ﬁ Automata and Formal Languages \

CFG and PDA accept the same languages

Sipser pages 115 - 122

¥ Lecture 14 Tim Sheard %1

Equivalence of CFGs and PDAs

The equivalence is expressed by two theorems.

Theorem 1. Every context-free language is
accepted by some PDA.

Theorem 2. For every PDA M, the language L(M)
IS context-free.

We will describe the constructions, see some
examples and proof ideas.

Lemma 221 (page 115 Sipser)

Given a CFG G=(V,T,P,S), we define a PDA

M=({Astart:Aio piqaccept} T, TOVU{S}, 6, Oaccept: 10start)):
with 6 given f)

a0 N F

6(Ostarts€,€) = {(Aioop:S$) }
If A eV, then 5(CI|oo &,A) = { (dipop:®) | A— aisin P}

If a € T, then S(QIOOp’a a) ={ (QIoopig) }
8(q|00p18 $) {(qaccept’g)}

Note that the stack symbols of the new PDA contain all the terminal
and non-terminals of the CFG plus $

There is c_)nI%/ 3 states in the new PDA, all the rest of the info is
encoded in the stack.

Most transitions are on g, one for each production
A few other transitions come one for each terminal.
The start and accept state each add a transition and use the marker $

The automaton simulates leftmost
derivations of G producing w, accepting
by empty stack. For every intermediate
sentential form uAa In the leftmost
derivation of w (note first that w = uv for
some V), M will have Ao on its stack after
reading u. At the end (case u=w and v=g)
the stack will be empty.

Example

For our old grammar: S — SS| (S) | ¢

The automaton M will have seven
transitions, most from q,q, 10 gjg0p:

2. 8(q|00p1 898) — (qloop’ SS) S — SS
3- 8(Ch()op’ 898) — (qloop’ (S)) S — (S)
4. 8(Ch00p1 898) — (qloop’ 8) S % &

5. 6(qloop1 (’ () — (qloop’g)

6. 6(qloop1)1)) — (qloop’g)

1. Most transitions are on g, one for each production

2. A few other transitions come one for each terminal

Now compare the leftmost derivation

Compare

S=35=(3)S=((5)S=(0)S=(D)S) = (0)0

with the looping part of M's execution on the same

string given as input:

@,
(a,
(a,
(a,
(a,
(a,
(a,
(a,
(a,
(a,
(a,
(a,
(a,

Note we write q for q,,,, for brevity

‘(O)O"

“(O)O"

“(O)O"
"O)O"
"OO"

"DO"
"NO"
0"
")
“O"
oy
e

€

,(S)S
,S)S
,(S))S
,S))S
,))S
,)S

.S
,(S)
,S)

,)

» €

)
ss

U NN AU AU

[1]
[2]
[4]
[4]
[4]
[3]
[5]
[5]
[2]
[4]
[3]
[5]

ANl A

(g, £,5) = (q, SS)
6(d, &S) =(q, (S))
6(d,&5) =(q,¢)
o(d, (; () = (a.e)
5(d,),)) = (d.e)

S —>SS
S —> (5
S—>¢

Transitions simulate left-most derivation

S=35=(8)S=((35)s=(0)s= () = ()0

(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(a,

"(O)Q”
"D
"(DO”

0210
"))O”
“))O"
“))O"
)O"
“O"

")
S

€

o/

.S

.(S)S

.S)S

. (3))S
.S))S
BYE

wn
wm

N\,
»

.S
,(S)

wn
o/

m

A AUV VI VIO VIO DI,

[1]
[2]
[4]
[4]
[4]
[3]
[5]
[5]
[2]
[4]
[3]
[5]

Note we write q for q,,,, for brevity

ANl A

8(q, A,S) = (q, SS) S —- SS
3(a,A8) =@ (5)) S—>(5)
8(q, A,S) =(q, ¢) S—>¢
6(d, ; () =(a,e)

6(0,),)) = (9.¢)

Kl\lzh IS an entry in 6\

for each terminal and
non-terminal symbol. The
stack operations mimic a
top down parse, replacing

Non-terminals with the
rhs of a production. /

-

Proof Outline

To prove that every string of L(G) Is accepted by the
PDA M, prove the following more general fact:

If S :>Ieft-most* 0 then (quOp’uv’S) I_* (qloop’V’B)

where o = uf Is the “leftmost factorization” of a (u Is

the longest prefix of a that belongs to T7, i.e. all
terminals).

For example: if « = abcWdXa then u = abc, and f = WdXa, since the
next symbol after abc is WeV (a non-terminal or)

S =, abcW... then (gq,p, abcV,S) [-* (Qpep,V, W...)

The proof is by induction on the length of the derivation
of a.

We also need to prove that every string
accepted by M belongs to L(G). Again, to
make induction work, we need to prove a

slightly more general fact:

It (qloop’W’A) I'* (qloop1 &, 8)1 then A="w

For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of
execution of M that leads from the ID

(qloop’W’A$) to (qloop’ & ’$)

Grammar from a PDA

lemma 2.27 Sipser pg 119

Assume the M = (Q,Z,I',0,q,,F) IS given, and that it
accepts by empty stack.

Alter it so that it has the following additional
properties

1. It has a single accept state

2. Each transition either
1. Pushes a symbol onto the stack
2. Or pops a symbol off the stack

3. But not both

Why can we do this? (hint add new states)

Symbols of the CFG

For every pair of states p,q €Q

Make a variable (non-terminal) A,

A symbol A,, should derive a string If that
string cause the PDA to move from state p
(with an empty stack) to state g (with an
empty stack).

Such strings can do the same, starting and ending
with the same arbitrary stack. Why?

Productions of the CFG

Consider a string x that moves the PDA from p to g
on empty stack.
1. The first move must be a push (why?)
2. The last move must be a pop (why?)

(p.x8) |- oD 1- - - GoT) -l (a.e)
There are 2 cases (Z=T)=True or (Z=T)=False

1. (Z=T)=True
Stack is only empty at the beginning and at the end.
(p,ay,e) I_ (r,y,Z) I_ |_ (S!b1T) _I (q,E,E)

Ag—>aALb

2. (Z=T)=False
the stack is empty in the middle, at some state r
(p,X,E) I_ (r’_1 E) I_ _I (q,E,E)

Ag = Apr A

Given M = (Q,x,I',0,s,{f})
Construct G= (V,2,R,S)
V={AylpqeQ}

S = Ag
> =X
R = cases
1. For each peQ App, > €
2. For each p,q,r €Q A —)Ap, A,
3. For each p,q,r,s €Q
Tel a,beX,
(r,T)ed(p,a,e) (qg,e)e0(s,b,T)
A,—>aAb

(p,ay,s) I' (r,y,Z) I' I' (S’b’T) 'I (q1ErE)

Claim 2.30

IT A, generates x, then x can bring the PDA
from p with empty stack to g with empty
stack

Apg =" X Implies (p,x,e) |-* (q,¢,€)

Proof by induction on the number of steps
In the derivation Ay, =" x

Claim 2.31

If X can bring the PDA from p with empty
stack to g with empty stack then A,
generates X

(p.x,e) |-* (Q,e,6) Implies A, =" X

Proof by induction on the length of
(p,X,S) I_* (q,g,g)

The following is additional material for the
curious.

It gives a second construction not described
In Sipser.

It Is not required.

An another algorithm for
CFG from a PDA

Assume the M = (Q,Z,I',0,q,,F) IS given, and that it
accepts by empty stack. Consider execution of M
on an accepted input string.

If at some point of the execution of M the stack Is
ZC (Z1s on top, C Is the rest of stack)

In terms of instantaneous descriptions
(state;, input, ZC)|-. ..

Then we know that eventually the stack will be C.

Why? Because we assume the input is accepted,
and M accepts by empty stack, so eventually Z
must be removed from the stack

(state;, aX, Z0) |-* (statej, X, ©)

The sequence of moves between these two
Instants is the “net popping” of Z from the
stack.

During this sequence of moves, the stack
may grow and shrink several times, some
iInput will be consumed (the o), and M will
pass through a sequence of states, from
state; to state;.

Net Popping

Net popping is fundamental for the construction of a CFG G
equivalent to M.

We will have a variable (Non-terminal) 11 Zp] in the CFG G for
every triple in (q,Z,p) € QxI'xQ from the PDA. Recall

1. Qs the set of states
2. I Is the set of stack symbols

We want the rhs of a production whose Ihs is [qZp] to
generate precisely those strings w € X" such that M can
move from g to p while reading the input w and doing the
net popping of Z. A production like [gZp] ->?

This can be also expressed as (q,w,Z) |-* (p, A, A)

Productions of G correspond to transitions of M.

If (p,&) € 8(q,a,2), then there is one or more
corresponding productions, depending on
complexity of C.

1. If £=A, we have [gZp] — a

2. IfC =Y, we have [gZr] — a[pYr] for every
state r

3. If £ =YY we have [qZs] — a[pYr][rY's], for
every pair of states r and s.

4. You can guess the rule for longer C.

Example

Q={0,1}

S ={a,b}

I ={X}

5(0,a,X) = { (0,X) } Non-terminals

6 (0,A,X) ={(1,A) } (9.Z,p) € QxI'xQ
8 (1,b,X) = { (1,A) } (0,’X',0)

Qo =0 (0,X',1)

io :{)}((1.%.0)
= {}, ts by empty stack
accepts by empty stac (1,')(',1)

Productions, At least one OXO -> a OXO

from each element in delta
(p.2) € 8(0.a.2) OX1 -> a 0X1
(0,a,X,0,X) 1X1 ->Db

(1,b,X,1,A) OX1 -> A

(0,A,X,1,A)]

	CFG and PDA accept the same languages
	Equivalence of CFGs and PDAs
	Lemma 2.21 (page 115 Sipser)
	Slide Number 4
	Example
	Compare
	Transitions simulate left-most derivation
	Proof Outline
	Slide Number 9
	Grammar from a PDA�lemma 2.27 Sipser pg 119
	Symbols of the CFG
	Productions of the CFG
	Given M = (Q,S,G,d,s,{f})
	Claim 2.30
	Claim 2.31
	Slide Number 16
	An another algorithm for�CFG from a PDA
	Slide Number 18
	Net Popping
	Slide Number 20
	Example

