
Reducability

Sipser, pages 187 - 214

Reduction

• Reduction encodes (transforms) one problem
as a second problem.

• A solution to the second, can be transformed
into a solution to the first.

• We expect both transformations (problem1 →
problem2, and solution2 → solution1) to be
computable.

Properties of Reduction

1. If A reduces to B, and B is decidable, then A
must also be decidable, since a solution to B
provides a solution to A.

2. If A reduces to B, and A is undecidable, then
B must also be undecidable. If B were not
undecidable, than we could use the solution
to B to decide A (a contradiction since A is
undecidable).

HALTTM is undecidable

• By reduction of ATM to HALTTM we will show that
HALTTM is undecidable

• HALTTM = { <M,w> | M is a TM and M halts on string w }

• Proof by contradiction
• Assume there exists a TM R that decides HALTTM

• Construct TM S that decides ATM

• We know ATM is undecidable, so this is a contradiction
• Thus R cannot exist, so HALTTM is undecidable

The construction of S (using R)

• S =
– On input <M,w>, run R on input <M,w>
– If R rejects (M(w) does not halt) then reject
– If R accepts (M(w) does halt) then
– Simulate M on w until it halts.
– If M has accepted then S accepts, else S rejects

Strategy

• This strategy for proving a language, L,
undecidable
– Reduce a known undecidable problem to a machine

that decides L

• Is the preferred method for proving
undecidability

• The most common target is ATM
– We proved ATM undecidable by diagonalization.

• As we find new undecidable languages we have
more targets for reduction.

ETM is undecidable

• Testing if a TM only accepts the empty
language is undecidable.

• Proof by reduction to ATM

• Proof by contradiction
• Assume there exists a TM R that decides ETM

• Construct a TM S that decides ATM

• We know ATM is undecidable, so this is a contradiction
• Thus R cannot exist, so ETM is undecidable

S solves ATM
• S(<M,w>) =
• Construct a modified version of M

– M1(x) =
• if x ≠w then reject.
• If x=w, then simulate M on x, and accept if M does
• M1 accepts x only if x=w, and M accepts w.
• At most, M1 accepts one string.

• Run R on <M1> (decide if M1 accepts only the empty
language).

• If R accepts, then S rejects
• if R rejects, then S accepts.
• if R rejects, then M1 accepts some string β, but M1 only

accepts β if β =w and M accepts β, so M must accept β
which must equal w).

RegularTM is undecidable

• Testing if a Language recognized by TM can be
recognized by a simpler language mechanism,
regular expressions (or DFAs, NFAs, etc)

• Proof by reduction to ATM

• Proof by contradiction
• Assume there exists a TM R that decides RegularTM
• Construct a TM S that decides ATM
• We know ATM is undecidable, so this is a contradiction
• Thus R cannot exist, so RegularTM is undecidable

We show how to reduce ATM to RegularTM

• Construct S, that solves ATM, but relies on R to do
so.

• S(<M,w>) = … R …
• We need a special Turing machine: H(x) which

recognizes a regular language (Σ*), if M accepts
w, and recognizes an CF-Language (0n1n) if it
rejects w.
– H(x) =

• if x has form 0n1n then H(x) accepts
• If x does not have this form, if M(w) accepts then H(x)

accepts, if M(w) rejects, then H(x) rejects

Use H to define S which decides ATM

• S(<M,w>) = where M is a TM, w is a string

– Run R on input <H>
– If R accepts, then S accepts, if F rejects, then S

rejects

• Recall that R decides if H recognizes a Regular
language, but H recognizes Σ* only if M
decides w, Thus S decides ATM, a known
undecidable problem

EQTM is undecidable
• Testing if two Languages, both recognized by Turing

Machines, both accept the same language.
• Proof by reduction to ETM

– All our other proofs gave been by reduction to ATM , but this
example lets us use another known undecidable language,
ETM, that decides if a language is the empty language.

• Proof by contradiction
• Assume there exists a TM R that decides EQTM
• Construct a TM S that decides ETM
• We know ETM is undecidable, so this is a contradiction
• Thus R cannot exist, so EQTM is undecidable

Construction of S

• Assume R decides EQTM, Construct S that decides
ETM.

• S(<M>) =
– Run R on input <M,M1>, where M1 is a TM that rejects

all inputs.
– If R accepts, then S accepts, if R rejects, then S rejects

If R decides EQTM then S decides ETM, which is known to be

undecidable, a contradiction.

Computation History

• Recall a configuration (ID) has the form α q β
– where α, β ∈ Γ* and q ∈ Q.
– The string α represents the tape contents to the left

of the head.
– The string β represents the non-blank tape contents

to the right of the head, including the currently
scanned cell.

– q represents the current state

• Recall configurations c1,c2 are related by
– c1 |- c2
– If the TM can legally move from c1 to c2

• A computation history (c1, … , cn) is a sequence of

|- related configurations (each ci |- ci+1)

Accepting (rejecting) Histories
• A computation history (c1, … , cn) is called an

accepting history if c1 is a start configuration and
cn is an accepting configuration

• A computation history (c1, … , cn) is called an
rejecting history if c1 is a start configuration and
cn is an rejecting configuration

If a TM does not halt on a given input, there does
not exist an accepting (rejecting) history.

What about non-deterministic TMs?

Linear Bounded Automaton (LBA)

• An LBA is a restricted kind of TM
• Here the tape is restricted to the size of the

input
• That is there is no infinite set of “Blank”

symbols to the right of the input.

• We can stretch the amount of space available
on the tape to a (constant * size of the input),
by using extended alphabets.

LBA are quite powerful

• Language recognized by LBA include
– ADFA

– ACFG

– EDFA

– ECFG

• Surpisingly ALBA is decidable
• { <M,w> | M is an LBA that accepts string w }

Lemma: Bound on number of configurations

• Let M be an LBA, with q states, and g Tape
alphabet symbols, and a tape of size n

• There are exactly qngn possible configurations

• Recall configuration has form α q β
• For a tape of size n, there are exactly n places

where the we can place the q.
• There are gn possible strings on the tape

ALBA is decidable

• Let S be a TM that decides ALBA. We construct S as
follows.

• S(<M,w>) = where M is a LBA, and w is a string

• We must be careful, M might loop on w
• If its loops it must go through some configuration more

than once.
• Keep a history of the configurations.
• Since there is a bounded number of configurations, call

it B, any history longer than B must be looping

Constructing S

• S(<M,w>) = where M is a LBA, and w is a string

– Simulate M on w for B steps or until it halts
– If M has halted in an accepting state, S accepts
– If M has halted in a rejecting state, S rejects
– If M has not halted, it must be in loop, so S rejects

Key ideas

• ATM is undecidable

• ALBA is decidable

• Other problems on LBAs remain undecidable
• We use the configuration histories as a tool.

ELBA is undecidable

• ELBA decides if a LBA accepts the empty language
• Proof by contradiction

– Assume ELBA is decidable and then show ATM must be
decidable leading to a contradiction

• We use the familiar strategy:
– ATM (<M,w>) =
– We create a particular LBA, B, that depends upon w,

and use ELBA to test B for emptiness.

Constructing B from M and w

• If M accepts w then there exists (c1, … , cn)
1. if c1 is a start configuration and
2. cn is an accepting configuration
3. Each consecutive pair ci , ci+1 are related ci |- ci+1 by the transition

function for M

• B(<(c1, … , cn)>) = accept if (c1, … , cn) is an
accepting configuration history of M for w.

• Encoding <(c1, … , cn)> on the LBA tape
• <c1> # <c2> # … # <cn >
• Encode each configuration, and separate by #

B uses M and w

• B(<c1> # <c2> # … # <cn >)=
1. Test if c1 is a start configuration of M and w (q0w1 w2 … wn) AND
2. cn is an accepting configuration (qaccept α)
3. Each consecutive pair ci , ci+1 are related ci |- ci+1 by the transition

function for M

• ATM (<M,w>) =
– For a given M and w construct B as show above.
– Use ELBA to test B

• if it accepts we know B accepts no strings, so no accepting
history for w can exist, so ATM should reject.

• If it rejects we know there is at least one accepting
configuration history for w, so ATM should accept.

Using configuration histories

• We can use accepting and rejecting
configuration histories do prove things about
machines other than LBA

ALLCFG is undeciadable

• ALLCFG decides if a CFG accepts all strings.
• Proof by contradiction

– Assume ALLCFG is decidable and then show ATM
must be decidable leading to a contradiction

• We use the familiar strategy:
– ATM (<M,w>) =
– We create a particular CFG that depends upon w

Strategy

• Create a CFG G that generates all strings iff M
does not accept w.

• So if M does accept w, there must be some
strings that G doesn’t generate. We arrange for
these strings to be strings of accepting
computation histories for w under M. I.e. the
CFG G in this case generates all strings that are
not accepting computation histories.

•

The Turing machine
• ATM (<M,w>) =

– For the particular w, create a CFG, G, such that G does not
generate the accepting computation configuration history
for w, but generates all other strings of configurations.

– Use ALLCFG to test G
• if it accepts we know G generates all strings, so there can be no

accepting configuration for w, so ATM should reject.
• If it rejects we know there is at least one accepting configuration

history, so ATM should accept.

• ATM is not decidable, so our assumption that ALLCFG is
decidable must be wrong.

• How do we define G?

Accepting configuration histories as languages

• (c1, … , cn) is called an accepting history
1. if c1 is a start configuration and
2. cn is an accepting configuration
3. Each consecutive pair ci , ci+1 are related ci |- ci+1 by

the transition function for M

Such a sequence is a string, and the configurations

that are accepting form a language (a set of
strings) and a CFG could be designed to
generate such a language.

Failure to be accepting

• (c1, … , cn) is called an accepting history
1. if c1 is a start configuration And
2. cn is an accepting configuration And
3. Each consecutive pair ci , ci+1 are related ci |- ci+1 by the transition function

for M

• (c1, … , cn) fails to be accepting when
1. c1 is a not start configuration OR
2. cn is not an accepting configuration OR
3. some consecutive pair ci , ci+1 is not related ci |- ci+1 by the transition

function for M

Design a PDA

• All CFG can be converted into PDA
• A PDA can be converted into a TM
• We don’t care about how efficient the TM is, we are

not going to run it. We are going to let the (non-
existent) ALLCFG TM analyze it.

• The machine has three steps
1. c1 is a not start configuration OR
2. cn is not an accepting configuration OR
3. some consecutive pair ci , ci+1 is not related ci |- ci+1 by the transition function for M

• See the text for one strategy for the design of the TM emulating
the PDA.

Post correspondence Problems

• The post correspondence problem looks for a
solution to a simple game.

• Given a set of “dominos” like

• Can one arrange the dominoes, side by side, such
that the strings formed by concatenating top
square and bottom square strings are the same.

• One can use each domino 0 or more times

b

ca

a

ab

ca

a

abc

c

bc

b

b

ca

a

ab

ca

a

abc

c

bc

b

a

ab

b

ca

ca

a

a

ab

abc

c

abcaaabc
abcaaabc

abc

ab

ca

a

acc

ba

Why are no matches possible here?

PCP = { <P> | P is an instance of the
 Post correspondence problem with a match }

PCP is undecidable

For some set of dominos, no matches may be possible

PCP is undecidable
• Proof by contradiction
• Assume PCP is decidable
• Then build a TM for ATM that uses PCP

• Given TM, M, and string, w, strategy depends upon

finding an configuration accepting history for w. We
show that such a history can be encoded as a PCP
game

• I.e. we define a set of dominos, and if that set has a
match, then the match would give an accepting
configuration history for w, thus deciding ATM which is
known to be undecidable, leading to a contradiction.

The TM machine

• ATM (<M,w>) =
– Create a particular PCP game , p, from M and w

such that a match for p is an accepting
configuration history for w under M.

– Use PCP to solve p
• If p is solvable, then the match is an accepting

configuration history for w, so ATM accepts
• If p is insolvable, then ATM rejects

• How do we create p?

Technical details

1. We need M to never attempt to move its
head of the left hand side of the tape.

1. We can construct M’ with this property where M’
accepts the same strings as M.

2. If w=ε we use a special symbol of the
alphabet ⌴ to represent ε.

3. We modify the PCP game to require that the
match starts with the first domino in the set.

Constructing P

• Recall M=(Q,Σ,Γ,δ,q0,qaccept,qreject)
• We construct the dominos of P in seven parts.
• Each part place dominos that “simulate” some

part of finding an accepting configuration
history.

Step 1

1. Put

As the first domino in the set. This forces the
game to start with the initial configuration

Its clear we’ll need more dominos that extend

the top box of the domino if we are ever to
find a match.

#q0w1w2…wn

Step 2 – moving the head to the right

• For every a,b ∈Γ, and
• every r,q ∈Q (where q ≠ qreject)
• If δ(q,a) = (r,b,R)

• Into the set of dominos

qa
br

Step 3 – moving the head to the left

• For every a,b,c ∈Γ, and
• every r,q ∈Q (where q ≠ qreject)
• If δ(q,a) = (r,b,L)

• Into the set of dominos

cqa
rcb

Step 4 - cells not adjacent to the head

• For every a∈Γ
• put

• Into the set of dominoes

a
a

Step 5 – handling the markers (#)

• Put

• Into the set of dominos

⌴#

Step 6 – catching up on accept

• For every a∈Γ
• Put

• Into the set of dominos

a qaccept
qaccept

qaccept a
qaccept

Step 7 – cleaning up

• Add

• To the set of dominos

qaccept ##

How does it work

• Each step towards acceptance supports only
the addition of a single domino.

• Thus every accepting path leads to a match
• If there are no accepting paths, then the last

cleanup steps are never possible so the top
remains too short, and no match can be
found.

Turing computable functions

• A function Σ* → Σ* is a computable function
if some Turing Machine M, in every input w,
halts with just f(w) on its tape.

• Some computable functions
– Arithmetic functions like +, *, -, /, mod, etc.
– Turing Machine description transformations

• F(M) = M’ where M’ accepts the same strings a M but
never tries to move its head of the left end of the tape

Mapping reducability

• A language A is mapping reducable to
language B, written A ≤m B, if there is a
computable function f : Σ* → Σ* , where for
every w ∈ Σ*,
 w ∈ A ⇔ F(w) ∈ B

• Mapping reducability creates a way to
formally describe how to convert a question in
A into a question in B

Unsurprising Theorems
Sipser page 208

1. A ≤m B and B is decidable then A is decidable

2. A ≤m B and A is undecidable, then B is
undecidable

Old theorems in a new light

• HALTTM

• Post correspondence
• ETM

HALTTM
• Find a computable function f such that
• ATM ≤f HALTTM
• ATM (<M,w>) = accept iff
 HALTTM (<M’,w’>) =accept
• Where f<M,w> = <M’,w’>

• f<M,w> =

– create M’ <x> = run M on x
• If M accepts then M’ accepts
• If M rejects, enter a loop

– F returns <M’,w>

A ≤m B and Turing Recognizability

• A ≤m B and B is Turing recognizable then A is
Turing recognizable

• A ≤m B and A is not Turing recognizable then B
is not Turing recognizable
– Typically we let A be ATM the complement of ATM

Two ways to show not Turing
recognizable

1. ATM ≤m B to show B is not Turing recognizable,
by the second theorem on previous page

2. Because A ≤mB & A ≤m B mean the same
1. Because of the definition of mapping reducability,

 F(A) = problem in B
 F(A) = problem in B

2. Thus can also use ATM ≤m B to show B is not Turing
recognizable.

EQTM is neither Turing recognizable or
co-Turing recognizable

• We must show two things
1. EQTM is not Turing recognizable
2. The complement of EQTM, EQTM , is not Turing

recognizable

Part 1: EQTM is not Turing recognizable

• Use the second method
• Show ATM ≤m EQTM

• The reducing function F =

– On input <M,w> construct the 2 TMs M1 and M2
1. M1(x) on any input, x, reject
2. M2(x) run M on w, if it accepts, accept

– Output <M1,M2>

• Note M1 and M2 are equivalent only if M accepts w

Part 2: EQTM is not Turing recognizable

• Use the second method
• Show ATM ≤m EQTM which is the same as
 ATM ≤m EQTM

• The reducing function G =

– On input <M,w> construct the 2 TMs M1 and M2
1. M1(x) on any input, x, accept
2. M2(x) run M on w, if it accepts, accept

– Output <M1,M2>

– Note that M1 and M2 agree only if M accepts w

done

Example { anbm | n,m ≥ 0}
on the string “aab”

#0aab

0a
a0

0a
a0

0b
b1

0⌴
⌴1

	Reducability
	Reduction
	Properties of Reduction
	HALTTM is undecidable
	The construction of S (using R)
	Strategy
	ETM is undecidable
	S solves ATM
	RegularTM is undecidable
	We show how to reduce ATM to RegularTM
	Use H to define S which decides ATM
	EQTM is undecidable
	Construction of S
	Computation History
	Accepting (rejecting) Histories
	Linear Bounded Automaton (LBA)
	LBA are quite powerful
	Lemma: Bound on number of configurations
	ALBA is decidable
	Constructing S
	Key ideas
	ELBA is undecidable
	Constructing B from M and w
	B uses M and w
	Using configuration histories
	ALLCFG is undeciadable
	Strategy
	The Turing machine
	Accepting configuration histories as languages
	Failure to be accepting
	Design a PDA
	Post correspondence Problems
	Slide Number 33
	Slide Number 34
	PCP is undecidable
	The TM machine
	Technical details
	Constructing P
	Step 1
	Step 2 – moving the head to the right
	Step 3 – moving the head to the left
	Step 4 - cells not adjacent to the head
	Step 5 – handling the markers (#)
	Step 6 – catching up on accept
	Step 7 – cleaning up
	How does it work
	Turing computable functions
	Mapping reducability
	Unsurprising Theorems�Sipser page 208
	Old theorems in a new light
	HALTTM
	A ≤m B and Turing Recognizability
	Two ways to show not Turing recognizable
	EQTM is neither Turing recognizable or co-Turing recognizable
	Part 1: EQTM is not Turing recognizable
	Part 2: EQTM is not Turing recognizable
	done
	Example { anbm | n,m ≥ 0}�on the string “aab”

