Regular Expressions

Sipser pages 63-66

A new Computation System

 DFAs, NFs, e-NFAs all describe a language in an
operational manner. They describe a machine
that one can execute in order to recognize a
string.

* An alternate method of describing a set of
strings is to describe the properties it should
have.

e Regular-Expressions are based upon the
closure properties we have studied.

Regular Expressions

 Fix an alphabet 2. We define now regular
expressions and how each of them specifies
a language.

e Definition. The set of regular expressions (with

respect to) is defined inductively by the following
rules:

1. The symbols & and € are regular expressions
2. Every symbol aeX is a regular expression

3. If E and F are regular expressions, then (E7),
(EF) and (E+F) are regular expressions.

Juxtaposrc.lon <')f.two RE Note how the
uses an implicit e or

X closure properties
concatenation

are used here

Computation system as Data

 We have made a big point that computation systems are just
data, regular expressions are no exception.

 We can represent them as data. Here we use Haskell as an
example.

data RegExp a

= Epsilon -- the empty string "
| Empty -- the empty set

| One a -— a singleton set {a}
| Union (RegExp a) (RegExp a) —-— union of two RegEXxp
| Cat (RegExp a) (RegExp a) -— Concatenation

| Star (RegExp a) -- Kleene closure

e How would you represent regular expressions in your favorite language?

Regular Expressions as Languages

 Definition. For every regular expression E, there is an
associated language L(E), defined inductively as follows:

1. (D)= and L(E)={€E}
L(a)={‘a’} Recall x* =]
3. Inductive cases EL X\ XOX \J XOXOX ...
1. L(E") = (L(E))"

2. L(EF) = L(E) L(F) r T
recall implicit use of dot
3. L(E+F) = L(E) U L(F)\L L(E) o L(F)]
e Definition. A language is regular if it is of the form L(E) for
some regular expression E.

Equivalence

We say that regular expressions E and F are equivalent
iff L(E)=L(F).

We treat equivalent expressions as equal (just as we do
with arithmetic expressions; (e.g., 5+7 = 7+5).

Equivalences (E+F)+G = E+(F+G) and (EF)G=E(FG) allow
us to omit many parentheses when writing regular
expressions.

Even more parentheses can be omitted when we declare
the precedence ordering of the three operators :

1. star (binds tightest)
2. concatenation
3. union (binds least of all)

Regular expressions as Trees

 Every RE has a tree like structure. Binding
rules specify this structure.

ab+cd* a(b+c)d*

< D

() ()) ()
002010 010

RE’s over {0,1}

Fill in the blank

E,= 0+11 then L(E,)=
E,=(00+01+10+11)~ then L(E,)=_
E, =07+1" then L(E;)=

E, =(00"+117)" then L(E,)=

E. =(1+€)(01)"(O+e)then L(E)=

Computing a language

We can compute a language by using the
definition of the meaning of a regular expression

_(a+b.
(a+b.c
(a+b.c
(a+b.c
(a+b.c

(a+b.c

C*) =

*) =
*) =
*) =
*) =
*) =

L(a) U L(b.c*)

L(a) U (L(b).L(c*))

{a} U ({b} . {c}¥)

{a} U ({b}.{g,c,cc,ccc,..., c"})
{a} U ({b,bc,bcc,bcceg,..., bc"})
{a,b,bc,bcc,bcceg,..., bc"})

Laws about Regular expressions

 The regular expressions form an algebra

 There are many laws (just as there are laws
about arithmetic (5+2)=(2+5)

Laws about +

R+T=T+R
R+J = J+R = R
R+R =R

= W

R+(S+T) = (R+S)+T

Laws about .

1. R = J.R=0
2. RA = AR =R
3. (R.S).T = R.(S.T)

e With Implicit.
1. RO = R =0

2. RA = AR = R
3. (RS)T = R(ST)

Distributive Properties

1. R(S+T)
2. (S+T)R

RS + RT
SR+ TR

V0N W=

Closure Properties *

D% =g*% =¢

R* = R*R* = (R*)* =R+R*

R* =g+R* = (e+R)* = (e+R)R* =€ +RR*
R* = (g +...+R* foranks=1

* =g+ R+...+ RED 4+ RR* for gk >= 1

RR* = R*R

R(SR)* = (RS)*R

(R*S)* =€+ (R+S)*S

(RS*)* =€+ R(R+S)*

Next section

 We will study how to make recognizers from
regular expressions

 We will prove that RE and DFAs describe the
same class of languages.

	Regular Expressions
	A new Computation System
	Regular Expressions
	Computation system as Data
	Regular Expressions as Languages
	Equivalence
	Regular expressions as Trees
	RE’s over {0,1}
	Computing a language
	Laws about Regular expressions
	Laws about +
	Laws about .
	Distributive Properties
	Closure Properties *
	Next section

