Deterministic Finite State Automata
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Deterministic Finite Automata (DFA)

 DFAs are easiest to present pictorially:
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They are directed graphs whose nodes are states and whose arcs
are labeled by one or more symbols from some alphabet =

Here X is {0,1}.

Such a graph is called a state transition diagram.



e One state is initial (denoted by a short incoming arrow), and
several are final/accepting (denoted by a double circle). For
every symbol aeX thereis an arc labeled a emanating from
every state.
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e Automata are string processing devices. The arc from ¢, to q,
labeled 0 shows that when the automaton is in the state g

1
and receives the input symbol 0, its next state will be q,.



Drawing Conventions

e | use some software to draw DFAs, which is
somewhat limited. So | use conventions
1. Initial states are green circles
2. Final states are double red circles
3. Other states are oval
4. If the initial and final states
overlap, | use blue
double circle.




Missing alphabet

| sometimes draw a state transition diagram
where some nodes do not have an edge
labeled with every letter of the alphabet, by
convention we add a new (dead) state where
all missing edges terminate.
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 Every path in the graph spells out a
string over S. Moreover, for every string
w €X* there is a unique path in the
graph labelled w. (Every string can be
processed.) The set of all strings whose
corresponding paths end in a final state
is the language of the automaton.
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* In our example, the language of the
automaton consists of strings over {0,1}
containing at least two occurrences of
0.




 Modify the automaton so that its language
consists of strings containing exactly two
occurrences of 0.



Formal Definition

 ADFAisaquintuple A = (Q,Z,8,0,,F)
where

—Q 1s a set of states

— 2 1S the alphabet (of 1nput symbols)
—0: Q x 2> Q 1s the transition function
- gy € Q -- the start state

-F <c Q -- final states
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In our example,

Q={dy-d:-95}>
x={0,1},
Jo=0g »
F={a,},

and
is given by 6 equalities

6(0d,,0)=0,,
6(0y-1)=0,,
6(d,,1)=0,

Example

l 1



Transition Table

thing -- its transition table:

* All the information presenting a DFA can be given by a single

0 1

o} Q, o}

T Q Q, Q,
*Q, Q, Q,

respectively.

e The initial and final states are denoted by — and *




Language of accepted Strings

« ADFA = (Q,X,0,qy,F), accepts a string
. w = “‘wywy.w,” iff

— There exists a sequence of states [ry, ry ... 1]
with 3 conditions

1. o= dp fAcceptance is about )

finding a sequence.
2. o(r,wi,q) =r+l

How d find such
3. r, € F ow do we fin ?suc
a sequencer Y,




Example
e Show that “ABAB” is accepted.

e Hereis a path[0,0,1,2,2]
— The first node, O, is the start state.
— The last node, 2, is in the accepting states
— The path is consistent with the transition

e 6 O;O

*50B=1 Note that the path is one
longer than the string

e §1A=2
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Definition of Regular Languages

 Alanguage is called regular if it is accepted by
some DFA.



Extension of o to Strings

Given a state g and a string w, there is a unique path labeled w
that starts at g (why?). The endpoint of that path is denoted

3(q,w)

Formally, the function & : Q xX"—>Q
is defined recursively:

—-0(q,¢€)=q
—-0(q,x:xs)= 86(86(g,X),Xs)

Note that 0(q,”’a”)= 8(q,a) forevery acX;

SO § does extend o.



Example trace

 Diagrams (when available) make it very easy
to compute (g, W) --- just trace the path
labeled w starting at Q.

e E.g.trace 101 on the diagram below starting

Oy 0
‘8 e :0’1




Implementation and precise arguments need
the formal definition.

0(q,,101)= o( 8(q;,1) ,01)

- §(q1,01)

= o( 0(q,,0) ,1)

= 0(0,,1)

= 98( 0(0,,0) ,e)

= 98(Q,,¢)

— q2 0 1
o | U Uo
d, op d:




Language of accepted strings - take 2

ADFA =(Q,X, 0,qy,F) accepts astring w iff 3(qy,W)e F

The language of the automaton A is
L(A)={w | A accepts w}.

More formally
L(A)={w | s(Start(A),w) € Final(A)}

Example:

Find a DFA whose language is the set of all strings over {a,b,c}
that contain aaa as a substring.



DFA’s as Programs

data DFA g s =

DFA [q] -- states
[s] —— symbols
(q ->s ->g) -- delta
g -- start state
[d] —— accept states

Note that the States and Symbols can be any type.



Programming for acceptance 1

path:: Eq g == DFA q s -> q -> [s] -> [qd]

path d g [] =

[al

path d g (s:ss) = q : path d (trans d g s) ss

acceptDFALl ::

EqQ a => DFA a t -> [t] -> Bool

acceptDFAl dfa w = condl p && cond2 p && cond3 w p
where p = path dfa (start dfa) w

condl
condl

cond2
cond2

cond2 _

cond3
cond3

cond3

(rzrs) = (start dfa) ==r
[1 = False

[r] = elem r (accept dfa)
(r:rs) = cond2 rs
= False

[1 I[r] = True
(wzws) (rl1:(more@(r2:rs))) =

—
W ="W,W,.. W,
Iff there exists a
sequence of states

[Fo, Fq o r.]
1. ry=4q,
2. o(r,wi,,) =r+l
3. r,eF

(trans dfa r1 w == r2) && (cond3 ws more)

= False




Programming for acceptance 1

-- & = deltaBar
deltaBar :: Eq g => DFA g s -> q -> [s] > ¢
deltaBar dfa q [] = ¢
deltaBar dfa g (s:ss) =
deltaBar dfa (trans dfa q s) ss

acceptDFA2 dfa w =
elem (deltaBar dfa (start dfa) w)

(accept dfa)



An Example

dl :-: DFA Integer Integer
dl = DFA states symbol trans start final
where states = [0,1,2]
symbol = [O0,1]
trans p a = (2*p+ta) mod 3
start = 0
final = [2]



dl = DFA states symbol trans start final
where states = [0,1,2]
symbol = [0,1]
trans p a = (2*p+a) mod™ 3

start = 0
final = [2]

DFA Q {0, 1, 2}
Sigma {0, 1}
Delta 0 0 -> O

01 ->1

10 ->2

11 ->0

2 0 ->1

21 —> 2
qo 0

Final {2}
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