NFA Closure Properties

Sipser pages pages 58-63
NFAs also have closure properties

• We have given constructions for showing that DFAs are closed under
 1. Complement
 2. Intersection
 3. Difference
 4. Union

• We will now establish that NFAs are closed under
 1. Reversal
 2. Kleene star
 3. Concatenation
Reversal of ε-NFAs

• Closure under reversal is easy using ε-NFAs. If you take such an automaton for L, you need to make the following changes to transform it into an automaton for L^{Rev}:

1. Reverse all arcs

2. The old start state becomes the only new final state.

3. Add a new start state, and an ε-arc from it to all old final states.
1. Reverse all arcs

2. The old start state becomes the only new final state.

3. Add a new start state, and an ε-arc from it to all old final states.
Concatenation

• \(L \circ R = \{ x \circ y \mid x \text{ in } L \text{ and } y \text{ in } R \} \)

• To form a new \(\varepsilon \)-NFA that recognizes the concatenation of two other \(\varepsilon \)-NFAs with the same alphabet do the following
 – Union the states (you might have to rename them)
 – Add an \(\varepsilon \)-transition from each final state of the first to the start state of the second.
Formally

- Let
 \[L = (Q_L, \Lambda, T_L, s_L, F_L) \]
 \[R = (Q_R, \Lambda, T_R, s_R, F_R) \]
- \[L \cdot R = = (Q_L \cup Q_R, \Lambda, T, s_L, F_R) \]

Where

\[
T \; s \; \epsilon \; | \; s \in F_L = S_R \cup T_L \quad s \; \epsilon \\
T \; s \; c \; | \; s \in Q_L = T_L \quad s \; c \\
T \; s \; c \; | \; s \in Q_R = T_R \quad s \; c
\]
Kleene - Star

• If a language L is recognized by an NFA then so is the language L^*

• Add a new state.
• Make it the start state in the new NFA.
• Add an ϵ-arc from this state to the old start state.
• Add ϵ-arcs from every final state to this new state.
Example

- Add a new state.
- Make it the start state in the new NFA, and an accepting state.
- Add an ε-arc from this state to the old start state.
- Add ε-arcs from every final state to this new state.