Mathematical Preliminaries

Sipser pages 1-28
Mathematical Preliminaries

• This course is about the fundamental capabilities and limitations of computers. It has 3 parts

1. Automata
 – Models of computation
 – These are data as well as programs
2. Computability
 – Some things cannot be solved
3. Complexity
 – what is the root of the hardness
 – can a less than perfect solution suffice
 – some are only hard i the worst case
 – could randomized computation help?
 – Cryptography, hard on purpose
What you should learn

• Understand the limits of computability

• Understand different models of computation, including deterministic and nondeterministic models

• Understand that particular models not only perform computation, but are data and can be analyzed and computed

• Have significant mastery of the techniques of reduction, diagonalization, and induction

• Demonstrate significant mastery of rigorous mathematical arguments
Sets

• Sets are collections in which order of elements and duplication of elements do not matter.
 − \{1,a,1,1\} = \{a,a,a,1\} = \{a,1\}
 − Notation for membership: 1 ∈ \{3,4,5\}
 − *Set-former notation:* \{x | P(x)\} is the set of all \(x\) which
 satisfy the property \(P\).
 − \{x \mid x ∈ \mathbb{N} \text{ and } 2 ≥ x ≥ 5\}
 − \{x ∈ \mathbb{N} \mid 2 ≥ x ≥ 5\}

 − Often a *universe* is specified. Then all sets are assumed to be subsets of
 the universe \((U)\), and the notation
 − \{x \mid P(x)\} stands for \{x ∈ U \mid P(x)\}
Operations on Sets

• *empty set*: \(\emptyset \)

• Union: \(A \cup B = \{x \mid x \in A \text{ or } x \in B\} \)

• Intersection: \(A \cap B = \{x \mid x \in A \text{ and } x \in B\} \)

• Difference: \(A - B = \{x \mid x \in A \text{ and } x \notin B\} \)

• Complement: \(\overline{A} = U - A \)
Venn Diagrams
Laws

- \(A \cup A = A \)
- \(A \cup B = B \cup A \)
- \(A \cup (B \cup C) = (A \cup B) \cup C \)
- \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)
- \(A \cup B = A \cap B \)
- \(A \cup \emptyset = A \)

- \(A \cap A = A \)
- \(A \cap B = B \cap A \)
- \(A \cap (B \cap C) = (A \cap B) \cap C \)
- \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
- \(A \cap B = A \cup B \)
- \(A \cap \emptyset = \emptyset \)
Subsets and Powerset

• A is a *subset* of B if all elements of A are elements of B as well. Notation: \(A \subseteq B \).

• The *powerset* \(P(A) \) is the set whose elements are all subsets of A: \(P(A) = \{ X \mid X \subseteq A \} \).

• **Fact.** If A has n elements, then \(P(A) \) has \(2^n \) elements.

• In other words, \(|P(A)| = 2^{|A|} \), where \(|X| \) denotes the number of elements (*cardinality*) of X.
Proving Equality and non-equality

• To show that two sets A and B are equal, you need to do two proofs:
 – Assume \(x \in A \) and then prove \(x \in B \)
 – Assume \(x \in B \) and then prove \(x \in A \)
• Example. Prove that \(P(A \cap B) = P(A) \cap P(B) \).

• To prove that two sets A and B are not equal, you need to produce a counterexample: an element \(x \) that belongs to one of the two sets, but does not belong to the other.
• Example. Prove that \(P(A \cup B) \neq P(A) \cup P(B) \).
• Counterexample: \(A=\{1\}, B=\{2\}, X=\{1,2\} \). The set \(X \) belongs to \(P(A \cup B) \), but it does not belong to \(P(A) \cup P(B) \).
Functions and Relations

- Functions establish input-output relationships
- We write \(f(x) = y \)
 - For every input there is exactly one output
 - if \(f(x) = y \) and \(f(x) = z \) then \(y = z \)
 - We call the set of input for which \(f \) is valid the **domain**
 - We call the set of possible output the **range**
 - We write \(f : \text{Domain} \rightarrow \text{Range} \)

- Some functions take more than 1 argument
 - \(F(x_1, ... x_n) = y \)
 - We call \(n \) the arity of \(f \)
 - The domain of a function with \(n \) inputs is an \(n \)-tuple
Into and Onto

• A function that maps some input to every one of the elements of the range is said to be onto. For all \(y \) exists \(x \) . \(F(x) = y \)

• A function is into if every element in the domain maps to some element of the range.
 – This means \(f(x) \) is defined for every \(x \) in the domain
 – The squareRoot: Real -> Real is not into since squareRoot(-3) is not defined
Relation

• An input output relationship where a single input can have more than 1 output is called a relation.

• Less(4) = \{3,2,1,0\} i.e. a set of results

Because the output is not unique, we write this as Less(4,3), Less(4,2), Less(4,1), Less(4,0) we can think of this a set of tuples.

\{(4,3),(4,2),(4,1),(4,0)\}
Relations as sets

• An n-ary relation is a set of n-tuples.
• Some relations are infinite
 – What are some examples?

• We often use infix notation to denote binary relations: $5 < 4, \quad x \in S, \quad (2+3) \downarrow 5$

• An n-ary function is a (n+1)-ary relation
Equivalence Relations

- A binary relation, \bullet, with these three properties
 1. Reflexive $x \bullet x$
 2. Symmetric $x \bullet y$ implies $y \bullet x$
 3. Transitive $x \bullet y$ and $y \bullet z$ implies $x \bullet z$

1. Is called an Equivalence Relation
Graphs

- Graphs have nodes (vertices) and edges
Directed Graphs

- When the edges have a direction (usually drawn with an arrow) the graph is called a directed graph
Degree

• The number of edges attached to a node is called its degree.

• In a labeled graph, nodes have in-degree and out-degree.

• What are the in-degree and out-degree of node 0?
Labeled Graphs

• When the edges are labeled the graph is called a labeled-graph
Paths

- A path is a sequence of nodes connected by edges.
- A graph is Connected if every two nodes are connected by a graph.
- A path is a cycle if the first and last node in the path are the same.
- A cycle is simple if only the first and last node are the same.
Trees

• A graph is a tree if it is connected and has no simple cycles.

The unique node with in-degree 0 is called the root.

Nodes of degree 1 (other than the root) are called leaves
Strings and Languages

• Strings are defined with respect to an alphabet, which is an arbitrary finite set of symbols. Common alphabets are \{0,1\} (binary) and ASCII. But any finite set can be an alphabet!

• A string over an alphabet \(\Sigma\) is any finite sequence of elements of \(\Sigma\).

• Hello is an ASCII string; 0101011 is a binary string.

• The length of a string \(w\) is denoted \(|w|\). The set of all strings of length \(n\) over \(\Sigma\) is denoted \(\Sigma^n\).
More strings

• \(\Sigma^0 = \{ \varepsilon \} \), where \(\varepsilon \) is the \textit{empty string} (common to all alphabets). Another notation is to use \(\Lambda \) rather than \(\varepsilon \)

• \(\Sigma^* \) is the set of \textit{all} strings over \(\Sigma \):
 \[
 \Sigma^* = \{ \Sigma \} \cup \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \ldots
 \]

• \(\Sigma^+ \) is \(\Sigma^* \) with the empty string excluded:
 \[
 \Sigma^* = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \ldots
 \]
String concatenation

- If \(u = \text{one} \) and \(v = \text{two} \) then \(u \cdot v = \text{onetwo} \) and
- \(v \cdot u = \text{twoone} \). Dot is usually omitted; just write \(uv \) for \(u \cdot v \).
- Laws:
 - \(u \cdot (v \cdot w) = (u \cdot v) \cdot w \)
 - \(u \cdot \varepsilon = u \)
 - \(\varepsilon \cdot u = u \)
 - \(|u \cdot v| = |u| + |v| \)

- The \(n^{th} \) power of the string \(u \) is \(u^n = u \cdot u \ldots u \), the concatenation of \(n \) copies of \(u \).
- E.g., \(\text{One}^3 = \text{oneoneone} \).
- Note \(u^0 = \varepsilon \).
Can you tell the difference?

• There are three things that are sometimes confused.

\(\varepsilon \) – the empty string (""")

\(\emptyset \) – the empty set (\{ \})

\{ \varepsilon \} – the set with just the empty string as an element
Languages

• A *language* over an alphabet Σ is any subset of Σ^*. That is, any set of strings over Σ.

• Some languages over \{0,1\}:
 – $\{\varepsilon,01,0011,000111, \ldots \}$
 – The set of all binary representations of prime numbers: $\{10,11,101,111,1011, \ldots \}$

• Some languages over ASCII:
 – The set of all English words
 – The set of all C programs
Language concatenation

- If L and L' are languages, their concatenation $L \bullet L'$ (often denoted LL') is the set

 $ \{u \bullet v \mid u \in L \text{ and } v \in L' \}$.

- **Example.** $\{0,00\} \bullet \{1,11\} = \{01,011,001,0011\}$.

- The n^{th} power L^n of a language L is $L \bullet L \ldots \bullet L$, n times. The zero power L^0 is the language $\{\varepsilon\}$, by definition.

- **Example.** $\{0,00\}^4=\{0^4,0^5,0^6,0^7,0^8\}$
Kleene Star

• Elements of L^* are ε and all strings obtained by concatenating a finite number of strings in L.

 $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$

 $L^+ = L^1 \cup L^2 \cup L^3 \cup ...$

 — Note: $L^* = L^+ \cup \{\varepsilon\}$

• Example. $\{00,01,10,11\}^*$ is the language of all even length binary strings.
Class Exercise

• Fill in the blanks to define some laws:

\[L^* \cup \{ \varepsilon \} = \] __________
\[L^+ \cdot \{ \varepsilon \} = \] __________
\[\{ \varepsilon \} \cdot \{ \varepsilon \} = \] __________
\[\emptyset \cdot L = \] __________
\[L^* \cdot L^* = \] __________
\[(L^*)^* = \] __________
\[L \cdot L^* = \] __________
\[\emptyset^* = \] __________
\[\{ \varepsilon \}^* = \] __________
\[L \cdot L^* = \] __________
Mathematical Statements

• *Statements* are sentences that are true or false:
 – [1.] $0=3$
 – [2.] ab is a substring of cba
 – [3.] Every square is a rectangle

• *Predicates* are parameterized statements; they are true or false depending on the values of their parameters.
 – [1.] $x>7$ and $x<9$
 – [2.] $x+y=5$ or $x-y=5$
 – [3.] If $x=y$ then $x^2=y^2$
Logical Connectives

• *Logical connectives* produce new statements from simple ones:
 – Conjunction; \(A \land B; \) \(A \text{ and } B \)
 – Disjunction; \(A \lor B; \) \(A \text{ or } B \)
 – Implication; \(A \Rightarrow B; \) \(\text{if } A \text{ then } B \)
 – Negation; \(\neg A \) \(\text{not } A \)
 – Logical equivalence; \(A \iff B \) \(A \text{ if and only if } B \)
 – \(A \text{ iff } B \)
Quantifiers

• The *universal quantifier* (\forall “for every”) and the *existential quantifier* (\exists “there exists”) turn predicates into other predicates or statements.
 – There exists x such that $x+7=8$.
 – For every x, $x+y > y$.
 – Every square is a rectangle.

• **Example.** True or false?
 – $(\forall x)(\forall y) x+y=y$
 – $(\forall x)(\exists y) x+y=y$
 – $(\exists x)(\forall y) x+y=y$
 – $(\forall y)(\exists x) x+y=y$
 – $(\exists y)(\forall x) x+y=y$
 – $(\exists x)(\exists y) x+y=y$
Proving Implications

• Most theorems are stated in the form of (universally quantified) implication: if A, then B
• To prove it, we assume that A is true and proceed to derive the truth of B by using logical reasoning and known facts.
• Silly Theorem. If 0=3 then 5=11.
• Proof. Assume 0=3. Then 0=6 (why?). Then 5=11 (why?).

• Note the implicit universal quantification in theorems:
• Theorem A. If x+7=13, then x^2=x+20.
• Theorem B. If all strings in a language L have even length, then all strings in L* have even length.
• The converse of the implication \(A \implies B \) is the implication \(B \implies A \). It is quite possible that one of these implications is true, while the other is false.

• E.g., \(0=1 \implies 1=1 \) is true,

• but \(1=1 \implies 0=1 \) is false.

 – Note that the implication \(A \implies B \) is true in all cases except when \(A \) is true and \(B \) is false.

• To prove an equivalence \(A \leftrightarrow B \), we need to prove a pair of converse implications:

 – (1) \(A \implies B \),

 – (2) \(B \implies A \).
The *contrapositive* of the implication $A \implies B$ is the implication $\neg B \implies \neg A$. If one of these implications is true, then so is the other. It is often more convenient to prove the contrapositive!

Example. If L_1 and L_2 are non-empty languages such that $L_1^* = L_2^*$ then $L_1 = L_2$.

Proof. Prove the contrapositive instead. Assume $L_1 \neq L_2$. Let w be the shortest possible non-empty string that belongs to one of these languages and does not belong to the other (e.g. $w \in L_1$ and $w \notin L_2$). Then $w \in L_1^*$ and it remains to prove $w \notin L_2^*$. [Finish the proof. Why is the assumption that $L_1,L_2 \neq \emptyset$ necessary?]
Reductio ad absurdum- Proof by Contradiction

- Often, to prove \(A \Rightarrow B \), we assume both \(A \) and \(\neg B \), and then proceed to derive something absurd (obviously non-true).

- **Example.** If \(L \) is a finite language and \(L \cdot L = L \), then \(L = \emptyset \) or \(L = \{ \varepsilon \} \).

- **Proof.** Assume \(L \) is finite, \(L \cdot L = L \), \(L \neq \emptyset \), and \(L \neq \{ \varepsilon \} \). Let \(w \) be a string in \(L \) of maximum length. The assumptions imply that \(|w| > 0 \). Since \(w^2 \in L^2 \), we must have \(w^2 \in L \). But \(|w^2| = 2|w| > |w| \), so \(L \) contains strings longer than \(w \). Contradiction.

- qed
Formatting Proofs

• A proof is a convincing argument.

• The way you format a proof (especially for a homework) can alter its degree of convincingness.

• There are rules for formatting a proof.

1. is that a word?
3 parts to a proof

1. Facts
 A. \((F \circ G) x = F(G(x))\)

2. Assertion
 1. Prove \((F \circ G)\) is associative
 2. \(((F \circ G) \circ H) x = (F \circ (G \circ H)) x\)

3. Steps
 Transforming lhs into rhs
 \(((F \circ G) \circ H) x \) by A
 \((F \circ G)(H x)\) by A
 \((F (G(H x))\) by A
 \((F ((G \circ H) x))\) by A backwards
 \((F \circ (G \circ H)) x\) by A backwards

Facts. Things you know, include function definitions and facts about arithmetic, like \(x+y = y+x\). There will often be many facts.

State clearly what you are proving. Write it down in all its gory detail.

Steps. List each step. Every step should be justified by a fact. State how you are performing the steps. Here I transform lhs into rhs.