Deterministic Finite State Automata

Sipser pages 31-46

Deterministic Finite Automata (DFA)

• DFAs are easiest to present pictorially:

They are directed graphs whose nodes are *states* and whose arcs are labeled by one or more symbols from some alphabet Σ . Here Σ is {0,1}.

Such a graph is called a state transition diagram.

• One state is *initial* (denoted by a short incoming arrow), and several are *final/accepting* (denoted by a double circle). For every symbol $a \in \Sigma$ there is an arc labeled *a* emanating from every state.

Automata are string processing devices. The arc from q₁ to q₂ labeled 0 shows that when the automaton is in the state q₁ and receives the input symbol 0, its next state will be q₂.

Drawing Conventions

- I use some software to draw DFAs, which is somewhat limited. So I use conventions
 - 1. Initial states are green circles
 - 2. Final states are double red circles
 - 3. Other states are oval
 - 4. If the initial and final states overlap, I use blue double circle.

Missing alphabet

 I sometimes draw a state transition diagram where some nodes do not have an edge labeled with every letter of the alphabet, by convention we add a new (dead) state where all missing edges terminate.

• Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^*$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the language of the automaton.

 In our example, the language of the automaton consists of strings over {0,1} containing at least two occurrences of 0. Modify the automaton so that its language consists of strings containing *exactly two* occurrences of 0.

Formal Definition

- A DFA is a quintuple $\mathbf{A} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$ where
 - -Q is a set of **states**
 - $-\Sigma$ is the **alphabet** (of *input symbols*)
 - δ : $\mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the **transition function**
 - $-q_0 \in Q$ -- the start state
 - $-F \subseteq Q$ -- final states

- Page 35 of Sipser

Example

- In our example,
- $\mathbf{Q} = \{ \mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2 \}$, $\mathbf{\Sigma} = \{ 0, 1 \}$, $\mathbf{q}_0 = \mathbf{q}_0$, $\mathbf{F} = \{ \mathbf{q}_2 \}$,

and

•••

- $\delta~$ is given by 6 equalities
- $\delta(q_0, 0) = q_1$,
- $\delta(q_0, 1) = q_0$,
- $\delta(q_2, 1) = q_2$

Transition Table

• All the information presenting a DFA can be given by a single thing -- its *transition table*:

	0	1
O ₀	Q ₁	O ₀
\rightarrow Q ₁	Q ₂	Q ₁
*Q ₂	Q ₂	Q ₂

• The initial and final states are denoted by \rightarrow and * respectively.

Language of accepted Strings

• A DFA = $(Q, \Sigma, \delta, q_0, F)$, accepts a string

$$\mathbf{w} = \mathbf{w}_1 \mathbf{w}_1 \dots \mathbf{w}_n''$$
 iff

- There exists a sequence of states $[r_0, r_{1_j} ... r_n]$ with 3 conditions

Example

- Show that "ABAB" is accepted.
- Here is a path [0,0,1,2,2]
 - The first node, 0, is the start state.
 - The last node, 2, is in the accepting states
 - The path is consistent with the transition

• $\delta 2B = 2$

Note that the path is one longer than the string

Definition of Regular Languages

• A language is called regular if it is accepted by some DFA.

Extension of δ to Strings

- Given a state q and a string w, there is a unique path labeled w that starts at q (why?). The endpoint of that path is denoted <u>δ</u>(q,w)
- Formally, the function $\underline{\delta}$: $\mathbf{Q} \times \Sigma^* \to \mathbf{Q}$
- is defined recursively:

$$-\underline{\delta}(q,\varepsilon) = q$$

$$-\underline{\delta}(q,x:xs) = \underline{\delta}(\delta(q,x),xs)$$

- Note that $\underline{\delta}(q, a'') = \delta(q, a)$ for every $a \in \Sigma$;
- so $\underline{\delta}$ does extend δ .

Example trace

Diagrams (when available) make it very easy to compute δ(q,w) --- just trace the path labeled w starting at q.

• E.g. trace 101 on the diagram below starting at q_1 q_0 q_1 q_1 q_2 q_2 q_1 Implementation and precise arguments need the formal definition.

$$\underline{\delta}(\mathbf{q}_{1}, \mathbf{101}) = \underline{\delta}(\delta(\mathbf{q}_{1}, \mathbf{1}), \mathbf{01})$$

$$= \underline{\delta}(\mathbf{q}_{1}, \mathbf{01})$$

$$= \underline{\delta}(\delta(\mathbf{q}_{1}, \mathbf{0}), \mathbf{11})$$

$$= \underline{\delta}(\mathbf{q}_{2}, \mathbf{11})$$

$$= \underline{\delta}(\delta(\mathbf{q}_{2}, \mathbf{01}), \mathbf{\epsilon})$$

$$= \underline{\delta}(\mathbf{q}_{2}, \mathbf{\epsilon})$$

$$= \mathbf{q}_{2}$$

	0	1
$\rightarrow q_0$	q_1	q ₀
q_1	q ₂	q ₁
*q ₂	q ₂	q ₂

Language of accepted strings - take 2

A DFA = ($\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F}$) accepts a string w iff $\underline{\delta}(\mathbf{q}_0, w) \in \mathbf{F}$

The language of the automaton A is $L(A) = \{w \mid A \text{ accepts } w\}.$

More formally $L(A) = \{ w \mid \underline{\delta}(Start(A), w) \in Final(A) \}$

Example:

Find a DFA whose language is the set of all strings over {a,b,c} that contain aaa as a substring.

DFA's as Programs

data DFA q s =	
DFA [q]	states
[s]	symbols
(q -> s -> q)	delta
q	start state
[q]	accept states

Note that the States and Symbols can be any type.

Programming for acceptance 1

```
path:: Eq q => DFA q s -> q -> [s] -> [q]
path d q [] = [q]
path d q (s:ss) = q : path d (trans d q s) ss
```

```
acceptDFA1 :: Eq a => DFA a t -> [t] -> Bool
acceptDFA1 dfa w = cond1 p && cond2 p && cond3 w p
where p = path dfa (start dfa) w
```

```
cond1 (r:rs) = (start dfa) == r
cond1 [] = False
```

```
cond2 [r] = elem r (accept dfa)
cond2 (r:rs) = cond2 rs
cond2 = False
```

```
\mathbf{w} = \mathbf{w}_1 \mathbf{w}_1 \dots \mathbf{w}_n"
Iff there exists a
sequence of states
```

[r₀, r₁ ... r_n]

```
1. r_0 = q_0

2. \delta(r_i, w_{i+1}) = r_i + 1

3. r_n \in F
```

```
cond3 [] [r] = True
cond3 (w:ws) (r1:(more@(r2:rs))) =
    (trans dfa r1 w == r2) && (cond3 ws more)
cond3 _ _ = False
```

Programming for acceptance 1

acceptDFA2 dfa w = elem (deltaBar dfa (start dfa) w) (accept dfa)

An Example

```
d1 :: DFA Integer Integer
d1 = DFA states symbol trans start final
where states = [0,1,2]
    symbol = [0,1]
    trans p a = (2*p+a) `mod` 3
    start = 0
    final = [2]
```

```
d1 = DFA states symbol trans start final
  where states = [0,1,2]
    symbol = [0,1]
    trans p a = (2*p+a) `mod` 3
    start = 0
    final = [2]
```

 $\{0, 1, 2\}$ DFA Q Sigma {0, 1} Delta 0 0 -> 0 0 1 -> 11 0 -> 2 1 1 -> 02 0 -> 1 2 1 -> 2**q**0 0 Final $\{2\}$

