of Computer Science and Engineering.

Indirect Costs

The 64% indirect cost rate in the budget is that approved for OGI School of Science & Engineering at OHSU by the
federal government effective July 1, 2001 through June 30, 2003. OHSU is currently in the process of negotiations
for the new indirect cost rate. It applies to all costs appearing in the budget except tuition, equipment costing $3,000
or more, and subcontract costs in excess of $25,000. A copy of our rate agreement is available upon request.

Institutional Status: Oregon Health & Science University (OHSU) is a public corporation chartered by the State of
Oregon pursuant to Section 353.020 of the Oregon Revised Statutes. OHSU operates under the following OMB
Circulars:

A-21 - Cost Principles for Educational Institutions

A-110 - Uniform Administrative Requirements for Grants and Other

Agreements with Institutions of Higher Education, Hospitals, and Other Nonprofit Organizations

A-133 - Audits of States, Local Governments, and Non-Profit Organizations
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The CSE Department, through its own and other collaborative research
centers, has the following computing and research facilities available.

Network Infrastructure:

The CSE Department's network infrastructure consists of two Cisco Catalyst
5500 series switches (one in each of our buildings) interconnected with
multi-mode fiber. Through a Cisco 4500 Router card, one of the Catalysts
also provides routing services for the CSE network, and acts as a backup
router in the event of a failure of the main campus router. The two Catalysts
have a total of 144 10Mbps ports, 240 10/100Mbps ports, and ten 1000Mbps
ports; thus providing a variety of connectivity options to our over 360 client
devices. All together, the backbone supports gigabit Ethernet connectivity.

The CSE Department also operates an IEEE 802.11b wireless network. This
infrastructure provides up to 11Mbps coverage to most areas in use by CSE
researchers via twelve wireless access points: eleven interior transmitters;
and one 120-degree rooftop antenna providing exterior coverage.

In addition to commodity Internet access, the campus also maintains an OC-
3c (155 Mbps) connection to Internet2 in partnership with the Portland
Research and Education Network.

Internet2 Connectivity:

The Portland Research and Education Network (PREN) provides Internet2
connectivity to Oregon Health & Science University (OHSU) and Portland
State University (PSU), the principle research and education institutions in
the Portland metropolitan area. National Science Foundation (NSF) grant
ANI-9975992, "High Performance Metropolitan and Internet2 Connectivity for
Portland, Oregon Research Institutions," supports the PREN project.

The central element of the PREN metropolitan area network is a Cisco 12000
GSR router connecting the OGI School of Science & Engineering at OHSU, the
OHSU main campus, and PSU, through leased OC-3c (155 Mbps) local loop
circuits. The PREN router connects to the upstream Internet2 backbone
through the University of Washington's P/NWGP, using an OC-12c (622
Mbps) circuit donated to UW by WCI Cable. PREN and P/NWGP maintain a
physical presence in a new regional "carrier hotel" in the Pittock Block
building in downtown Portland.

Video Conferencing Services:

To facilitate remote collaboration, the department promotes H.323 compliant
video conferencing over our IP network, which includes both Internetl and
Internet2 connectivity.

To this end, we maintain two PolyCom ViewStation 512's in order to deliver
H.323 end-point functionality to small conference rooms. One is configured
for use in the CSE Central conference room. The other normally resides in
the Columbia conference room, but is portable and can be used in any room



on campus with a CSE network drop. The units have voice tracking cameras
to facilitate group discussions, and can deliver 30 frames per second at
768kbps.

The Polycoms can connect to any Internet addressable H.323 end-point. This
can be other group systems such as another Polycom, or individual systems
running on a PC.

In addition to point-to-point connectivity, we have recently added multi-point
functionality to our infrastructure. While this capability is still undergoing
tests and configuration, it does allow us to support video conferences with up
to 10 participants from varying locations across the Internet.

Storage Services:

A high performance, high availability Network Appliance (NetApp) Model
F820 filer is the cornerstone of the Department's storage services
infrastructure. The NetApp, with a 3TB raw disk capacity, provides a
centralized file store for individual home directories and shared, research
specific project areas.

The filer is configured with a single 750MHz CPU, 1GB RAM, 128MB NVRAM,
and a single gigabit Ethernet interface. It currently has two shelves of seven
72GB fiberchannel disk drives, arranged in two RAID-4 volumes serving
approximately 500GB of disk space to Unix, Windows, and Macintosh client
machines via the NFS and CIFS protocols.

The NetApp filers include a number of high-availability and ease-of-
management features such as filesystem snapshots to allow users to recover
lost data, live system backups, and optional remote data mirroring
capabilities. The Department has come to depend heavily upon its high
performance and reliability, and especially on its remarkable file-sharing
capabilities in our highly heterogeneous computing environment.

Backup Services:

Our existing tape backup system consists of a Sun Ultra-2 clone computer
with two 300MHz CPU's, 512MB RAM, multiple 100Mbit network interfaces,
and multiple SCSI disk and tape interfaces. This system uses commercial
backup software (Legato) to control an ATL P1000 tape library with four
DLT7000 drives and containing 30 DLT tape cartridges, with an overall
capacity of approximately 1.5TB (16 cartridges, or ~800GB, are in removable
magazines). This system is currently backing up approximately 270GB of
data, with a full backup occurring every week and incremental backups
occurring daily.

Research Compute Services and Facilities:

The Department operates a number of research support servers in its
computer room in the CSE Central building. These include: a Sun SunFire
280R; a Sun Enterprise 3000; two Intel dual-processor 700MHz Pentium-III



systems; one quad-processor 500MHz Xeon system; four single-processor
666MHz Alpha systems with 4GB of memory; a Compaq DL380 933MHz
Pentuim-III system; and Compaq DL380 800MHz Pentium-III system.

The Department also has facilities for research and teaching in computer
hardware design and electrical engineering. Mentor Graphics IC Design
Station is used for VLSI design on a Sun Enterprise 3500 server. Chips are
fabricated at the Mosis foundry and can be tested on our IMS XL60 chip
tester. Mentor and Altera CAD tools are provided for FPGA programmable
logic design. The computer design lab is equipped with PC workstations,
Tektronix digital oscilloscopes, FPGA development boards and TI DSP boards.
We have test equipment and facilities for analog and mixed signal design
along with simulation support with Cadence PSpice. A digital television lab is
available for video signal processing projects.

Educational Compute Services:

Through the support of the M.J. Murdock Charitable Trust, the Computer
Science and Engineering Department acquired a Sun Enterprise 4500 server
in September of 1999. The Enterprise 4500 is configured with eight 400 MHz
SPARC processors, 4 GB of memory, and 72 GB of locally attached disk.

The Enterprise 4500, named "murdock”, provides a highly effective backbone
for our educational computing environment. It is a reliable, high-speed
server with sufficient memory to host numerous sessions, and the ability to
support compute intensive tasks for a variety of courses.

In order to broaden our capabilities and enhance our course relevancy, a
second server was added in July 2000 to support our Linux-specific education
needs. This new server, also funded by the Murdock Trust, is a Compaq
DL380 with dual 667 MHz Pentium III processors, 512 MB of memory, and
dual, mirrored hard drives for the operating system and applications. There is
no user accessible local storage, only networked storage.

The Compaq DL380, named "turing"”, augments "murdock"” by providing
Linux-specific development services such as compilers, web-development
tools, documentation tools, and OS-simulation tools such as "NachOS". It
also allows us to easily take advantage of the growing amount of open-
source software available. Combined, the two machines help maintain course
relevance by expanding our platform options so the examples used in our
courses may be taken from current technology.

Workstations:

There are over 300 workstations and over 60 X-Terminals throughout the
department. The workstations are mostly all Intel-based platforms running
Linux or Windows (various versions). In addition, Macintosh, Silicon
Graphics, and Solaris platforms are also present in the environment.





