
Decideability 

Sipser pages 165 - 186 



Decideability 

• A class of problems is decidable if every problem 
can be answered Yes or No. 

• We often look at classes that ask questions about 
languages and automata. 

• We generally use the notation <P> to describe an 
encoding of a problem P in some way as input to 
a Turing machine. 

• Turing machines are a good mechanism to talk 
about decideability.  
– Why? 
– What characteristics to Turing machines have? 

 
 



Problems about DFA’s 

• ADFA    Does a DFA (B) accept some string (w)? 
 

• EDFA   Is the language accepted by some DFA 
(B) the empty language (the empty set of 
strings). 
 

• EQDFA    Do two DFAs (A and B) accept the 
same language. 



ADFA    
 

• Does a DFA (B) accept some string (w)? 
 

• ADFA = { <B,w> | B is a DFA that accepts input string w } 
 

• Note that ADFA  is a language problem itself.  
• Consider <B,w>  to be the input language 
• And the solution  a Turing Machine that halts on all such input 

in either the accept or reject state 



Representations 

• Recall <B,w>   is meant to represent a DFA and 
some input string. 

• How might we represent this as input to a 
TM? 

• B =(Q,Σ, δ,q0,F) 
•   

 
… Q … … # Σ … # … δ … # q0 … ... # … F ... # 



Checking ADFA 

• Let M be a TM that does the following 
• Does the input represent a legal DFA 

– If not then reject 
• Simulate B on input 
• When finishing processing w, if the simulation is 

in an accepting state, then the TM accepts, else 
the TM rejects. 
 

… Q … … # Σ … # … δ … # q0 … ... # … F ... # 



ANFA 

• How might we show that an NFA (C) accepts a 
string w? 

• We might use a similar approach, encoding 
the NFA and its input on a TM tape <C,w> and 
then simulating the NFA. 

• There is another approach! 
• Since every NFA has an equivalent DFA (the 

subset construction) lets use the TM (M) of 
the last section. 



N an TM that decides  ANFA 

• N is a TM on input <C,w>  where C is an NFA and 
w is a string 
1. Convert C into a DFA (D) using subset construction 
2. Run M on <D,w> 
3. If M accepts, then N accects, if M rejects, then N 

rejects 

 
This is an example of an important strategy called 

reduction 



How might we decide  ARegExp 

 



EDFA is decidable 

• T = On input <A> where A is a DFA 
– Mark the start state of A 
– Repeat until no new state is marked 

• Mark any state that has a transition coming into it from 
any state that is already marked 

– If no final state of A is marked, accept; other wise 
reject 



EQDFA is decidable 

• To test if two DFAs decide the same language 
we will rely on several facts 
– DFA’s are closed under intersection, union, and 

complement 
– EDFA is decidable (TM T from previous section) 



Symmetric Difference 

• L( C ) = ( L(A) ∩ L(B) ) U ( L(A) ∩ L(B) ) 

A 
B 

A 
B 

L(A) ∩ L(B) 

A 
B 

L(A) ∩ L(B) 

If A and B are equal, 
then the symmetric 
difference is empty 



EQDFA is decidable 

• F = On input <A,B> where A and B are DFAs 
1. Construct  DFA C, the symmetric difference of A 

and B 
2. Run TM T  (the one that decides EDFA) on <C> 
3. If T accepts, then F accepts, if T rejects, then F 

rejects 



Problems about CFG’s 

• The following class of problems are discussed 
in the text. Be sure and read about them. 
– ACFG    Does a CFG (B) accept some string (w)? 
– ECFG   Is the language accepted by some CFG (B) 

the empty language (the empty set of strings). 
• This one is quite interesting, and not what one might expect. Pay 

close attention! 

– EQCFG    Do two CFGs (A and B) accept the same 
language. 



The size of infinite sets 

• How can we tell if two sets have the same 
size? 

• Easy for finite sets. 
• Not so straightforward for infinite sets 

 
Two infinite sets have the same size if every 

element of one can be paired with the 
elements of the other 



Properties of functions 

• One-to-one 
– A function, f,  is one-to-one if it 

never maps two different elements 
of the domain to the same element 
of the range.  x ≠ y   =>  f(x) ≠ f(y) 

• Onto 
– A function f is onto, if every 

element of the range is mapped to 
by some element of the domain 

• Correspondence 
– A function is a correspondence if it 

is both one-to-one and onto 

x 

y 
z 

In one-to-one functions this 
never happens 

q 

w 
z a 

c 
b d 



Naturals and the even-Naturals have the same size 

 n  f(n) 

1 2 

2 4 

3 6 
. 
. 
. 

.  

. 

. 

f(n) = n * 2 
 
F is one-to-one, two numbers never 
map to the same element 
 
F is onto, every even number is 
mapped to 
 
 
 



Countable sets 

• Definition 
– A set is countable, if it is finite, or if it is infinite, it 

is in correspondence to the Natural numbers 



Rational numbers are countable 

• Rational numbers, numbers exactly expressed 
as  x/y, are countable. 

1/1 1/2 1/3 1/4 1/5 1/6 

2/1 2/2 2/3 2/4 2/5 

3/1 3/2 3/3 3/4 

4/1 4/2 4/3 

5/1 5/2 

6/1 

How can we establish 
a correspondance? 
 
Can’t travel along 
one row. 
 
Or along one column 
 
But along the 
diagonals 



The real numbers are not countable 

• We show no correspondence between R and N can 
exist. 

• We use a classic argument (due to Cantor) called a 
diagonalization argument. 
 

• First recall that every Real number can be expressed as 
an infinite decimal expansion. Example 
– 3.1415962… 
– 2.0000000… 
– 0.1250000… 
– 5.5555555… 

 



Proof by contradiction. 
• Assume that the Naturals and the Reals are in 

correspondence, then there exists a one-to-
one, onto function, f : Nat -> Real 

 n  f(n) 

1  3.14159… 

2 55.5555… 

3  0.12500… 

4  0.50000… 

A part of the coorespondence,  f, between 
the naturals and the Reals 
 
We show that f can’t be  onto, thus it can’t 
be a correspondence, and hence the Reals 
can’t be countable 



Consider the real between 0 and 1 
• All its digits are after the decimal point 

 
• The nth digit after the decimal point is 

chosen different from the nth digit of the 
nth number, for example     .2669… 

• 2≠1 
• 6≠5 
• 6≠5 
• 9≠0 

 
• Note that no natural maps to this number. 

Suppose one did, let it be Z, but the Zth 
digit of  f(Z) differs from our number in the 
Zth digit by construction. 

• This is a contradiction, so our assumption 
that the Reals are countable must be false. 
 

 n  f(n) 

1  3.14159… 

2 55.5555… 

3  0.12500… 

4  0.50000… 



The set of all Turing Machines is countable 

• Recall if Σ is finite, then Σ* is countable 
• We can write them all down 

– First all of length 0 
– Then all of length 1 
– Then all of length 2 
–  Then all of length 3 

• Each Turing Machine (M)  has an encoding as 
<M> which is a string in Σ* 



The set of all infinite binary strings is 
not countable. 

• Diagonialization argument 
• Consider  0101… 
• Differs from the nth digit in 

the nth string 

 n  f(n) 

1 1011001… 

2 0010100… 

3 1010111… 

4 0110110… 



Characteristic functions of languages 

• Consider the following function: F 
• Given a finite alphabet   Σ  
• Given a language L over Σ  

–  L ⊆ Σ* 
–  Σ*  is countable (thus so is L) 

• F(i) = 1 if the ith string of Σ* is in L, and 0 
otherwise. 

• We call F the characteristic function of L 



The set of languages is not countable 
• Given a finite alphabet   Σ  
• Consider the set of all languages, L, over Σ* 
• Each language L in L has a characteristic function, 

F, which is an infinite sequence of 0’s and 1’s (I.e. 
an infinite binary sequence) 
– Eg consider L = { x | length of x is  even } 
– F(ε)=1;  F(0)=0; F(1)=0; F(11)=1; F(00)=1;  F(01)=1; F(10)=1; … 

• Thus, there is a correspondance between 
languages and infinite binary sequences. 

• We know that the set of infinite binary sequences 
is not countable, so the set of languages over a 
finite alphabet Σ*, can’t be countable either! 

 



There are languages not accepted by a 
Turing Machine. Sipser pg 178 

• There are countable number of TMs 
 

• A  Turing Machine describes a language. 
 

• There are uncountable number of languages. 
 

• Thus some languages must not be describable 
by a TM. 



The Halting problem 
• Until now every problem we have looked at closely has 

been decidable. 
 

• One might ask:  “is any problem undecidable?” 
 

• There is at least 1 undecidable  problem ATM 
– Acceptance by Turing Machine 
– Does an arbitrary TM accept an arbitrary input is 

undecidable 
 

• This is an important result, both philosphically and 
computationally! 



ATM  is Turing Recognizable! 

• While not decidable, ATM  is Turing 
Recognizable. 

• This depends upon the fact that there is a 
universal TM 

• The universal Turing Machine takes 
<tm,input> and simulates “tm” on “input”. 

• Note if “tm” does not halt on “input” neither 
does the universal TM halt on <tm,input>    



RTM, Recognizing a TM 

• U = On input <M,w>, whem M is a TM and w 
is a string 
– Simulate M on input w 
– If M ever enters its accept state, accept; if M ever 

enters its reject state, reject 
 

• Note, if we had a way of determining that M 
would not halt on w, we could reject, but we 
don’t. 



ATM  is undecidable 
Sipser pg 179 

• Proof by contradiction 
• Assume that ATM  is decidable. By a TM called H 

– H(<M,w>) = accept if M accepts w, and reject if M 
does not accept w (I.e. M either rejects or loops) 

 
• Then if M decides, we can make another 

machine D  
• D(<M>) = accept if H(<M>,<M>) rejects, and   
                       rejects if H(<M>,<M>) accepts 

 



M(<M>) accept reject loop 

H(<M>,<M>) accept reject reject 

D(<M>) reject accept accept 

D(<D>) accept reject loop 
H(<D>,<D>) accept reject reject 
D(<D>) reject accept accept 

M(w) accept reject loop 

H(<M,w>) accept reject reject 

How a Turing machine  M and H(<M>,w) are related. 

How a Turing machine  M and H(<M>,<M>)  and D(<M>) are related. 

The curious case when D is applied to itself. 



Conclusion: ATM  is undecidable 

• Since D(<D>) rejects if D(<D>) accepts we have 
reached a contradiction. 

• So our original assumption that ATM is 
decidable must be incorrect. 

• Thus, ATM is must be undecidable  

D(<D>) accept reject loop 
H(<D>,<D>) accept reject reject 
D(<D>) reject accept accept 



Visualizing Diagonalization of ATM  

H(I,j) <M1> <M2> <M3> <M4> <M5> 

M1 Accept Reject Reject Accept Reject 

M2 Reject Accept Accept Reject Accept 

M3 Reject Reject Reject Reject Reject 

M4 Accept Accept Reject Accept Accept 

M5 Reject Accept Reject Accept Reject 

A table of the results of applying  H(<Mi><Mj>) 



D is a TM so where is it in the Table? 

H(<M>,<M>) accept reject reject 

D(<M>) reject accept accept 

H(I,j) <M1> … <D> … <M5> 

M1 Accept Reject Reject Accept Reject 

… Reject Accept Accept Reject Accept 

D Reject Reject ? Reject Reject 

… Accept Accept Reject Accept Accept 

M5 Reject Accept Reject Accept Reject 



Definition 

• A language is Turing co-recognizable if its 
complement is Turing recognizable. 
 

• Recall the complement of a language is the 
language with all the strings not recognized by 
the original language. 

M(w) accept reject loop 
CompM(w) reject accept accept 



Lemma 

• A language, L, is decidable if and only if it is 
both Turing recognizable and Co-Turing 
recognizable. 
 

• Two things to prove 
1. If L is decidable then it is both Turing and Co-

Turing recognizable. This way is easy 
2. If L is Turing and Co-Turing recognizable, it is 

decidable 



If M is Turing and Co-Turing recognizable, it is decidable 
 

• P(w) = run M1(w) and M2(w) in parallel 
• If M1 accepts, then P accepts.  
• If M2 accepts then P rejects. 

Turing 
recognizer 

accept reject loop 

M1(w) accept reject loop 

Turing Co-
recognizer 

accept reject loop 

M2(w) accept reject loop 



P is a decider 

• Every  string, w, is either in L (M1 halts and accepts) 
or it is not (M2 halts and rejects)  

• So one of M1(w) or M2(w) must halt. 
• P halts when either M1 or M2 halts, so P must Halt.  
• So P is a decider that accepts all strings in L and 

rejects all strings not in L 

 

• P(w) = run M1(w) and M2(w) in parallel 
• If M1 accepts, then P accepts.  
• If M2 accepts then P rejects. 



Some languages aren’t even recognizable!  
Sipser pg 81 

• Consider the language which is the 
complement of ATM which we write ATM 

 
• We prove that  ATM is not Turing recognizable 

using a proof by contradiction 
 

• . 



Proof 

• Assume that ATM is Turing recognizable   
• We know ATM is Turing recognizable  

– Sipser pg 174, theorem 4.11,  Slide 29 in these notes 

• Thus by our lemma     ATM   is decidable 
• We know that ATM is not decidable, which 

leads to a contradiction 
• So our original assumption that ATM is Turing 

recognizable must be flawed. 

 



Review: Positive results 
• Countable and uncountable Sets. 
• Acceptance of Regular and Context Free 

languages is decidable. 
• Equality of Regular and Context Free 

languages is decidable. 
• Emptiness of Regular and Context Free 

languages is decidable. 
 
 
 



Review: Negative results 
• There are uncountable Sets 

– The reals, infinite binary sequences, languages over a 
finite alphabet. 
 

• There are languages not described by any Turing  
Machine. 
 

• There is an un-decidable language 
– ATM is  undecidable 
– But, ATM is  Turing recognizable 

 
• There is a language that is not even Turing 

recognizable!  (ATM   the complement of ATM) 
 

 



regular 
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