
CS558 Programming Languages
Winter 2013

Lecture 5

1

FUNCTIONAL PROGRAMMING

What does functional mean?

Functions are “first-class” values

• Can be passed as parameters or returned as results of other,
higher-order functions

• Can be stored in data structures

• Supports more abstract programming style

Programs consist of pure functions with no side-effects

• Input/output description of problems

• Build programs by function composition

• No accidental or hidden coupling between functions

• Evaluation order can be either eager (based on call-by-value) or lazy
(based on call-by-need)

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 2

FUNCTIONAL LANGUAGES

There are several widely-used functional languages, which share many
features in common:

• Support first-class functions in a style based on the λ-calculus

• Pure programming style is encouraged (but not necessarily required)

• Good support for recursive data structures (especially lists)

• Implicit memory allocation and garbage collection

They differ in certain ways:

• Scheme (derived from Lisp): eager, impure, dynamically typed

• ML: eager, impure, statically typed

• Haskell : lazy, pure, statically typed

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 3

FIRST-CLASS FUNCTIONS : FUNCTIONS AS PARAMETERS IN OCAML

let rec map ((g:int -> int),(u:int list)) : int list =

match u with

[] -> []

| h::t -> (g h)::(map (g,t))

let inc x = x + 1

let dec x = x - 1

let w = map (inc,[1;2;3]) yields [2;3;4]
let z = map (dec,[1;2;3]) yields [0;1;2]

OCaml also supports anonymous function values, i.e., functions that can
be defined without being named. Could do above example as:

let w = map ((fun x -> x + 1), [1;2;3])

let z = map ((fun x -> x - 1), [1;2;3])

In fact, the following declarations are identical:

let rec foo x = e

let rec foo = fun x -> e

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 4

NESTED FUNCTION DECLARATIONS

Noticing that map passes along an unchanging parameter at each recur-
sive call, we might refactor it this way using a nested function :

let rec map ((g:int -> int), (u: int list)) : int list =

let rec f (v :int list) : int list =

match v with

[] -> []

| h::t -> (g h)::(f t) in

f u

This acts similarly to other nested declarations:

• Parameters and local variables of outer functions are visible within inner
functions (using lexical scoping rules).

• Purpose: localize scope of nested functions, and avoid the need to
pass auxiliary parameters defined in outer scopes.

• Semantics of a function definition now depend on values of function’s
free variables .

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 5

FUNCTIONS AS RETURN VALUES

In fact, we can simplify still further by rewriting map to return the nested
function:

let map’ (g:int->int) : int list -> int list =

let rec f (v: int list) : int list =

match v with

[] -> []

| h::t -> (g h)::(f t) in

f

Now we need a slightly different calling convention, passing the two argu-
ments separately:

letl w = map’ inc [1;2;3] yields [2;3;4]

But now we can also choose to pass just one argument at a time:

let minc = map’ inc

let w = minc [1;2;3] yields [2;3;4]
let y = minc [4;5;6] yields [5;6;7]

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 6

CURRIED FUNCTIONS

Ocaml also provides syntactic sugar for such “Curried ” functions:

let rec map’ (g:int->int) (u:int list) : int list =

match u with

[] -> []

| h::t -> (g h)::(map’ g t)

• When defining “multi-argument” functions in OCaml, have a choice
between using a tuple argument and Currying. Latter is better style.

• Can apply Curried version map’ to either one or two arguments.

• Function application associates to the left , so

map’ inc [2;4;6] = (map’ inc) [2;4;6]

• Function type arrows associate to the right , so map’ has type

(int -> int) -> int list -> int list =

(int -> int) -> (int list -> int list)

• Note: the “built-in” definition of map in the Ocaml standard library is
Curried (like map’).

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 7

CURRIED FUNCTIONS (2)

• Currying is most often useful when passing partially applied functions to
other higher-order functions, e.g.:

let rec pow (n:int) (b:int) : int =

if n = 0 then 1 else b * (pow (n-1) b)

map (pow 3) [1;2;3] (yields [1;8;27])

• We can also store functions in data structures:

let rec each (fl: (int->int) list) (x:int) =

match fl with

[] -> []

| (f:t) -> (f x)::(each t x)

let powers_0_10 = each (map pow [0;1;2;3;4;5;6;7;8;9;10])

powers_0_10 2 (yields [1;2;4;8;16;32;64;128;256;512;1024])
powers_0_10 3 (yields [1;3;9;27;81;243;729;2187;6561;19683;59049])

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 8

PYTHON: A NONYMOUS FUNCTIONS

Python supports similar techniques, but sometimes with more awkward
syntax.

Anonymous functions can be written using the lambda form, e.g.
(lambda x : x + 1).

• Name derives from the Alonzo Church’s “lambda calculus,” originally
invented to study computability theory, in which anonymous functions
would be written using the Greek λ character, e.g. λx.x+ 1.

• Python restricts the bodies of lambda expressions to be expressions
(not statements).

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 9

PYTHON: F IRST-CLASS FUNCTIONS

Functions can be nested, passed, returned, and stored. Here is the analog
of our Curried map definition:

def map(g) :

def f(v) :

if v == None:

return None

else:

h,t = v

return (g(h), f(t))

return f

def main() : print(map(lambda x: x+1)((1,(2,(3,None)))))

• No syntactic sugar available for Curried definitions.

• To make this example parallel to OCaml, we represented linked lists by
nested tuples, rather than using Python’s usual lists.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 10

PYTHON: L IST OPERATIONS

More idiomatic Python would use built-in lists, and the built-in map function,
which returns an iterator , which can in turn be fed to the list constructor.

list(map(lambda x: x+1, [1,2,3]))

Better still would be to use a list comprehension :

[x+1 for x in [1,2,3]]

or

[x+1 for x in range(1,4)]

which lets us build a list by mapping over the values of an iterator.

Python borrowed the comprehension syntax from Haskell, another
well-known functional language.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 11

CAPTURING ANOTHER PATTERN OF ABSTRACTION

Consider the following problems:

Sum a list of integers

let rec sum l =

match l with

[] -> 0

| h::t -> h + (sum t)

Multiply a list of integers:

let rec prod l =

match l with

[] -> 1

| h::t -> h * (prod t)

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 12

THE PATTERN CONTINUES...

Copy a list (of anything):

let rec copy l =

match l with

[] -> []

| h::t -> h::(copy t)

Query: How does copy differ from the identity function fun x -> x ?

Calculate the length of a list (of anything):

let rec len l =

match l with

[] -> 0

| h::t -> 1 + (len t)

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 13

FOLDS

We can abstract over the common inductive pattern displayed by these
examples:

let rec foldr f n l =

match l with

[] -> n

| h::t -> f h (foldr f n t)

let sum l = foldr (fun x y -> x+y) 0 l

let prod l = foldr (*) 1 l

let copy l = foldr (fun x y -> x::y) [] l

let len l = foldr (fun _ y -> 1+y) 0 l

Function foldr computes a value working from the tail of the list to the
head (from right to left). Argument n is the value to return for the empty
list. Argument f is the (Curried) function to apply to each element and the
previously computed result.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 14

FOLDS (2)

Can view foldr f n l as replacing each :: constructor in l with f and
the [] constructor with n. For example:

l = x1 :: (x2 :: (... :: (xn :: [])))

foldr (+) 1 l =

x1 + (x2 + (... (xn + 1)))

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 15

SEMANTICS OF FIRST-CLASS FUNCTIONS

What is the “value” of a first-class function f?

Roughly speaking, it is just f’s definition (parameters and body).

But nested functions can have free variables, defined in the enclosing
scope. It is clear that the value of the function depends on the values of
its free variables. How are they found?

Semantically , it suffices to know the static environment surrounding the
declaration of f was encountered.

An interpreter can simply attach the current variable environment to its
description of f when it encounters f’s declaration and records it in the
function environment.

• When the interpreter applies f, it evaluates its body in an initial
environment taken from the recorded description, which is then extended
with f’s parameters.

• When the interpreter looks up a variable while executing f, it looks first
among f’s locals and parameters, and then in the lexically-enclosing
environment.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 16

FORMALIZING FUNCTION ENVIRONMENTS

Here are appropriate dynamic semantic rules (for eager evaluation):

〈fun x -> e, E, S〉 ⇓ 〈[x, e, E], S〉
(Fun)

〈e1, E, S〉 ⇓ 〈[x, e′, E′], S′〉 〈e2, E, S′〉 ⇓ 〈v′, S′′〉

〈e′, E′ + {x 7→ v′}, S′′〉 ⇓ 〈v, S′′′〉

〈(@ e1 e2), E, S〉 ⇓ 〈v, S′′′〉
(Appl)

Can this semantics be implemented efficiently on real machines?

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 17

ASIDE: NOT QUITE FIRST-CLASS FUNCTIONS

Many languages support functions as values, but not in a fully first-class
way.

For example, it is possible to pass functions as parameters to other
functions in Pascal, Ada, ML, and C/C++ (though not directly by Java).

C/C++ also permit functions to be returned as results or stored in data
structures.

The basic implementation idea is to represent each function value as a
pointer to the compiled code of the function body.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 18

EXAMPLE : PARAMETERIZED ALGORITHMS IN C

typedef int (* leqfn) (int,int);

void isort(int n, int a[], leqfn leq) {

int i,j,t;

for (i = n-1; i >= 0; i--) {

t = a[i];

for (j = i; j < n-1 && leq(a[j+1],t); j++)

a[j] = a[j+1];

a[j] = t;

}

}

int up(int p,int q) { return p <= q; }

int down(int p, int q) { return p >= q; }

int a[] = {2,1,3};

isort(3, a, up); /* a = {1,2,3} */

isort(3, a, down); /* a = {3,2,1} */

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 19

NESTED FUNCTIONS: IMPLEMENTATION ISSUES

If the language (e.g. Pascal) supports nested functions, and hence
possible free variables, the generated code needs a way to access the
values of these variables.

• If we use conventional activation records, the free variables for a
function p live in the activation record of some statically enclosing
function q.

Assuming p’s lifetime is contained within q’s lifetime, then can access
q’s variables via a pointer to its activation record.

• Usually done by maintaining (at runtime) a chain of static links from
each activation to the lexically enclosing function’s activation.

• To access a free variable, the generated code de-references one or
more links in the chain and then uses a known offset relative to link
target. This has (modest) runtime cost.

• To pass p as a parameter to another function, we package its code
address together with its own static link.

But what happens if the lifetime of p outlives that of q?

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 20

PROBLEMS WITH RETURNING FUNCTION VALUES

Consider activation tree for map (pow 3) example:

let rec pow (n:int) (b:int) : int = ...

let f = pow 3

in map f [1;2;3]

main

/\

/ \

/ \

pow 3 map f [1;2;3]

The activation of pow is no longer live when map is called!

If n is stored in a stack-allocated activation record for pow, it will be gone
at the point where f needs it!

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 21

HEAP STORAGE FOR FUNCTION ACTIVATIONS

To avoid this problem:

• Pascal prohibits “upward funargs;” function values can only be passed
downward, and can’t be stored.

• Some other languages only permit “top-level” functions to be
manipulated as values (in C, this means all functions!).

Functional languages supporting first-class nested functions must solve
this problem by using the heap to store variables like n.

• Simple solution: Just allocate all activation records in the heap instead
of the stack, and pass static links as in Pascal! Efficient garbage
collection is a must! (Standard ML of New Jersey does this.)

• More refined solution: Represent function values by a heap-allocated
closure record, containing the function’s code pointer and values of its
free variables. (Most compiled language implementations, including
OCaml, do this.)

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 22

CLOSURE EXAMPLE

Consider this very simple Curried function definition and use:

let foo x =

let y = 1 in

let bar z = x + y + z in

bar

let f = foo 2

let g = f 3

The OCaml compiler will turn this into the equivalent of:

let bar’ (clos,z) = clos.x + clos.y + z

let foo’ x =

let y = 1 in

{func=bar’,x=x,y=y}

let f = foo’ 2

let g = f.func(f,3)

• Note that the closure includes copies of the values of the free variables,
so must do some extra work if these variables are allowed to be mutable .

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 23

TAIL -CALLS REVISITED

Consider again the non-tail-recursive len function. We wrap it in a function
that prints out the result:

let rec len l =

match l with

[] -> 0

| h::t -> len t + 1 in

print_int (len ["a";"b"])

We can write this in a tail-recursive way like this:

let rec klen l k =

match l with

[] -> k 0

| h::t -> klen t (fun i -> k (i+1)) in

klen ["a";"b"] print_int

This rather odd code was constructed by giving klen an additional
argument, k, of type int→unit. Instead of returning its “result” value,
klen passes it to k.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 24

COMPARISON OF COMPUTATIONS

print_int (len ["a";"b"]) →
print_int (len ["b"] + 1) →
print_int ((len [] + 1) + 1) →
print_int ((0 + 1) + 1) →
print_int (1 + 1) →
print_int 2

klen ["a";"b"] print_int→
klen ["b"] (fun i1 -> print_int(i1 + 1)) →
klen [] (fun i2 -> (fun i1 -> print_int(i1 + 1)) (i2 + 1)) →
(fun i2 -> (fun i1 -> print_int(i1 + 1))(i2 + 1)) 0 →
(fun i1 -> print_int(i1 + 1))(0 + 1) →
(fun i1 -> print_int(i1 + 1)) 1 →
print_int (1 + 1) →
print_int 2

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 25

CONTINUATION-PASSING STYLE

Notice that every call is now a tail-call . Note too that klen only returns
after print_int is invoked; in essence, it needn’t return at all. If it were
the whole program, it wouldn’t need to return at all. This is because k is
serving the same role as a return address: saying “what to do next.”

This means we can evaluate klen without a stack !

Functions like k are called continuations and programs written using
them are said to be in continuation-passing style (CPS) .

We may choose to write (parts or all of) programs explicitly in CPS
because it makes it easy to express a particular algorithm or because it
clarifies the control structure of the program.

Note that CPS programs are just a subset of ordinary functional programs
that happens to make heavy use of the (existing) enormous power of
first-class functions. Remarkably, we can also systematically convert any
functional program into an equivalent CPS program. (Details omitted.)

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 26

CONTINUATIONS

More broadly speaking, the term continuation means any representation
of the program’s state at a particular point during execution. This state
must contain exactly the information needed to “continue” execution of
the program from that point until the program completes.

CPS programs represent each continuation as a function , which, given
the value of the expression being computed at that point, returns the
result of the entire program.

If we are describing execution in terms of a low-level machine, we can
think of a continuation for a program point as the machine state at that
point: the values of the pc, return stack, etc. These contain the same
information that would go into a closure for the continuation function.

PSU CS558 W’13 LECTURE 5 c© 1994–2013 ANDREW TOLMACH 27

