1

The MINI Programming Language
(for CS321/322 compiler courses)

Jingke Li
Dept. of Computer Science
Portland State University

(version 1.1 w’06)

Introduction

The MINI programming language is a small subset of Java, which supports classes and limited inheritance,
simple data types, and a few structured control constructs.! This manual gives an informal definition for
the language. Fragments of syntax are specified in BNF as needed; the complete grammar is attached as an
appendix.

2 Lexical Issues

MINT is a subset of Java, hence it follows Java’s lexical rules, but with some simplifications. Here are a few
highlighted points:

MINT is case sensitive — upper and lower-case letters are not considered equivalent.

The following are MINI’s reserved words — they must be written in the exact form as given:

boolean class double else extends false if int length main new public
return static String System.out.println this true void while

Note that System.out.printlnis treated as a reserved word in MINI. This is to keep MINI compatible
with Java, yet not worrying about supporting packages.

Identifiers are strings of letters and digits starting with a letter, ezcluding the reserved keywords.
Identifiers are limited to 255 characters in length.

Constants are either integer, real, or string. Integers contain only digits; they must be in the range 0 to
231 _ 1. Reals contain a decimal point; a digit is required before the decimal point, but not afterwards.
Note that neither an integer nor a real can be negative, since there is no provision for a minus sign.
Strings begin and end with a double quote (") and contain any sequence of printable ASCII characters,
except double quotes. Note in particular that strings may not contain tabs or newlines. String literals
are limited to 255 characters in length, not including the delimiting double quotes.

Comments can be in two forms: a single-line comment starts with // and ends with a newline character
(\n); multi-line comments are enclosed in the pair /*, */; they cannot be nested. Any character is
legal in a comment.

The following are MINI’s remaining operators and delimiters:

operator d= o o [k /o gkt [==t s oo k= 0> | e
delimiter = [, 2.2 C 1’y 1D 1111’}

IMINI is not the same as the Mini-Java language defined in Appel’s text; MINI is more powerful.

3 Program

A program is the unit of compilation for MINI. Each file read by the compiler must consist of exactly one
program. There is no facility for linking multiple programs or for separate compilation of parts of a program.
A program simply consists of a sequence of class declarations:

Program -> ClassDecl {ClassDecl}

4 Classes

MINT supports inheritance. A class declaration can either define a base class or a subclass:
ClassDecl -> "class" <ID> ["extends" <ID>] ’{’ {VarDecl} {MethodDecl} ’}’

The body of a class consists of variable and method declarations. MINI requires that all variable declarations
precede any method declaration. The class variables are dynamic, 1.e. they are created for each object of
the class. There is no static class variables in MINI.

All classes and their contents are public. A subclass inherits all contents of its parent. It may override
a parent class’s variables and/or methods. However, MINI does not support dynamic method binding. If
there are multiple method definitions with the same name in both base and sub classes, MINI uses static
binding to decide which one to use.

5 Methods

Method declarations have two syntax forms, a general form and a main-method form:

MethodDecl -> "public" Type <ID> ’(’ [FormalParams] ’)°’
»{? {VarDecl} {Statement} ’}’
-> "public" "static" "void" "main" ’(’ "String" [’ ’]1’ <ID>)’
»{’ {VarDecl} {Statement} ’}’
FormalParams -> Formal {’,’ Formal}
Formal -> Type <ID>

In the general form, a method declaration has a list of formal parameters (could be empty), a return type
(could be void), and a body of variable declarations followed by statements. Methods declared in the same
class share the same scope — hence they are treated as (potentially) mutually recursive.

A method may have zero or more formal parameters. Parameters are always passed by value. A method
may have a return value of any type, in which case, the return statement(s) in the method body must return
an expression of the corresponding type. A method may also be declared not to return any value (represented
by the void type); in this case the return statement(s) in the method body must not be accompanied with
any expression. In general, there can be multiple return statements in a method body. There is an implicit
return statement at the bottom of every method body.

Variable declared in a method are local to the method. Their declarations are not mutually recursive.

Main Method
Every MINI program should have a single main method declaration, which takes the following specific form:
public static void main (String[] <ID>) { ... }

Note that the sole parameter in the main method is considered a dummy, and cannot be used anywhere.
The class that includes the main method is called the main class. It must be static — no object can be
created of it; also it should not have any variable of its own.

6 Variables

Variables may appear in two places in MINI: in the scope of a class declaration and in the scope of a method
declaration. In both cases, MINI requires that variable declarations appear at the beginning of the scope,
i.e. before any method declaration in the class case, and before any statement in the method case.

The syntax of variable declaration is simple:

VarDecl -> Type <ID> [’=’ Expr] ’;’

Each declaration allows only one variable to be defined. A variable declaration may be initialized with a
value, given by an expression. Variable declarations take effect one at a time, in the written order; they are
never recursive.

7 Types

MINI has four categories of types: basic, array, object, and vouid:

Type -> BasicType [’[’ °]°’] | <ID> | "void"
BasicType -> "boolean" | "int" | "double"

Basic Types

There are three built-in basic types: boolean, int, and double. Integer constants all have type integer,
real constants all have type double, and the built-in values true and false have type boolean.

The int and double types collectively form the numeric types. An int value will always be explicitly
coerced to a double value if necessary. The boolean type has no relation to the numeric types, and a boolean
value cannot be converted to or from a numeric value.

Array Types

An array is a structure consisting of zero or more elements of the same basic type. An array type is
represented by a basic type followed by a pair of square brackets. The elements of an array can be accessed
by dereferencing using an indez, which ranges from 0 to the length of the array minus 1. The length of an
array is not fixed by its type, but is determined when the array is created at runtime. It is a checked runtime
error to dereference outside the bounds of an array. A build-in method .length() can be invoked on any
array object, and it returns the number of elements in the array.

Object Types

Class objects are of object types. They are represented by class names.

Void Type

A special void type can be used (only) to specify the return type of a method. It indicates that the method
does not return any value.

Strong Typing Rules

MINTI is a strongly-typed language; every expression has a unique type, and types must match at assignments,
calls, etc. (except that an integer can be used where a real is expected.)

8 Statements

Statement Block

Statement -> {’ {Statement} ’}’

Executing the sequence of statements in the given order.

Assignment

Statement -> [Expr ’.’] <ID> [’[’ Expr ’]1’] ’=’ Expr ’;’

The rhs expression is evaluated and stored in the location specified by the lhs. The lhs can be either a
variable or an array element; the object that the variable or array belongs to may be explicitly specified.

Method Call

Statement -> [Expr ’.’] <ID> ’(’ [ExpList] ’)’ ’;’
ExpList -> Expr {’,’ Expr}

This statement is executed by evaluating the argument expressions left-to-right to obtain actual parameter
values, and then executing the proper method specified by [Expr ’.’] <ID> with its formal parameters
bound to the actual parameter values until a return statement (with no expression) is executed.

If-then-else

Statement -> "if" ’(? Expr ’)’ Statement ["else'" Statement]

This statement specifies the conditional execution of guarded statements. The guard expression must evaluate
to a boolean; if true, the 'then-clause’ statement is executed; otherwise the ’else clause’ statement is executed
(if exists).

While

Statement -> "while" ’(’ Expr ’)’ Statement

The statement is repeatedly executed as long as the expression evaluates to true.

Print

Statement -> "System.out.println" ’(’ [Expr|<STRING>] ’)’ ’;°

Executing this statement writes the value of the specified expression (which must be of a basic type) or
string to standard output, followed by a new line.

Return

Statement -> "return" [Expr] ’;°

Executing return terminates execution of the current method and returns control to the calling context.
There can be multiple returns within one method body, and there is an implicit return at the bottom of
every method. If a method requires a return value, then a return statement must specify a return value
expression of the return type; otherwise it must not have an expression. The main method body must not
include a return.

9 Expressions

Simple Expressions

Expr -> "new" BasicType ’[’ Expr ']’
-> "new" <ID> ’(’)’
-> :(: Expr :):
-> "this"
—> Number
Number -> <INT> | <REAL> | "true" | "false"

A simple expression is a new array or class object, subexpression with parentheses, this pointer, or a number.
A number expression evaluates to the literal value specified. Note that reals are distinguished from integers
by lexical criteria (see Section 2).

Array Elements and Object Members

Expr -> Expr ’[’ Expr]’
-> Expr ’.’ "length" > (’)’
-> [Expr ’.’] <ID> ’(’ [ExpList] ’)’
-> [Expr ’.’] <ID>
The index to an array must be of integer type. A method length() is defined on all array objects, and it
returns the length of the array. Object member variables have the syntax [Expr ’.’] <ID>. If the object

expression 1s omitted, then the <ID> is either defined in the current scope or is inherited from a parent’s
scope. A method call is a valid expression only if the method has a return value.

Arithmetic Operators

Expr -> Expr Binop Expr
Binop -> 40 | y | Ik |)/:

These operators require numeric arguments. If both arguments are integers, an integer operation is performed
and the integer result is returned; otherwise, any integer arguments are coerced to reals, a real operation is
performed, and the real result is returned.

Logical Operators

Expr -> Expr Binop Expr
-> 1’ Expr
Binop -> n&&n | nlln

These operators require boolean operands and return a boolean result. Both && and || are “short-circuit”
operators; they do not evaluate the right-hand operand if the result is determined by the left-hand one.

Relational Operators

Expr -> Expr Binop Expr
Binop —> M==n | n!=n | 10 | ne=m | ’y | Hy=n

These operators all return a boolean result. They all work on numeric arguments; if both arguments
are integer, an integer comparison is made; otherwise, any integer argument is coerced to real and a real
comparison is made. Operators == and != also work on pairs of boolean arguments, or pairs of array or
object arguments of the same type; in both cases, they test “pointer” equality (that is, whether two arrays
or objects are the same instance, not whether they have the same contents).

Relational expressions cannot be embedded into other expressions unless parenthesized. In other words,
a < b > cis an illegal expression, while (a < b) > c is legal.

Associativity and Precedence

The arithmetic binary operators are all left-associative. The operators’ precedence is defined by the following
table:

highest | new, ()

[1, . (selector), method call
!

*x /

+, -

==, 1=, <, <=, >, >=

&&
lowest |

A Complete MINI Syntax

Program -> ClassDecl {ClassDecl}
ClassDecl -> "class" <ID> ["extends" <ID>] ’{’ {VarDecl} {MethodDecl} ’}’
VarDecl -> Type <ID> [’=’ Expr] ’;’

MethodDecl -> "public" Type <ID> ’(’ [FormalParams] ’)°’
*{’ {VarDecl} {Statementl} ’}’
-> "public" "static" "void" "main" ’(’ "String" [’ ’]1’ <ID>)’
*{’ {VarDecl} {Statementl} ’}’

FormalParams -> Formal {’,’ Formal}
Formal -> Type <ID>
Type -> BasicType [’[’ °]’] | <ID> | "void"
BasicType -> "boolean" | "int" | "double"
Statement -> ’{’> {Statement} ’}’
-> [Expr ’.’] <ID> [’[’ Expr ’]’] ’=’ Expr ’;’

-> [Expr ’.’] <ID> ’(’ [ExpList])’ ’;’
-> "if" *(’ Expr ’)’ Statement ["else" Statement]
-> "while" ’(’ Expr ’)’ Statement
-> "System.out.println" ’(’ [Expr|<STRING>] ’)’ ’;°
-> "return" [Expr] ’;’
Expr -> Expr Binop Expr
-> 1’ Expr
-> Expr ’[’ Expr]’
-> Expr ’.’ "length" ’(’ ’)°
-> [Expr ’.’] <ID> ’(° [ExpList] ’)’
-> [Expr ’.’] <ID>
-> "new" BasicType ’[’ Expr ']’
-> "new" <ID> ’(’)’
-> :() Expr :):

-> "this"
—> Number
ExpList -> Expr {’,’ Expr}
Number -> <INT> | <REAL> | "true" | "false"
Binop => w0 | o= | ke | o/ | g |
-> M==n | nwi=n | 10 | ne=" | 1> | ny=n

B Abstract Syntax Tree Nodes

Here is the official communication format for the abstract syntax for MINI.

Program If
ClassDeclList Exp
Stmt -- then clause
ClassDecl Stmt -- else clause
Id -- class id
Id -- parent class id While
VarDeclList Exp
MetDeclList Stmt
VarDecl Print
Type Exp
Id
Exp Return
Exp
MetDecl
Type Exp -> Binop | Relop | Not | ArrayElm
Id -- method id | ArrayLen | Call | NewArray
FormalList | NewObject | Int | Real | Text
VarDeclList | This | True | False | ExpList
StmtList
Binop
Formal op -- ADD, SUB, MUL, DIV, AND, OR
Type Exp
Id Exp

Type -> BasicType | ArrayType
| ObjType | VoidType

BasicType
typ -- BOOL, INT, or REAL

ArrayType
BasicType -- element type

0bjType
Id —- class id

Stmt -> Block | Assign | CallStmt
| If | While | Print | Return

| StmtList
Block
StmtList
Assign
Exp -- lhs
Exp -- rhs
CallStmt

Exp -- object

(Id -- class id)

Id -- method id
ExpList -- arguments

Relop
op -- EQ, NE, LT, LE, GT, GE
Exp
Exp

Not
Exp

ArrayElm
Exp -- array
Exp -- idx
(BasicType —-- element type)

ArrayLen
Exp -- array

Call
Exp -- object
(Id -- class id)
Id -- method id

ExpList -- arguments
NewArray
BasicType —-- element type
Exp -- size
NewObject

Id -- class id

