
Automata and Formal Languages 

Tim Sheard 1 Lecture 14 

CFG and PDA accept the same languages 

Sipser pages 115 - 122 



Equivalence of CFGs and PDAs 

The equivalence is expressed by two theorems. 
 
Theorem 1. Every context-free language is 

accepted by some PDA. 
 
Theorem 2. For every PDA M, the language L(M) 

is context-free. 
 
We will describe the constructions, see some 

examples and proof ideas. 



Lemma 2.21  (page 115 Sipser) 

Given a CFG  G=(V,T,P,S), we define a PDA 
M=({qstart,qloop,qaccept},T, T∪V∪{$}, δ, qaccept,{qstart}), 
with δ given by  

 
• δ(qstart,ε,ε) = {(qloop,S$)} 
• If A ∈ V, then δ(qloop,ε,A) = { (qloop,α)  |  A → α is in P} 
• If a ∈ T, then δ(qloop,a,a) = { (qloop,ε) } 
• δ(qloop,ε,$) = {(qaccept,ε)} 
 
1. Note that the stack symbols of the new PDA contain all the terminal 

and non-terminals of the CFG plus $ 
2. There is only 3 states in the new PDA, all the rest of the info is 

encoded in the stack. 
3. Most transitions are on ε, one for each production 
4. A few other transitions come one for each terminal. 
5. The start and accept state each add a transition and use the marker $ 
 



The automaton simulates leftmost 
derivations of G producing w, accepting 
by empty stack. For every intermediate 
sentential form uAα in the leftmost 
derivation of w (note first that w = uv for 
some v), M will have Aα on its stack after 
reading u. At the end (case u=w and v=ε) 
the stack will be empty. 

 



Example 

For our old grammar:  S → SS | (S) | ε 
The automaton M will have seven 

transitions, most from qloop to qloop: 
1. δ(qstart, ε, ε)  = (qloop, S$) 
2. δ(qloop, ε,S)  = (qloop, SS)                     S → SS  
3. δ(qloop, ε,S)  = (qloop, (S) )                   S → (S)  
4. δ(qloop, ε,S)  = (qloop, ε )                      S → ε 
5. δ(qloop, (, ( ) = (qloop,ε) 
6. δ(qloop, ), ) ) = (qloop,ε) 
7. δ(qloop,ε,$) = (qaccept,ε) 

 

 
1. Most transitions are on ε, one for each production 
2. A few other transitions come one for each terminal 
3. Or from the start and accept conditions 

 



Compare 

Now compare the leftmost derivation  
S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())() 

with the looping part of M's execution on the same 
string given as input: 
(q, "(())()" ,S     )  |- [1] 
(q, "(())()" ,SS    )  |- [2] 
(q, "(())()" ,(S)S  )  |- [4] 
(q, "())()"  ,S)S   )  |- [4]  
(q, "())()"  ,(S))S )  |- [4] 
(q, "))()"   ,S))S  )  |- [3] 
(q, "))()"   ,))S   )  |- [5] 
(q, ")()"    ,)S    )  |- [5] 
(q, "()"     ,S     )  |- [2] 
(q, "()"     ,(S)   )  |- [4] 
(q, ")"      ,S)    )  |- [3] 
(q, ")"      ,)     )  |- [5] 
(q, ε        ,ε     ) 
 
 
Note we write q for qloop for brevity 

2. δ(q, ε,S)  = (q, SS)        S → SS  
3. δ(q, ε,S)  = (q, (S) )      S → (S)  
4. δ(q, ε,S)  = (q, ε )         S → ε 
5. δ(q, (, ( ) = (q,ε) 
6. δ(q, ), ) ) = (q,ε) 



Transitions simulate left-most derivation  

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())() 
 
 

(q, "(())()" ,S     )  |- [1] 
(q, "(())()" ,SS    )  |- [2] 
(q, "(())()" ,(S)S  )  |- [4] 
(q, "())()"  ,S)S   )  |- [4]  
(q, "())()"  ,(S))S )  |- [4] 
(q, "))()"   ,S))S  )  |- [3] 
(q, "))()"   ,))S   )  |- [5] 
(q, ")()"    ,)S    )  |- [5] 
(q, "()"     ,S     )  |- [2] 
(q, "()"     ,(S)   )  |- [4] 
(q, ")"      ,S)    )  |- [3] 
(q, ")"      ,)     )  |- [5] 
(q, ε        ,ε     ) 
 
 
 
Note we write q for qloop for brevity 
 

2. δ(q, Λ,S)  = (q, SS)        S → SS  
3. δ(q, Λ,S)  = (q, (S) )      S → (S)  
4. δ(q, Λ,S)  = (q, ε )         S → ε 
5. δ(q, (, ( ) = (q,ε) 
6. δ(q, ), ) ) = (q,ε) 

Note there is an entry in δ 
for each terminal and 
non-terminal symbol. The 
stack operations mimic a 
top down parse, replacing 
Non-terminals with the 
rhs of a production. 



Proof Outline 

To prove that every string of L(G) is accepted by the 
PDA M, prove the following more general fact: 

 
  If   S ⇒left-most

* α   then  (qloop,uv,S) |-* (qloop,v,β) 
 
 where  α = uβ  is the “leftmost factorization” of α (u is 

the longest prefix of α that belongs to T*, i.e. all 
terminals). 

   For example: if α = abcWdXa  then u = abc, and β = WdXa, since the 
next symbol after abc is W∈V (a non-terminal or ε) 

    S ⇒lm
* abcW…   then (qloop, abcV,S) |-* (qloop,V, W…) 

 

The proof is by induction on the length of the derivation 
of α. 

 



We also need to prove that every string 
accepted by M belongs to L(G). Again, to 
make induction work, we need to prove a 
slightly more general fact: 

  
If (qloop,w,A) |-* (qloop, ε, ε), then   A ⇒∗ w 
For all Stacks A, letting A = Start we have our proof. 

 
This time we induct on the length of 

execution of M that leads from the ID 
(qloop,w,A$) to (qloop, ε ,$). 

 
 



Grammar from a PDA 
lemma 2.27 Sipser pg 119 

Assume the M = (Q,Σ,Γ,δ,q0,F) is given, and that it 
accepts by empty stack.   

 
Alter it so that it has the following additional 

properties 
 
1. It has a single accept state 
2. Each transition either  

1. Pushes a symbol onto the stack 
2. Or pops a symbol off the stack 
3. But not both 

 

Why can we do this? (hint add new states) 

 



Symbols of the CFG 

For every pair of states  p,q ∈Q 
 

Make a variable (non-terminal)  Apq   
 

A symbol Apq should derive a string if that 
string cause the PDA to move from state p 
(with an empty stack) to state q (with an 
empty stack). 

 

Such strings can do the same, starting and ending 
with the same arbitrary stack. Why? 



Productions of the CFG 

Consider a string x that moves the PDA from p to q 
on empty stack. 
1. The first move must be a push (why?) 
2. The last move must be a pop (why?) 
(p,x,ε) |- (_,_,Z) |- … |- (_,_,T) -| (q,ε,ε) 

There are 2 cases (Z=T)=True or  (Z=T)=False 
1. (Z=T)=True  

Stack is only empty at the beginning and at the end. 
(p,ay,ε) |- (r,y,Z) |- … |- (s,b,T) -| (q,ε,ε) 

                  Apq → a Arsb         
2. (Z=T)=False 

the stack is empty in the middle, at some state r 
(p,x,ε) |- … (r,_, ε) |- …  -| (q,ε,ε) 

Apq →  Apr  Arq 
 
 



Given M = (Q,Σ,Γ,δ,s,{f})  
Construct G= (V,Σ,R,S) 
V = { Apq | p,q ∈Q} 
S = Asf 

Σ = Σ 
R = cases 

1. For each p∈Q                 App → ε  
2. For each p,q,r ∈Q           Apq → Apr Arq 
3. For each p,q,r,s ∈Q     

T∈Γ  a,b∈Σε   
(r,T)∈δ(p,a,ε)    (q,ε)∈δ(s,b,T) 

                                            Apq → a Arsb  
 
(p,ay,ε) |- (r,y,Z) |- … |- (s,b,T) -| (q,ε,ε) 
 
 

 



Claim 2.30 

If Apq generates x, then x can bring the PDA 
from p with empty stack to q with empty 
stack         

 
Apq ⇒∗ x         implies       (p,x,ε) |-* (q,ε,ε) 
 
Proof by induction on the number of steps 

in the derivation Apq ⇒∗ x 



Claim 2.31 

If x can bring the PDA from p with empty 
stack to q with empty stack  then Apq 
generates x      

 
(p,x,ε) |-* (q,ε,ε)    implies    Apq ⇒∗ x 
 
Proof by induction on the length of  
               (p,x,ε) |-* (q,ε,ε) 
 



The following is additional material for the 
curious. 

 
It gives a second construction not described 

in Sipser. 
 
It is not required. 



An another algorithm for 
CFG from a  PDA 

Assume the M = (Q,Σ,Γ,δ,q0,F) is given, and that it 
accepts by empty stack.  Consider execution of M 
on an accepted input string.  

 
If at some point of the execution of M the stack is 

Zζ  (Z is on top, ζ is the rest of stack) 
In terms of instantaneous descriptions 
  (statei, input,  Zζ) |− . . . 
 
Then we know that eventually the stack will be ζ.  
 Why? Because we assume the input is accepted, 

and M accepts by empty stack, so eventually Z 
must be removed from the stack 

 
 



 (statei, αX,  Zζ)   |−∗   (statej, X,  ζ)  
 
The sequence of moves between these two 

instants is the “net popping” of Z from the 
stack.  

 
During this sequence of moves, the stack 

may grow and shrink several times, some 
input will be consumed (the α), and M will 
pass through a sequence of states, from 
statei to statej. 



Net Popping 

Net popping is fundamental for the construction of a CFG G 
equivalent to M.  

 
We will have a variable (Non-terminal) [qZp] in the CFG G for 

every triple in (q,Z,p) ∈ Q×Γ×Q from the PDA. Recall  
1. Q is the set of states 
2. Γ Is the set of stack symbols 

 
We want the rhs of a production whose lhs is [qZp] to 

generate precisely those strings w ∈ Σ* such that M can 
move from q to p while reading the input w and doing the 
net popping of Z.     A production like     [qZp]  -> ? 

 
This can be also expressed as (q,w,Z) |-* (p, Λ , Λ) 
 
Productions of G correspond to transitions of M.  
 



If (p,ζ) ∈ δ(q,a,Z), then there is one or more 
corresponding productions, depending on 
complexity of ζ. 

 
1. If  ζ = Λ, we have [qZp] → a  
2. If ζ = Y, we have [qZr] → a[pYr]  for every 

state r 
3. If ζ = YY’ we have [qZs] → a[pYr][rY's], for 

every pair of states r and s. 
4. You can guess the  rule for longer ζ.  

 
 



Example 

Q = {0,1} 
S = {a,b} 
Γ = {X} 
δ(0,a,X) = { (0,X) } 
δ (0,Λ,X) = { (1,Λ) } 
δ (1,b,X) = { (1,Λ) } 
Q0 = 0 
Z0 = X 
F = {},  accepts by empty stack 

 

Non-terminals 
(q,Z,p) ∈  Q×Γ×Q 
(0,'X',0) 
(0,'X',1) 
(1,'X',0) 
(1,'X',1) 

Productions, At least one 
from each element in delta  
(p,z) ∈ δ(q,a,Z) 
 
(0,a,X,0,X) 
(1,b,X,1,Λ) 
(0,Λ,X,1,Λ)] 

0X0 -> a  0X0 
0X1 -> a 0X1 
1X1 -> b 
0X1 -> Λ 
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