
Regular Expressions 

Sipser pages 63-66 



A new Computation System 

• DFAs, NFs, ε-NFAs all describe a language in an 
operational manner. They describe a machine 
that one can execute in order to recognize a 
string. 

• An alternate method of describing a set of 
strings is to describe the properties it should 
have. 

• Regular-Expressions are based upon the 
closure properties we have studied. 



Regular Expressions 
• Fix an alphabet Σ. We define now regular 

expressions and how each of them specifies 
a language. 

   

• Definition. The set of regular expressions (with 
respect to Σ) is defined inductively by the following 
rules: 
1. The symbols ∅ and ε are regular expressions 
2. Every symbol α∈Σ is a regular expression 
3.   If E and F are regular expressions, then (E*), 

(EF) and (E+F) are regular expressions. 

Note how the 
closure properties 

are used here 

Juxtaposition of two RE 
uses an implicit • or 

concatenation 



Computation system as Data 
• We have made a big point that computation systems are just 

data,  regular expressions are no exception. 
• We can represent them as data. Here we use Haskell as an 

example. 
 

data RegExp a 
  = Epsilon                        -- the empty string "" 
  | Empty                          -- the empty set 
  | One a                          -- a singleton set {a} 
  | Union (RegExp a) (RegExp a)    -- union of two RegExp 
  | Cat (RegExp a) (RegExp a)      -- Concatenation 
  | Star (RegExp a)                -- Kleene closure 
 
• How would you represent regular expressions in your favorite language? 



Regular Expressions as Languages 

• Definition. For every regular expression E, there is an 
associated language L(E), defined inductively as follows: 
 

1. L(∅)=∅ and L(ε)={ε} 
2. L(a)={‘a’} 
3. Inductive cases 

1. L(E*) = (L(E))* 

2. L(EF) = L(E) L(F) 

3. L(E+F) = L(E) ∪ L(F) 
   

• Definition. A language is regular if it is of the form L(E) for 
some regular expression E. 
 

Recall x* =  
ε∪ x ∪ x•x ∪ x•x•x …  

recall implicit use of dot  
L(E) • L(F) 



Equivalence 
1. We say that regular expressions E and F are equivalent  

iff L(E)=L(F).  
 

2. We treat equivalent expressions as equal (just as we do 
with arithmetic expressions;  (e.g., 5+7 = 7+5).  
 

3. Equivalences (E+F)+G = E+(F+G)  and (EF)G=E(FG) allow 
us to omit many parentheses when writing regular 
expressions.  
 

4. Even more parentheses can be omitted when we declare 
the precedence ordering of the three operators : 
1.    star     (binds tightest) 
2.    concatenation 
3.    union  (binds least of all)  
 



Regular expressions as Trees 

• Every RE has a tree like structure. Binding 
rules specify this structure. 

           ab+cd*                                 a(b+c)d* 



RE’s over {0,1} 

• Fill in the blank 
 

• E1= 0+11          then L(E1)=_____ 
• E2=(00+01+10+11)

*  then L(E2)=____ 
• E3 =0

*+1*          then L(E3)=_____ 
• E4 =(00

*+11*)*      then L(E4)=_____ 
• E5 =(1+ε)(01)*(0+ε)then L(E5)=_____ 
•   

 



Computing a language 

• We can compute a language by using the 
definition of the meaning of a regular expression 

• L(a+b.c*) = L(a) U L(b.c*) 
• L(a+b.c*) = L(a) U (L(b).L(c*)) 
• L(a+b.c*) = {a} U ({b} . {c}*) 
• L(a+b.c*) = {a} U ({b}.{ε,c,cc,ccc,…, cn}) 
• L(a+b.c*) = {a} U ({b,bc,bcc,bccc,…, bcn}) 
• L(a+b.c*) = {a,b,bc,bcc,bccc,…, bcn}) 

 
 



Laws about Regular expressions 

• The regular expressions form an algebra 
• There are many laws (just as there are laws 

about arithmetic (5+2)=(2+5) 



Laws about + 

1. R + T = T + R 
2. R + ∅    =    ∅ + R   =    R 
3. R + R  =  R 
4. R + (S + T)  =  (R + S) + T 



Laws about . 

1. R .∅  =  ∅. R  =  ∅ 
2. R.Λ  =  Λ.R  =  R 
3. (R.S).T  =  R.(S.T) 

 
• With Implicit . 

 
1. R ∅  =  ∅ R  =  ∅ 
2. RΛ  =  ΛR  =  R 
3. (RS)T  =  R(ST) 

 



Distributive Properties 

1. R(S + T)  =  RS  + RT 
2. (S + T)R  =  SR + TR 



Closure Properties * 

1. ∅∗  = ε∗  = ε 
2. R*  =  R*R*  =  (R*)*  = R + R* 
3. R*  = ε + R*  =  (ε + R)*  =  (ε+R)R*  = ε + RR* 
4. R*  =  (ε  + ... + Rk)*    for all k >= 1 

5. R*  = ε + R +… + R(k-1) + RkR*   for all k >= 1 

6. RR*  =  R*R 
7. R(SR)*  = (RS)*R 
8. (R*S)*  = ε + (R + S)*S 
9. (RS*)*  = ε +  R(R + S)* 



Next section 

• We will study how to make recognizers from 
regular expressions 

• We will prove that RE and DFAs describe the 
same class of languages. 
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