
Automata and Formal Languages

Tim Sheard 1 Lecture 4

DFA = NFA

Sipser pages 54-58

Are DFAs and NFAs Equivalent

It turns out DFAs and NFAs accept exactly
the same languages.

To show this we must prove every DFA can

be converted into an NFA which accepts
the same language, and vice-versa

Every DFA is an NFA

The first direction is trivial

An NFA is a quintuple A= (Q,S,T,q0,F) , where

Q is a set of states
S is the alphabet (of input symbols)
T: Q × S → P(Q) is the transition function
q0 ∈ Q -- the start state
F ⊆ Q -- final states

A DFA is a quintuple A = (Q,S,T,q0,F) where
Q is a set of states
S is the alphabet (of input symbols)
T: Q × S → Q is the transition function
q0 ∈ Q -- the start state
F ⊆ Q -- final states

Make a new transition function that returns a singleton set!

dfaToNfa (DFA states alphabet trans start accept)
 = (NFA states alphabet delta start accept)
 where delta s c = [trans s c]

Every NFA is a DFA

Here we will compare the powers of DFAs and
NFAs. Since every DFA is at the same time an
NFA, the latter are at least as powerful.
Surprisingly, they are not more powerful.

Theorem. For every NFA N, there exists a DFA D
such that L(D)=L(N).

Thus, a language L is accepted by some NFA if and
only if it is accepted by some DFA.

Given N, we can effectively construct the
corresponding D.

Example

Consider the NFA that accepts binary strings ending
with 011.

The key idea for building an equivalent DFA is to

consider the set of all states this NFA can reach
after reading any particular string.

Q0 Q1 Q3

0,1

0 1 Q2
1

Consider processing “0011”

One possible strategy is motivated
by the path tree.

For each prefix keep track of the set

of states the system might be in.

How can we compute a set of states

from the transition function?

How can we extend the prefix to the

next character in the input?

How do we know when we’re done?

“” -- {0}

“0” -- {0,1}

“00” -- {0,1,2}

“001” -- {0,2,3}

“0011” -- {0,3}

Automata and Formal Languages

Tim Sheard 7 Lecture 4

Q0 Q1 Q3

0,1

0 1 Q2
1

{q0}

{q0}

{q0,q1}

{q0,q2} {q0,q1}

{q0,q1}

{q0,q3}

{q0}

{q0,q1}

0 0

0

0

1 1

1

1

When processing if we
see a set exactly
the same as a set
constructed earlier
we mark it in red.

This is like path trees. But
instead of tracking one
string (each state has
transitions on just one
character), we track all
possible strings (transitions
on all possible characters).

Now consider all possible strings

Automata and Formal Languages

Tim Sheard 8 Lecture 4

0 01

02

03

0
0

0

0

1
1

1

1

By “bending” the arrows
to the red sets back to
the first known set
with those elements
we construct a DFA.

Each state of the DFA
corresponds to a set
of states of the NFA

{q0}

{q0}

{q0,q1}

{q0,q2} {q0,q1}

{q0,q1}

{q0,q3}

{q0}

{q0,q1}

0 0

0

1 1

1

1

0

Strategy

Write down all possible subsets of the set of
states.

Each subset will be a possible state of the
new machine.

A transition from one subset S to another T
is added on character c, iff, trans s c = t,
and t∈T and s∈S

Note,
Original NFA has 4 states
The computed DFA has 16 states
Only some of the 16 are reachable
from the start state {Q0}

General Construction

Given an NFA:
N =(Q,Σ,s,F,∆)

The associated DFA is
D =(P(Q),Σ,{s}, F’, δ),

Where

In the DFA constructed each state is labeled with a set of
states from the NFA. Thus the start state is just the
singleton set {s}

F' is the set of {subsets of Q} that contain an element

of F. Thus F’⊆ P(Q). f∈F’ iff exists
x∈f and x∈F

δ is defined by δ(S,a) = ∪{q∈ S} ∆(q,a)

Example

Let's compute two transitions of D, where N is as in
the previous example.

δ({q0,q2},1) = ∆(q0,1)∪ ∆(q2,1)
 = {q0} ∪ {q3}
 = {q0,q3}

δ({q0,q1,q3},0)
 = ∆(q0,0)∪ ∆(q1,0)∪ ∆(q3,0)
 = {q0,q1} ∪ ∅ ∪ ∅
 = {q0,q1}

Q0 Q1 Q3

0,1

0 1 Q2
1

Exponential Blowup

Note that if the NFA N has n states, then the
corresponding DFA D has 2n states.

Many of those states can usually be discarded;

we must keep only those states that are reachable

from the initial state.

There are cases, however, when there is no state

to discard;

	DFA = NFA
	Are DFAs and NFAs Equivalent
	Every DFA is an NFA
	Every NFA is a DFA
	Example
	Consider processing “0011”
	Slide Number 7
	Slide Number 8
	Strategy
	Slide Number 10
	General Construction
	Example
	Exponential Blowup

