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DFA = NFA 

Sipser pages 54-58 



Are DFAs and NFAs Equivalent 

It turns out DFAs and NFAs accept exactly 
the same languages. 

 
To show this we must prove every DFA can 

be converted into an NFA which accepts 
the same language, and vice-versa 



Every DFA is an NFA 

The first direction is trivial 

An NFA is a quintuple A= (Q,S,T,q0,F) , where  

Q is a set of states 
S is the alphabet (of input symbols) 
T: Q × S → P(Q) is the transition function 
q0 ∈ Q  -- the start state 
F ⊆ Q  -- final states 

A DFA is a quintuple A = (Q,S,T,q0,F)  where  
Q is a set of states 
S is the alphabet (of input symbols) 
T: Q × S → Q is the transition function 
q0 ∈ Q  -- the start state 
F ⊆ Q  -- final states 

Make a new transition function that returns a singleton set! 
 
dfaToNfa (DFA states alphabet trans start accept)  
       = (NFA states alphabet delta start accept) 
  where delta s c = [trans s c] 



Every NFA is a DFA 

Here we will compare the powers of DFAs and 
NFAs. Since every DFA is at the same time an 
NFA, the latter are at least as powerful. 
Surprisingly, they are not more powerful.  

 

Theorem. For every NFA N, there exists a DFA D 
such that L(D)=L(N). 

Thus, a language L is accepted by some NFA if and 
only if it is accepted by some DFA. 

Given N, we can effectively construct the 
corresponding D.  

 



Example 

Consider the NFA that accepts binary strings ending 
with 011. 

 
 
 
 
 
The key idea for building an equivalent DFA is to 

consider the set of all states this NFA can reach 
after reading any particular string.  
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Consider processing “0011” 

One possible strategy is motivated 
by the path tree.  

 
For each prefix keep track of the set 

of states the system might be in. 
 
How can we compute a set of states 

from the transition function? 
 
How can we extend the prefix to the 

next character in the input? 
 
How do we know when we’re done? 

“”  -- {0} 

“0”   -- {0,1} 

“00”   -- {0,1,2} 

“001”   -- {0,2,3} 

“0011”   -- {0,3} 
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When processing if we 
see a set exactly 
the same as a set 
constructed earlier 
we mark it in red. 

This is like path trees. But 
instead of tracking one 
string (each state has 
transitions on just one 
character), we track all 
possible strings (transitions 
on all possible characters). 

Now consider all possible strings 
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By “bending” the arrows 
to the red sets back to 
the first known set 
with those elements 
we construct a DFA. 

 

Each state of the DFA 
corresponds to a set 
of states of the NFA 
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Strategy 

Write down all possible subsets of the set of 
states. 

Each subset will be a possible state of the 
new machine. 

A transition from one subset S to another T 
is added on character c, iff,  trans s c = t, 
and t∈T and s∈S 



Note, 
Original NFA has 4 states 
The computed DFA has 16 states 
Only some of the 16 are reachable 
from the start state {Q0} 
 



General Construction 

Given an NFA:   
N =(Q,Σ,s,F,∆) 

The associated DFA  is  
D =(P(Q),Σ,{s}, F’, δ), 

Where  
 

In the DFA constructed each state is labeled with a set of 
states from the NFA. Thus the start state is just the 
singleton set {s} 

 
F' is the set of {subsets of Q} that contain an element 

of F. Thus  F’⊆ P(Q). f∈F’ iff exists 
x∈f and x∈F  

δ is defined by  δ(S,a) =  ∪{q∈ S} ∆(q,a) 



Example 

Let's compute two transitions of D, where N is as in 
the previous example. 

 
δ({q0,q2},1) = ∆(q0,1)∪ ∆(q2,1)   
            = {q0}   ∪  {q3} 
            = {q0,q3} 
 
δ({q0,q1,q3},0) 
  = ∆(q0,0)∪ ∆(q1,0)∪ ∆(q3,0)  
  = {q0,q1} ∪     ∅       ∪     ∅ 
  = {q0,q1} 
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Exponential Blowup 

Note that if the NFA N has n states, then the 
corresponding DFA D has 2n states.  

 
Many of those states can usually be discarded;  
 
we must keep only those states that are reachable 

from the initial state.  
 
There are cases, however, when there is no state 

to discard;  
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