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Deterministic Finite Automata (DFA) 

• DFAs are easiest to present pictorially:  

Q0 Q1 Q2 
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They are directed graphs whose nodes are states and whose arcs 
are labeled by one or more symbols from some alphabet Σ. 

Here Σ is {0,1}. 
 
 

Such a graph is called a state transition diagram. 



• One state is initial (denoted by a short incoming arrow), and 
several are final/accepting (denoted by a double circle).  For 
every symbol  a∈Σ there is an arc labeled a emanating from 
every state.  

•   
 
 
 

• Automata are string processing devices. The arc from q1 to q2 
labeled 0 shows that when the automaton is in the state q1 
and receives the input symbol 0, its next state will be q2. 
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Drawing Conventions 

• I use some software to draw DFAs, which is 
somewhat limited. So I use conventions 
1. Initial states are green circles 
2. Final states are double red circles 
3. Other states are oval 
4. If the initial and final states 
    overlap, I use blue 
    double circle. 

 
 



Missing alphabet 
• I sometimes draw  a state transition diagram 

where some nodes do not have an edge 
labeled with every letter of the alphabet, by 
convention we add a new (dead) state where 
all missing edges terminate. 
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• Every path in the graph spells out a 
string over S.  Moreover, for every string 
w ∈Σ∗  there is a unique path in the 
graph labelled w. (Every string can be 
processed.) The set of all strings whose 
corresponding paths end in a final state 
is the language of the automaton. 
 
 
 
 

• In our example, the language of the 
automaton consists of strings over {0,1} 
containing at least two occurrences of 
0.  
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• Modify the automaton so that its language 
consists of strings containing exactly two 
occurrences of 0.  

•   
 



Formal Definition 

• A DFA is a quintuple A = (Q,Σ,δ,q0,F)  
where  
 
– Q is a set of states 
– Σ is the alphabet (of input symbols) 
– δ: Q × Σ → Q is the transition function 
– q0 ∈ Q  -- the start state 
– F ⊆ Q  -- final states 
 
 

– Page 35 of Sipser 
 



Example 

• In our example,  
• Q={q0,q1,q2},  
 Σ={0,1},  
 q0=q0,  
 F={q2},  
• and 

 
δ is given by 6 equalities 

 
• δ(q0,0)=q1, 
• δ(q0,1)=q0, 
• δ(q2,1)=q2 
• … 
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Transition Table 

• All the information presenting a DFA can be given by a single 
thing -- its transition table: 
 
 
 
 
 
 
 

• The initial and final states are denoted by → and * 
respectively. 

0 1 

Q0 Q1 Q0 

Q1 Q2 Q1 

*Q2 Q2 Q2 



Language of accepted Strings 

• A DFA  = (Q,Σ,δ,q0,F), accepts a string  
•     w = “w1w1…wn” iff 

 
– There exists a sequence of states  [r0, r1, … rn]  
                  with 3 conditions 
1. r0 = q0 

2. δ(ri,wi+1) = ri+1 
3. rn ∈ F 

Acceptance is about 
finding a sequence. 

  
How do we find such 

a sequence? 



Example 
• Show that  “ABAB”  is accepted. 

 
• Here is a path [0,0,1,2,2] 

– The first node, 0, is the start state. 
– The last node, 2, is in the accepting states 
– The path is consistent with the transition 

• δ 0 A = 0 
 

• δ 0 B = 1 
 

• δ 1 A = 2 
 

• δ  2 B = 2 

Note that the path is one 
longer than the string 



Definition of Regular Languages 

• A language is called regular if it is accepted by 
some DFA. 



Extension of δ to Strings  

• Given a state q and a string w, there is a unique path labeled w 
that starts at q (why?). The endpoint of that path is denoted 
δ(q,w) 
 

• Formally, the function δ : Q  × Σ* → Q 
• is defined recursively: 
 
– δ(q,ε)=q 
– δ(q,x:xs)= δ(δ(q,x),xs) 
 

• Note that δ(q,”a”)= δ(q,a) for every a∈Σ;  

• so δ does extend δ.  
 



Example trace 

• Diagrams (when available) make it very easy 
to compute δ(q,w) --- just trace the path 
labeled w starting at q.  
 

• E.g. trace 101 on the diagram below starting 
at q1 
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Implementation and precise arguments need 
the formal definition. 

  
 δ(q1,101)= δ( δ(q1,1) ,01) 
          = δ(q1,01) 
          = δ( δ(q1,0) ,1) 
          = δ(q2,1) 
          = δ( δ(q2,0) ,ε) 
          = δ(q2,ε) 
          = q2 
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Language of accepted strings - take 2 

A DFA  =(Q,Σ, δ,q0,F) accepts a string w iff δ(q0,w)∈ F 
  
The language of the automaton A is  
    L(A)={w | A accepts w}. 
 
More formally  
L(A)={w | δ(Start(A),w) ∈ Final(A)} 
 
Example:  
Find a DFA whose language is the set of all strings over {a,b,c} 

that contain aaa as a substring.   
 



DFA’s as Programs 
data DFA q s =  
  DFA [q]           -- states 
      [s]           -- symbols 
      (q -> s -> q) -- delta 
      q             -- start state 
      [q]           -- accept states 
 

Note that the States and Symbols can be any type. 



Programming for acceptance 1 
path:: Eq q => DFA q s -> q -> [s] -> [q] 
path d q [] = [q] 
path d q (s:ss) =  q : path d (trans d q s) ss 
 
acceptDFA1 :: Eq a => DFA a t -> [t] -> Bool 
acceptDFA1 dfa w = cond1 p && cond2 p && cond3 w p 
  where p = path dfa (start dfa) w 
   
        cond1 (r:rs) = (start dfa) == r 
        cond1 [] = False 
         
        cond2 [r] = elem r (accept dfa) 
        cond2 (r:rs) = cond2 rs 
        cond2 _ = False 
         
        cond3 [] [r] = True 
        cond3 (w:ws) (r1:(more@(r2:rs))) =  
              (trans dfa r1 w == r2) && (cond3 ws more) 
        cond3 _ _ = False  

w =“w1w1…wn”  
Iff  there exists a 
sequence of states 
  [r0, r1, … rn]  

 
1. r0 = q0 
2. δ(ri,wi+1) = ri+1 
3. rn ∈ F 

 



Programming for acceptance 1 
-- δ = deltaBar 
deltaBar :: Eq q => DFA q s -> q -> [s] -> q 
deltaBar dfa q [] = q 
deltaBar dfa q (s:ss) =  
      deltaBar dfa (trans dfa q s) ss 
 
 
acceptDFA2 dfa w =  
   elem (deltaBar dfa (start dfa) w)  
        (accept dfa) 
  
 



An Example 

d1 :: DFA Integer Integer 
d1 = DFA states symbol trans start final 
  where states = [0,1,2] 
        symbol = [0,1] 
        trans p a = (2*p+a) `mod` 3 
        start = 0 
        final = [2] 



DFA  Q      {0, 1, 2} 
     Sigma  {0, 1} 
     Delta  0 0 -> 0 
            0 1 -> 1 
            1 0 -> 2 
            1 1 -> 0 
            2 0 -> 1 
            2 1 -> 2 
     q0     0 
     Final  {2} 

d1 = DFA states symbol trans start final 
  where states = [0,1,2] 
        symbol = [0,1] 
        trans p a = (2*p+a) `mod` 3 
        start = 0 
        final = [2] 
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