Deterministic Finite State Automata

Sipser pages 31-46
Deterministic Finite Automata (DFA)

- DFAs are easiest to present pictorially:

They are directed graphs whose nodes are states and whose arcs are labeled by one or more symbols from some alphabet Σ. Here Σ is $\{0, 1\}$.

Such a graph is called a state transition diagram.
• One state is *initial* (denoted by a short incoming arrow), and several are *final/accepting* (denoted by a double circle). For every symbol $a \in \Sigma$ there is an arc labeled a emanating from every state.

• Automata are string processing devices. The arc from q_1 to q_2 labeled 0 shows that when the automaton is in the state q_1 and receives the input symbol 0, its next state will be q_2.
Drawing Conventions

• I use some software to draw DFAs, which is somewhat limited. So I use conventions
 1. Initial states are green circles
 2. Final states are double red circles
 3. Other states are oval
 4. If the initial and final states overlap, I use blue double circle.
Missing alphabet

• I sometimes draw a state transition diagram where some nodes do not have an edge labeled with every letter of the alphabet, by convention we add a new (dead) state where all missing edges terminate.
• Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^*$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the *language of the automaton*.

![Diagram of a DFA]

• In our example, the language of the automaton consists of strings over $\{0, 1\}$ containing at least two occurrences of 0.
• Modify the automaton so that its language consists of strings containing *exactly two* occurrences of 0.
A DFA is a quintuple $A = (Q, \Sigma, \delta, q_0, F)$ where

- Q is a set of states
- Σ is the alphabet (of input symbols)
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ -- the start state
- $F \subseteq Q$ -- final states

- Page 35 of Sipser
Example

- In our example,
- $Q = \{ q_0, q_1, q_2 \}$,
- $\Sigma = \{ 0, 1 \}$,
- $q_0 = q_0$,
- $F = \{ q_2 \}$,
- and

δ is given by 6 equalities

- $\delta(q_0, 0) = q_1$,
- $\delta(q_0, 1) = q_0$,
- $\delta(q_2, 1) = q_2$
- ...

Diagram:

- $q_0 \xrightarrow{0} q_1 \xrightarrow{0} q_2 \xrightarrow{0,1}$
All the information presenting a DFA can be given by a single thing -- its *transition table*:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_0</td>
<td>Q_1</td>
<td>Q_0</td>
</tr>
<tr>
<td>Q_1</td>
<td>Q_2</td>
<td>Q_1</td>
</tr>
<tr>
<td>$*Q_2$</td>
<td>Q_2</td>
<td>Q_2</td>
</tr>
</tbody>
</table>

The initial and final states are denoted by \rightarrow and * respectively.
Language of accepted Strings

• A DFA \((Q, \Sigma, \delta, q_0, F) \), accepts a string
 \[w = \text{"w}_1\text{w}_1...\text{w}_n" \] iff

 – There exists a sequence of states \([r_0, r_1, ... r_n]\)
 with 3 conditions

 1. \(r_0 = q_0 \)
 2. \(\delta(r_i, w_{i+1}) = r_{i+1} \)
 3. \(r_n \in F \)

Acceptance is about finding a sequence.
How do we find such a sequence?
Example

• Show that “ABAB” is accepted.

• Here is a path $[0,0,1,2,2]$
 – The first node, 0, is the start state.
 – The last node, 2, is in the accepting states
 – The path is consistent with the transition
 • $\delta 0 \text{ A} = 0$
 • $\delta 0 \text{ B} = 1$
 • $\delta 1 \text{ A} = 2$
 • $\delta 2 \text{ B} = 2$

Note that the path is one longer than the string
Definition of Regular Languages

• A language is called regular if it is accepted by some DFA.
Extension of δ to Strings

- Given a state q and a string w, there is a unique path labeled w that starts at q (why?). The endpoint of that path is denoted $\delta(q,w)$.

- Formally, the function $\delta : Q \times \Sigma^* \rightarrow Q$
- is defined recursively:

 - $\delta(q,\epsilon) = q$
 - $\delta(q,x:xs) = \delta(\delta(q,x),xs)$

- Note that $\delta(q,\text{"a"}) = \delta(q,a)$ for every $a \in \Sigma$;
- so δ does extend δ.

Example trace

- Diagrams (when available) make it very easy to compute $\delta(q, w)$ --- just trace the path labeled w starting at q.

- E.g. trace 101 on the diagram below starting at q_1.

![Diagram showing states q_0, q_1, and q_2 with transitions labeled 0 and 1, and an accepting state q_2 labeled 0,1.]
Implementation and precise arguments need the formal definition.

$$\delta(q_1, 101) = \delta(\delta(q_1, 1), 01)$$

$$= \delta(q_1, 01)$$

$$= \delta(\delta(q_1, 0), 1)$$

$$= \delta(q_2, 1)$$

$$= \delta(\delta(q_2, 0), \varepsilon)$$

$$= \delta(q_2, \varepsilon)$$

$$= q_2$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow q_0$</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_1</td>
</tr>
<tr>
<td>$*q_2$</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>
A DFA \((Q, \Sigma, \delta, q_0, F) \) accepts a string \(w \) iff \(\delta(q_0, w) \in F \)

The language of the automaton \(A \) is
\[
L(A) = \{ w \mid A \text{ accepts } w \}.
\]

More formally
\[
L(A) = \{ w \mid \delta(\text{Start}(A), w) \in \text{Final}(A) \}
\]

Example:
Find a DFA whose language is the set of all strings over \(\{a, b, c\} \) that contain \(\text{aaa} \) as a substring.
DFA’s as Programs

data DFA q s =

 DFA [q] -- states
 [s] -- symbols
 (q -> s -> q) -- delta
 q -- start state
 [q] -- accept states

Note that the States and Symbols can be any type.
Programming for acceptance 1

```haskell
path:: Eq q => DFA q s -> q -> [s] -> [q]
path d q [] = [q]
path d q (s:ss) = q : path d (trans d q s) ss

acceptDFA1 :: Eq a => DFA a t -> [t] -> Bool
acceptDFA1 dfa w = cond1 p && cond2 p && cond3 w p
    where p = path dfa (start dfa) w

cond1 (r:rs) = (start dfa) == r
cond1 [] = False

cond2 [r] = elem r (accept dfa)
cond2 (r:rs) = cond2 rs
cond2 _ = False

cond3 [] [r] = True
cond3 (w:ws) (r1:(more@(r2:rs))) =
    (trans dfa r1 w == r2) && (cond3 ws more)
cond3 _ _ _ = False
```

Iff there exists a sequence of states
\[[r_0, r_1, \ldots, r_n] \]

1. \(r_0 = q_0 \)
2. \(\delta(r_i, w_{i+1}) = r_{i+1} \)
3. \(r_n \in F \)
Programming for acceptance 1

-- \(\delta = \text{deltaBar} \)

deltaBar :: Eq q => DFA q s -> q -> [s] -> q
deltaBar dfa q [] = q
deltaBar dfa q (s:ss) =
 deltaBar dfa (trans dfa q s) ss

acceptDFA2 dfa w =
 elem (deltaBar dfa (start dfa) w)
 (accept dfa)
d1 :: DFA Integer Integer

d1 = DFA states symbol trans start final

where states = [0,1,2]
 symbol = [0,1]
 trans p a = (2*p+a) `mod` 3
 start = 0
 final = [2]
\[d1 = \text{DFA states symbol trans start final} \]
\[
\text{where states} = [0,1,2] \\
\text{symbol} = [0,1] \\
\text{trans } p \ a = (2*p+a) \mod 3 \\
\text{start} = 0 \\
\text{final} = [2] \\
\]