
Regular Expressions

Sipser pages 63-66

A new Computation System

• DFAs, NFs, ε-NFAs all describe a language in an
operational manner. They describe a machine
that one can execute in order to recognize a
string.

• An alternate method of describing a set of
strings is to describe the properties it should
have.

• Regular-Expressions are based upon the
closure properties we have studied.

Regular Expressions
• Fix an alphabet Σ. We define now regular

expressions and how each of them specifies
a language.

• Definition. The set of regular expressions (with
respect to Σ) is defined inductively by the following
rules:
1. The symbols ∅ and ε are regular expressions
2. Every symbol α∈Σ is a regular expression
3. If E and F are regular expressions, then (E*),

(EF) and (E+F) are regular expressions.

Note how the
closure properties

are used here

Juxtaposition of two RE
uses an implicit • or

concatenation

Computation system as Data
• We have made a big point that computation systems are just

data, regular expressions are no exception.
• We can represent them as data. Here we use Haskell as an

example.

data RegExp a
 = Epsilon -- the empty string ""
 | Empty -- the empty set
 | One a -- a singleton set {a}
 | Union (RegExp a) (RegExp a) -- union of two RegExp
 | Cat (RegExp a) (RegExp a) -- Concatenation
 | Star (RegExp a) -- Kleene closure

• How would you represent regular expressions in your favorite language?

Regular Expressions as Languages

• Definition. For every regular expression E, there is an
associated language L(E), defined inductively as follows:

1. L(∅)=∅ and L(ε)={ε}
2. L(a)={‘a’}
3. Inductive cases

1. L(E*) = (L(E))*

2. L(EF) = L(E) L(F)

3. L(E+F) = L(E) ∪ L(F)

• Definition. A language is regular if it is of the form L(E) for
some regular expression E.

Recall x* =
ε∪ x ∪ x•x ∪ x•x•x …

recall implicit use of dot
L(E) • L(F)

Equivalence
1. We say that regular expressions E and F are equivalent

iff L(E)=L(F).

2. We treat equivalent expressions as equal (just as we do
with arithmetic expressions; (e.g., 5+7 = 7+5).

3. Equivalences (E+F)+G = E+(F+G) and (EF)G=E(FG) allow
us to omit many parentheses when writing regular
expressions.

4. Even more parentheses can be omitted when we declare
the precedence ordering of the three operators :
1. star (binds tightest)
2. concatenation
3. union (binds least of all)

Regular expressions as Trees

• Every RE has a tree like structure. Binding
rules specify this structure.

 ab+cd* a(b+c)d*

RE’s over {0,1}

• Fill in the blank

• E1= 0+11 then L(E1)=_____
• E2=(00+01+10+11)

* then L(E2)=____
• E3 =0

+1 then L(E3)=_____
• E4 =(00

+11)* then L(E4)=_____
• E5 =(1+ε)(01)*(0+ε)then L(E5)=_____
•

Computing a language

• We can compute a language by using the
definition of the meaning of a regular expression

• L(a+b.c*) = L(a) U L(b.c*)
• L(a+b.c*) = L(a) U (L(b).L(c*))
• L(a+b.c*) = {a} U ({b} . {c}*)
• L(a+b.c*) = {a} U ({b}.{ε,c,cc,ccc,…, cn})
• L(a+b.c*) = {a} U ({b,bc,bcc,bccc,…, bcn})
• L(a+b.c*) = {a,b,bc,bcc,bccc,…, bcn})

Laws about Regular expressions

• The regular expressions form an algebra
• There are many laws (just as there are laws

about arithmetic (5+2)=(2+5)

Laws about +

1. R + T = T + R
2. R + ∅ = ∅ + R = R
3. R + R = R
4. R + (S + T) = (R + S) + T

Laws about .

1. R .∅ = ∅. R = ∅
2. R.Λ = Λ.R = R
3. (R.S).T = R.(S.T)

• With Implicit .

1. R ∅ = ∅ R = ∅
2. RΛ = ΛR = R
3. (RS)T = R(ST)

Distributive Properties

1. R(S + T) = RS + RT
2. (S + T)R = SR + TR

Closure Properties *

1. ∅∗ = ε∗ = ε
2. R* = R*R* = (R*)* = R + R*
3. R* = ε + R* = (ε + R)* = (ε+R)R* = ε + RR*
4. R* = (ε + ... + Rk)* for all k >= 1

5. R* = ε + R +… + R(k-1) + RkR* for all k >= 1

6. RR* = R*R
7. R(SR)* = (RS)*R
8. (R*S)* = ε + (R + S)*S
9. (RS*)* = ε + R(R + S)*

Next section

• We will study how to make recognizers from
regular expressions

• We will prove that RE and DFAs describe the
same class of languages.

	Regular Expressions
	A new Computation System
	Regular Expressions
	Computation system as Data
	Regular Expressions as Languages
	Equivalence
	Regular expressions as Trees
	RE’s over {0,1}
	Computing a language
	Laws about Regular expressions
	Laws about +
	Laws about .
	Distributive Properties
	Closure Properties *
	Next section

