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Mathematical Preliminaries 
• This course is about the fundamental capabilities and limitations of 

computers. It has 3 parts 
 
1. Automata 

–  Models of computation 
–  These are data as well as programs 

2. Computability 
– Some things cannot be solved 

3. Complexity 
– what is the root of the hardness 
– can a less than perfect solution suffice 
– some are only hard i the worst case 
– could randomized computation help? 
– Cryptography, hard on purpose 



What you should learn 
• Understand the limits of computability 

 

• Understand different models of computation, including 
deterministic and nondeterministic models 
 

• Understand that particular models not only perform 
computation, but are  data  and can be analyzed and 
computed 
 

• Have significant mastery of the techniques of reduction, 
diagonalization, and induction 
 

• Demonstrate significant mastery of rigorous mathematical 
arguments 



Sets 
• Sets are collections in which order of elements and duplication of 

elements do not matter. 
– {1,a,1,1} = {a,a,a,1} = {a,1} 

 
– Notation for membership:  1 ∈ {3,4,5}  

 
– Set-former notation: {x |  P(x) }  is the set of all x which 
– satisfy the property P. 
–  {x  |  x ∈ N and 2 ≥  x ≥ 5 }  
–  {x ∈ N |  2 ≥  x ≥ 5 } 

 
– Often a universe is specified. Then all sets are assumed to be subsets of 

the universe (U ), and the notation  
–      {x |  P(x)}  stands for {x ∈ U | P(x) } 

 
 



Operations on Sets 

• empty set :   ∅ 
• Union: A ∪ B = {x | x  ∈  A  or  x ∈ B} 
• Intersection: A ∩ B = {x | x ∈ A  and  x ∈ B} 
• Difference: A - B = {x | x∈ A   and  x ∉  B} 
• Complement: A =  U - A 



Venn Diagrams 

A 
B 

U 



Laws 

• A  ∪  A=A  
• A  ∪  B=B  ∪  A  
• A  ∪ (B  ∪  C) = (A  ∪  B) ∪  C  
• A  ∪ (B ∩  C) = (A  ∪  B) ∩ (A  ∪  C)  
• A  ∪  B= A  ∩  B  
• A  ∪ ∅ = A  

 
• A ∩  A=A 
• A ∩  B =B ∩  A 
• A ∩ (B ∩  C)=(A ∩  B) ∩  C  
• A ∩ (B  ∪  C)=(A ∩  B) ∪ (A ∩  C) 
• A ∩  B = A  ∪  B 
• A ∩ ∅= ∅ 



Subsets and Powerset 

• A is a subset of B if all elements of A are elements of B as well. 
Notation: A⊆ B. 

  
• The powerset  P(A) is the set whose elements are all subsets 

of A:  P(A) =  {X |  X⊆ A }. 
  
• Fact. If A has n elements, then P(A) has 2n     elements. 
  
• In other words, |P(A)| = 2|A| , where |X| denotes the number 

of elements (cardinality) of X. 
 



Proving Equality and non-equality 

• To show that two sets A and B are equal, you need to do two 
proofs: 
– Assume x∈ A and then prove x∈ B 
– Assume x∈ B and then prove x∈ A 

• Example. Prove that P(A∩ B) = P(A) ∩P(B). 
 

• To prove that two sets A and B are not equal, you need to 
produce a counterexample : an element x that belongs to one 
of the two sets, but does not belong to the other. 

• Example. Prove that P(A∪ B) ≠ P(A) ∪P(B). 
• Counterexample: A={1}, B={2}, X={1,2}. The set X belongs to 

P(A∪ B), but it does not  belong to P(A) ∪ P(B). 



Functions and Relations 
• Functions establish input-output relationships 
• We write   f(x) = y 

– For every input there is exactly one output     
•  if    f(x) =y   and   f(x)=z    then y=z 

– Well call the set of input for which f is valid the domain 
– We call the set of possible output the range 
– We write  f: Domain → Range 

 
 

• Some functions take more than 1 argument 
– F(x1, … xn) = y 
– We call n the arity of f 
– The domain of a function with n inputs is an n-tuple 



Into and Onto 

• A function that maps some input to every one of 
the elements of the range is said to be onto.    
Forall y Exists x .  F(x) = y 
 

• A function is into if every element in the domain 
maps to some element of the range. 
– This means  f(x) is defined for every  x in the domain 
– The squareRoot: Real -> Real     is not into since 

squareRoot(-3) is not defined 

 
 



Relation 

• An input output relationship where a single 
input can have more than 1 output is called a 
relation. 

• Less(4) = {3,2,1,0}  i.e. a set of results 
 
Because the output is not unique, we write this 

as Less(4,3), Less(4,2), Less(4,1), Less(4,0) we 
can think of this a set of tuples. 

   {(4,3),(4,2),(4,1),(4,0)} 



Relations as sets 

• An n-ary relation is a set of n-tuples. 
• Some relations are infinite 

– What are some examples? 
 

• We often use infix notation to denote binary 
relations    5 < 4,      x ∈S,     (2+3) ↓ 5 
 

• An  n-ary function is a (n+1)-ary relation 



Equivalence Relations 

• A binary relation,  •,  with these three 
properties 
1. Reflexive     x • x 
2. Symmetric      x • y  implies    y • x 
3. Transitive         x • y   and  y • z    implies x • z 

 

1. Is called an Equivalence Relation 



Graphs 

• Graphs  have  nodes (vertices) and edges 



Directed Graphs 

• When the edges have a direction (usually 
drawn with an arrow) the graph is called a  
directed graph 

Undirected graph 

Directed graph 



Degree 
• The number of edges attached to a node is called its 

degree. 
 

• In a labeled graph, nodes have in-degree and out-
degree 
 

• What are the in-degree and 
out-degree of node 0? 

 



Labeled Graphs 

• When the edges are labeled the graph is 
called a  labled-graph 

unlabled graph 

Labeled graph 



Paths 

• A path is a sequence of nodes connectd by 
edges 

• A graph is Connected if every two nodes are 
connected by a graph. 

• A path is a cycle if the first and last node in the 
path are the same. 

• A cycle is simple if only the first and last node 
are the same 



Trees 

• A graph is a tree if it is connected and has no 
simple cycles. 
 

The unique node with 
in-degree 0 is called 
the root. 
 
Nodes of degree 1 
 (other than the root)  
are called leaves 
 



Strings and Languages 

• Strings are defined with respect to an alphabet, which is an 
arbitrary finite set of symbols.   Common alphabets are {0,1} 
(binary) and ASCII. But any finite set can be an alphabet! 

  
• A string over an alphabet Σ is any finite sequence of elements 

of Σ.  
  
• Hello is an ASCII string; 0101011 is a binary string. 
  
• The length of a string w is denoted |w|. The set of all strings 

of length n over Σ is denoted Σn. 
 



More strings 

• Σ0={ε}, where ε is the empty string (common 
to all alphabets).  Another notation is to use Λ 
rather than ε   

• Σ* is the set of all strings over Σ: 
•       Σ* = {∑} ∪ Σ ∪ Σ2 ∪ Σ3 ∪  ...   
•   
• Σ+ is Σ*  with the empty string excluded:  
•      Σ* =  Σ ∪ Σ2 ∪ Σ3 ∪  ...   

 



String concatenation 

•  If u=one and v=two then u • v=onetwo and  
• v • u=twoone. Dot is usually omitted; just write uv for u • v. 
• Laws: 
•   u •  (v • w) = (u • v) • w 
•             u •  ε = u 
•            ε • u = u 
•         |u • v| = |u| + |v| 

 
• The nth power of the string u is un = u • u  ...  u, the 

concatenation of n copies of u.  
• E.g.,  One3 = oneoneone . 
•  Note u0 = ε . 



Can you tell the difference? 

• There are three things that are sometimes 
confused. 
 

 ε      − the empty string ( “” ) 
 

∅      − the empty set ( { } ) 
 

{ε}   − the set with just the empty string as an 
element 



Languages 

• A language over an alphabet Σ is any subset of Σ*. That is, any 
set of strings over Σ.  

  
• Some languages over {0,1}: 

–  {ε,01,0011,000111, … } 
 

–  The set of all binary representations of prime numbers: 
{10,11,101,111,1011, … } 

 
• Some languages over ASCII: 

– The set of all English words 
– The set of all C programs 

 
 



Language concatenation 

• If L and L' are languages, their concatenation L • L' (often 
denoted LL') is the set  

•        {u • v | u ∈ L  and  v ∈ L‘ }.  
•   
• Example.  {0,00} • {1,11} = {01,011,001,0011}. 
•   
• The nth power Ln of a language L is L • L ...  L, n 
• times. The zero power L0 is the language {ε}, by definition.  
•   
• Example. {0,00}4={04,05,06,07,08} 

 



Kleene Star 

• Elements of L* are ε and all strings obtained 
by concatenating a finite number of strings in 
L.  
– L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ ...  
– L+ = L1 ∪ L2 ∪ L3 ∪ ...   

 
– Note:   L*  = L+  ∪  {ε} 

• Example. {00,01,10,11}* is the language of all 
even length binary strings.  



Class Exercise 

• Fill in the blanks to define some laws: 
 

L*∪{ε}   =  _________ 
L+ • {ε}  = _________ 
{ε} • {ε} = _________ 
∅ • L     = _________ 
L* • L*    = _________ 
(L*)*      = _________ 
L • L*     = _________ 
∅ *         = _________ 
{ε}*       = _________ 
L • L*       = _________ 

 



Mathematical Statements 

• Statements are sentences that are true or false: 
– [1.] 0=3 
– [2.] ab  is a substring of  cba  
– [3.] Every square is a rectangle 

 
•   
• Predicates are parameterized statements; they are true or 

false depending on the values of their parameters. 
– [1.]   x>7   and   x<9 
– [2.]   x+y=5   or   x-y=5 
– [3.]   If x=y  then  x^2=y^2 

 
 



Logical Connectives 

• Logical connectives produce new statements 
from simple ones: 
– Conjunction;   A ∧ B;      A and B 
– Disjunction;    A ∨ B;      A or B 
– Implication;    A ⇒ B;     if  A  then  B 
– Negation;       ¬ A          not A 
– Logical equivalence; A ⇔ B 
–                              A if and only if B 
–                              A iff B 

 



Quantifiers 

• The universal quantifier  (∀  “for every”) and the existential 
quantifier  ( ∃  “there exists”) turn predicates into other predicates 
or statements. 
– There exists x such that x+7=8. 
– For every  x,  x+y > y. 
– Every square is a rectangle. 

 
• Example. True or false? 

– (∀ x)(∀ y)  x+y=y 
– (∀ x)( ∃  y)  x+y=y 
– ( ∃  x)(∀ y)  x+y=y 
– (∀ y)( ∃  x)  x+y=y 
– ( ∃  y)(∀ x)  x+y=y 
– ( ∃  x)( ∃  y) x+y=y 

 



Proving Implications 
• Most theorems are stated in the form of (universally 

quantified) implication:   if A, then B 
• To prove it, we assume that A is true and proceed to derive 

the truth of B by using logical reasoning and known facts.  
•  Silly Theorem. If 0=3 then 5=11. 
• Proof. Assume 0=3. Then 0=6 (why?). Then 5=11 (why?).  

 
• Note the implicit universal quantification in theorems: 
•  Theorem A.  If x+7=13, then x^2=x+20. 
•  Theorem B. If all strings in a language  L  have even length, 

then all strings in L* have even length. 



Converse 

• The converse of the implication A ⇒ B is the implication B ⇒ A. It is 
quite possible that one of these implications is true, while the other 
is false.  

•         E.g.,  0=1 ⇒  1=1   is true,  
•         but    1=1 ⇒  0=1   is false.  

 
– Note that the implication A ⇒ B is true in all cases except when A is true 

and  B is false.  
•   
• To prove an equivalence A ⇔  B, we need to prove a pair of 

converse implications:  
–  (1) A⇒  B, 
–  (2) B⇒  A. 

 



Contrapositive 
•  The contrapositive  of the implication A ⇒ B is the 

implication ¬ B ⇒ ¬ A. If one of these  implications is 
true, then so is the other. It is often more convenient 
to prove the contrapositive! 

 
•  Example. If L1 and L2 are non-empty languages such 

that L1
* = L2

*   then  L1=L2. 
 

• Proof. Prove the contrapositive instead. Assume L1 ≠  
L2. Let w be the shortest possible non-empty string that 
belongs to one of these languages and does not belong 
to the other (e.g.  w ∈ L1 and w ∉ L2). Then w ∈ L1

* and 
it remains to prove w ∉ L2

*. [Finish the proof. Why is 
the assumption that L1,L2≠ ∅  necessary?]  



Reductio ad absurdum- Proof by Contradiction  

•  Often, to prove A ⇒ B, we assume both A and ¬ B, 
and then proceed to derive something absurd 
(obviously non-true). 

•   
• Example. If L is a finite language and L • L =L, then L=∅ 

or L={ε}. 
•  Proof. Assume L is finite, L • L =L, L≠ ∅ , and L≠ {ε}. 

Let w be a string in L of maximum length. The 
assumptions imply that |w|>0. Since w2 ∈ L2, we must 
have w2 ∈ L. But |w2|=2|w|>|w|, so L contains strings 
longer than w. Contradiction.  

• qed 
•   

 



Formatting Proofs 

• A proof is a convincing argument. 
 

• The way you format a proof (especially for a 
homework) can alter  its degree of 
convincingness1 
 

• There are rules for formatting a proof. 
 
 

1. is that a word? 



3 parts to a proof 
1. Facts 

A. (F • G) x = F(G(x)) 
 

2. Assertion 
1. Prove (F • G)  is associative 
2. ((F • G) • H) x   = (F • (G • H)) x 

 
3. Steps 

Transforming lhs into rhs 
((F • G) • H) x        by A 
(F • G) (H x)         by A 
(F (G(H x))          by A 
(F ((G • H) x))     by A backwards 
(F • (G • H)) x     by A backwards 
 
 

Facts. Things you know, include 
function definitions and facts 

about arithmetic, like x+y = y+x. 
There will often be many facts 

State clearly what you are proving. 
Write it down in all its gory detail 

Steps. List each step. Every step 
should be justified by a fact. State 
how you are performing the steps. 

Here I transform lhs into rhs. 
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