NFA defined

Sipser pages 47 -54

NFA

e A Non-deterministic Finite-state Automata

(NFA) is a language recognizing system similar
to a DFA.

e |t supports a level of non-determinism. l.e. At
some points in time it is possible for the
machine to take on many next-states.

* Non-determinism makes it easier to express
certain kinds of languages.

Nondeterministic Finite Automata (NFA)

e When an NFA receives an input symbol a, it can make a
transition to zero, one, two, or even more states.

— each state can have multiple edges labeled with the same
symbol.

 An NFA accepts a string w iff there exists a path labeled
W from the initial state to one of the final states.

— In fact, because of the non-determinism, there may be
many states labeled with w

Example N1

 The language of the following NFA consists of all
strings over {0, 1} whose 3" symbol from the
right is O.

* Note Q, has multiple transitions on 0 and Q, has
no transitions on both 0 and 1

Example N2

* The NFA N, accepts strings beginning with O.

Note no transitions
from Q, on 1

@ 0 ;0,1

* Note Q, has no transitionon 1

— It is acceptable for the transition function to be
undefined on some input elements for some states.

NFA Processing

Suppose N, receives the input string 0011. There are three
possible execution sequences:

Ob— Ug— Uo— do—> Yo
O— g~ 41— 4,— Q3
Qo— 47— U,— (3

Only the second finishes in an accept state. The third even gets stuck
(cannot even read the fourth symbol).

As long is there is at least one path to an accepting state, then the
string is accepted.

Input = 0011

0 0 1 1
qo—) qO—) qO—) qo—) qO
qO—) qO—) q1—) qz—) q3
Qo— Ur— U— U3

Note, that
this path is
stuck at g3

Path Tree

A note about NFA’s

* |n the Sipser text book (page 53) the
definition for an NFA is slightly different from

what we will see on the next page.
 The NFA that Sipser defines, we call an NFAe.
— |t allows transitions on edges labeled with € (the
empty string)
 We talk about this in a separate set of notes.

|

This is a simpler version of
the definition on page 53

W} Formal Definition

* An NFAisaquintuple A= (Q,%,5,S,F)

, Where the

first four components are as in a DFA, and the transition

function produces values in P(Q)

instead of Q. Thus

5: Q x X—>P(Q)

(the power set of Q)

note that T returns a set of states!

« ANFA A=(Q,X,5,S,F), acceptsastring W,;W,..W,
(an element of 2*) iff there exists a sequence of states

r{r,.r,r,., suchthat

1. ry =s
2. rig € O(ry,w;)
3. rh,,.NF#J

Compare with DFA

ADFA = (Q,X2,08,q,,F), accepts a string
w = “wyw.w,” iff

There exists a sequence of states [ry, ry ...r.]
with 3 conditions

1. o= do

2. o(r,wi,q) = ri+l

3. ra€F

The extension of the transition function

e LetanNFA A=(0Q,X,5,s,F)

e Theextension o : Q x Z*—)P((%R extends o so that it is defined
over a string of input symbols, rather than a single symbol. It is defined by

- 0(q,¢)={q}

~ 8(A1X2XS) = Upisqn 8(P-XS)

Compute this by taking the union of the sets

0(pP,XsS), where pvaries over all states in the set

6(q,X)

* First compute 3(Q, X), thisis a set, call it S.
o for each element, pin S, compute d(p,xs),
e Union all these sets together.

Intuition

e At any point in the walk over a string, such as
“000” the machine can be in a set of states.

* To take the next step, on a character ‘c’, we
create a new set of states. All those reachable
from any of the old sets on a single ‘¢’

3(g,e)={q}
3(0,x:x8) = U 540 3(P,XS)

Consider computing 8(Q,,001)
The answer will be {Q,,Q,,Q}

Start by one-step comput|

6(Qg,0)={Q,Q3}

So for each of Q,,Q; recursively
many-step computé

seaz013 = tay™

Then union them together!

Another NFA Acceptance Definition

* An NFA accepts a string w iff d(s,W)
contains a final state. The language of an NFA
N is the set L(N) of accepted strings:

e L(N) = {w | d(s,w) n F # G}

e Compare this with the 2 definitions of DFA acceptance in last weeks lecture.

ADFA = (Q,X2,0,q,,F), accepts a string ADFA =(Q,X, 8,q,y,F) accepts astring w iff 5(qy,W)e F
w = “wywg.w,” iff
More formally
There exists a sequence of states [ry, r; ... 1] L(A)={w | d(Start(A),w)e Final(A)}
with 3 conditions
1. o= do
2. o(r,wi,,) =r+1

3. ra€F

Implementation

 Implementation of NFAs has to be
deterministic, using some form of
backtracking to go through all possible
executions.

* Any thoughts on how this might be
accomplished?

In Haskel

data NFA g s =

NFA [q]
[s]

(g -> s -> [qD

q
[al

states
symbols

trans

start

accept states

Compare with DFA

data DFA g s =

DFA [q]
[s]

(@ ->s ->0q) --

q
[a]

states
symbols

trans

start state
accept states

Path acceptance

Seq cicac3

allSeq xs O

[[0,0,0]=T F F

allseq xs 1 = [[x] | x <- xs] [1L,0,0]=F F F
allSeqg xs n = [y:ys | ys <- allSeq xs (n-1), y <- xs] [2,0,0]=F F F
- — [0,1,0]=T T F

w = “wywy.w,” iff [1,1,0]=F T F

condl nfa (r:rs) = r == (start nfa) There exists a sequence of states [2,10]=F F F
condl nfa [] = False [ro, ry ... r,] with 3 conditions [02,0]=T F F
1. r=qo [1,2,0]=F F F

cond2 nfa [] [r] = True 2. 0(rwi) =i+l [2,2,0]=F F F
' -r2:rs) = 3. mef [0,0,1=TF T

cond2 nfa (w:ws) (rl:r2:rs) = LO1=F F T
(elem r2 (trans nfa rl w)) && (cond2 nfa ws (r2:rs)) {iOHJ;F T
cond2 nfa _ _ = False [dlﬁJ=T'rT
[1,1,1]=F T T

cond3 nfa [r] = isFinal nfa r [2,1,1]=F F T
cond3 nfa (r:rs) = cond3 nfa rs (0,2,1]=T F T
[1,2,1]=F F T

cond3 nfa _ = False (2.21]=F F T
[0,0,2]=T F F

cond nfa ws path = condl nfa path && [1,0,2]=F T F
cond2 nfa ws path && [2,0,2]=F F F

cond3 nfa path [0,1,2]=T F F

[1,1,2]=F F F

[2,1,2]=F F F

acceptl nfa ws = any (cond nfa ws) paths [0,22]=T F F
where paths = allSeq (states nfa) (1 + length ws) [1,2,2]=F F F

F

[2,2,2]=F T

Transition extension acceptance

Trace
input

closure:: Ord g => NFA g s -> [q] -> s -> [q
closure nfa gs s =
unionsL [trans nfa q s | g <- gs]

deltaBar nfa q [] = [qd]
deltaBar nfa q (w:ws) =
unionsL [deltaBar nfa p ws

| p <- closure nfa [q] w]
Paths

on
input
Ila bl)

acceptNFA2 nfa ws =
not(null(intersect last (accept nfa)))
where last = deltaBar nfa (start nfa) ws

deltaBar n2 (start n2) "ab" = [0,1]
Not(null(intersect [0,1] (accept n2))) = True

	NFA defined
	NFA
	Nondeterministic Finite Automata (NFA)
	Example N1
	Example N2
	NFA Processing
	Slide Number 7
	A note about NFA’s
	Formal Definition
	The extension of the transition function
	Intuition
	Slide Number 12
	Another NFA Acceptance Definition
	Implementation
	In Haskel
	Path acceptance
	Transition extension acceptance

