
Deterministic Finite State Automata

Sipser pages 31-46

Deterministic Finite Automata (DFA)

• DFAs are easiest to present pictorially:

Q0 Q1 Q2

1 1

0 0 0,1

They are directed graphs whose nodes are states and whose arcs
are labeled by one or more symbols from some alphabet Σ.

Here Σ is {0,1}.

Such a graph is called a state transition diagram.

• One state is initial (denoted by a short incoming arrow), and
several are final/accepting (denoted by a double circle). For
every symbol a∈Σ there is an arc labeled a emanating from
every state.

•

• Automata are string processing devices. The arc from q1 to q2
labeled 0 shows that when the automaton is in the state q1
and receives the input symbol 0, its next state will be q2.

q0 q1 q2

1 1

0 0 0,1

Drawing Conventions

• I use some software to draw DFAs, which is
somewhat limited. So I use conventions
1. Initial states are green circles
2. Final states are double red circles
3. Other states are oval
4. If the initial and final states
 overlap, I use blue
 double circle.

Missing alphabet
• I sometimes draw a state transition diagram

where some nodes do not have an edge
labeled with every letter of the alphabet, by
convention we add a new (dead) state where
all missing edges terminate.

1

2 2

A
B

• Every path in the graph spells out a
string over S. Moreover, for every string
w ∈Σ∗ there is a unique path in the
graph labelled w. (Every string can be
processed.) The set of all strings whose
corresponding paths end in a final state
is the language of the automaton.

• In our example, the language of the
automaton consists of strings over {0,1}
containing at least two occurrences of
0.

Q0 Q1 Q2

1 1

0 0 0,1

• Modify the automaton so that its language
consists of strings containing exactly two
occurrences of 0.

•

Formal Definition

• A DFA is a quintuple A = (Q,Σ,δ,q0,F)
where

– Q is a set of states
– Σ is the alphabet (of input symbols)
– δ: Q × Σ → Q is the transition function
– q0 ∈ Q -- the start state
– F ⊆ Q -- final states

– Page 35 of Sipser

Example

• In our example,
• Q={q0,q1,q2},
 Σ={0,1},
 q0=q0,
 F={q2},
• and

δ is given by 6 equalities

• δ(q0,0)=q1,
• δ(q0,1)=q0,
• δ(q2,1)=q2
• …

q0 q1 q2

1 1

0 0 0,1

Transition Table

• All the information presenting a DFA can be given by a single
thing -- its transition table:

• The initial and final states are denoted by → and *
respectively.

0 1

Q0 Q1 Q0

Q1 Q2 Q1

*Q2 Q2 Q2

Language of accepted Strings

• A DFA = (Q,Σ,δ,q0,F), accepts a string
• w = “w1w1…wn” iff

– There exists a sequence of states [r0, r1, … rn]
 with 3 conditions
1. r0 = q0

2. δ(ri,wi+1) = ri+1
3. rn ∈ F

Acceptance is about
finding a sequence.

How do we find such

a sequence?

Example
• Show that “ABAB” is accepted.

• Here is a path [0,0,1,2,2]

– The first node, 0, is the start state.
– The last node, 2, is in the accepting states
– The path is consistent with the transition

• δ 0 A = 0

• δ 0 B = 1

• δ 1 A = 2

• δ 2 B = 2

Note that the path is one
longer than the string

Definition of Regular Languages

• A language is called regular if it is accepted by
some DFA.

Extension of δ to Strings

• Given a state q and a string w, there is a unique path labeled w
that starts at q (why?). The endpoint of that path is denoted
δ(q,w)

• Formally, the function δ : Q × Σ* → Q
• is defined recursively:

– δ(q,ε)=q
– δ(q,x:xs)= δ(δ(q,x),xs)

• Note that δ(q,”a”)= δ(q,a) for every a∈Σ;

• so δ does extend δ.

Example trace

• Diagrams (when available) make it very easy
to compute δ(q,w) --- just trace the path
labeled w starting at q.

• E.g. trace 101 on the diagram below starting
at q1

q0 q1 q2

1 1

0 0 0,1

Implementation and precise arguments need
the formal definition.

 δ(q1,101)= δ(δ(q1,1) ,01)
 = δ(q1,01)
 = δ(δ(q1,0) ,1)
 = δ(q2,1)
 = δ(δ(q2,0) ,ε)
 = δ(q2,ε)
 = q2

0 1

→q0 q1 q0

q1 q2 q1

*q2 q2 q2

Language of accepted strings - take 2

A DFA =(Q,Σ, δ,q0,F) accepts a string w iff δ(q0,w)∈ F

The language of the automaton A is
 L(A)={w | A accepts w}.

More formally
L(A)={w | δ(Start(A),w) ∈ Final(A)}

Example:
Find a DFA whose language is the set of all strings over {a,b,c}

that contain aaa as a substring.

DFA’s as Programs
data DFA q s =
 DFA [q] -- states
 [s] -- symbols
 (q -> s -> q) -- delta
 q -- start state
 [q] -- accept states

Note that the States and Symbols can be any type.

Programming for acceptance 1
path:: Eq q => DFA q s -> q -> [s] -> [q]
path d q [] = [q]
path d q (s:ss) = q : path d (trans d q s) ss

acceptDFA1 :: Eq a => DFA a t -> [t] -> Bool
acceptDFA1 dfa w = cond1 p && cond2 p && cond3 w p
 where p = path dfa (start dfa) w

 cond1 (r:rs) = (start dfa) == r
 cond1 [] = False

 cond2 [r] = elem r (accept dfa)
 cond2 (r:rs) = cond2 rs
 cond2 _ = False

 cond3 [] [r] = True
 cond3 (w:ws) (r1:(more@(r2:rs))) =
 (trans dfa r1 w == r2) && (cond3 ws more)
 cond3 _ _ = False

w =“w1w1…wn”
Iff there exists a
sequence of states
 [r0, r1, … rn]

1. r0 = q0
2. δ(ri,wi+1) = ri+1
3. rn ∈ F

Programming for acceptance 1
-- δ = deltaBar
deltaBar :: Eq q => DFA q s -> q -> [s] -> q
deltaBar dfa q [] = q
deltaBar dfa q (s:ss) =
 deltaBar dfa (trans dfa q s) ss

acceptDFA2 dfa w =
 elem (deltaBar dfa (start dfa) w)
 (accept dfa)

An Example

d1 :: DFA Integer Integer
d1 = DFA states symbol trans start final
 where states = [0,1,2]
 symbol = [0,1]
 trans p a = (2*p+a) `mod` 3
 start = 0
 final = [2]

DFA Q {0, 1, 2}
 Sigma {0, 1}
 Delta 0 0 -> 0
 0 1 -> 1
 1 0 -> 2
 1 1 -> 0
 2 0 -> 1
 2 1 -> 2
 q0 0
 Final {2}

d1 = DFA states symbol trans start final
 where states = [0,1,2]
 symbol = [0,1]
 trans p a = (2*p+a) `mod` 3
 start = 0
 final = [2]

	Deterministic Finite State Automata
	Deterministic Finite Automata (DFA)
	Slide Number 3
	Drawing Conventions
	Missing alphabet
	Slide Number 6
	Slide Number 7
	Formal Definition
	Example
	Transition Table
	Language of accepted Strings
	Example
	Definition of Regular Languages
	Extension of d to Strings
	Example trace
	Slide Number 16
	Language of accepted strings - take 2
	DFA’s as Programs
	Programming for acceptance 1
	Programming for acceptance 1
	An Example
	Slide Number 22

