
CS558 Programming Languages
Winter 2013

Lecture 4

1

PROCEDURES AND FUNCTIONS

Procedures have a long history as an essential tool in programming:

• Low-level view: subroutines give a way to avoid duplicating frequently
used code

• Higher-level view: procedural abstraction gives a way to divide large
programs into smaller components with hidden internals

We can imagine abstracting over many aspects of a piece of code.
Mainstream languages chiefly support abstraction over values and
(sometimes) types.

A function is just a procedure that returns a result. (Or conversely, a
procedure is just a function whose result we don’t care about.)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 2

PROCEDURE ACTIVATION DATA

Each invocation of a procedure requires associated data, such as:

• the return address of the caller

• the actual values corresponding to the formal parameters of the
procedure

• space for the values of local variables associated with the procedure.

This activation data must live from the time the procedure is invoked until
the time it returns. If one procedure calls another procedure, their
activation data must be kept separate, because their lifetimes overlap. In
particular, the data for all invocations of a recursive procedure must be
kept separate.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 3

ACTIVATION STACKS

In most languages, activation data can be stored on a stack , and we
speak of pushing and popping activation frames from the stack, which is
a very efficient way of managing local data.

A typical activation stack, shown just before inner call to f returns.

Program:

int z = y+y;
if (z > 0)
 z = f(z,0);
return z+y;

}
void main() {

int w = 10;
w = f(w,w);

}

int f(int x, int y){

fp

ret addr

saved fp

ret addr

w

x

y

z

x

y

z

10

10

10

line 10

20

20

0

line 5

0

saved fp

args

locals

locals

args

locals

frame for f

frame for f

frame for main

tos

(stack grows)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 4

WHAT ABOUT REGISTERS?

Although it is convenient to view all locations as memory addresses,
most machines also have registers , which are:

• much faster to access,

• but very limited in number (e.g., 4 to 64).

So compilers try to keep variables (and pass parameters) in registers
when possible, but always need memory as a backup. Using registers is
fundamentally just an (important!) optimization.

Easy to have environment map each name to location that is either
memory address or register.

• But registers don’t have addresses, so they can’t be accessed
indirectly, and register locations can’t be passed around or stored.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 5

PROCEDURE PARAMETER PASSING

When we activate a procedure, the formal parameters get bound to
locations containing values.

• How is this done and which locations are used?

• Do we pass addresses or contents of variables from the caller?

• How do we pass actual values that aren’t variables?

• What does it mean to pass a large value like an array?

Two main approaches:

• call-by-value (CBV)

• call-by-reference (CBR)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 6

CALL -BY-VALUE

• Each actual argument is evaluated to a value before call.

• On entry, value is bound to formal parameter just like a local variable.

• Updating formal parameter doesn’t affect actuals in calling procedure.

double hyp(double a,double b) {

a = a * a;

b = b * b;

return sqrt(a+b);

}

• Simple; easy to understand!

• Implement by binding the formal parameters to freshly-allocated
locations, and and copying the actual values into these locations (just
like assignment).

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 7

PROBLEMS WITH CALL -BY-VALUE (1)

• Can be inefficient for large unboxed values:

Example (C): Calls to dotp copy 20 doubles

typedef struct {double a1,a2,...,a10;}

vector;

double dotp(vector v, vector w) {

return v.a1 * w.a1 + v.a2 * w.a2 + ...

+ v.a10 * w.a10;

}

vector v1,v2;

double d = dotp(v1,v2);

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 8

PROBLEMS WITH CALL -BY-VALUE (2)

• Cannot affect calling environment directly. (Of course, perhaps this is a
good thing!)

Example: calls to swap have no effect:

void swap(int i,int j) {

int t;

t = i ; i = j; j = t;

}

...

swap(a[p],a[q]);

• Can at best return only one result (as a value), though this might be a
record.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 9

CALL -BY-REFERENCE

• Pass the existing location of each actual parameter.

• On entry, the formal parameter is bound to this location, which must be
dereferenced to get value, but can also be updated .

• If actual argument doesn’t have a location (e.g., (x + 3)), either:

- Evaluate it into a temporary location and pass address of temporary, or

- Treat as an error.

• Now swap, etc., work fine!

• Accesses are slower.

• Lots of opportunity for aliasing problems, e.g.,

PROCEDURE matmult(a,b,c: MATRIX)

... (* sets c := a * b *)

matmult(a,b,a) (* oops! *)

• Call-by-value-result (a.k.a. copy-restore) addresses this problem, but
has other drawbacks.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 10

HYBRID METHODS; RECORDS AND ARRAYS

How might we combine the simplicity of call-by-value with the efficiency
of call-by-reference, especially for large unboxed values?

• In Pascal, Ada, and similar languages, where records and arrays are
both unboxed, the programmer can specify (in the procedure header) for
each parameter whether to use call-by-value or call-by-reference.

• In ANSI C/C++, record (struct or class) values are unboxed, but arrays
are boxed. C always uses call-by-value, but programmers can take the
address of a variable explicitly, and pass that to obtain CBR-like behavior:

swap(int *a, int *b) {

int t;

t = *a; *a = *b; *b = t; }

swap (&a[p],&a[q]);

Of course, it is the programmer’s responsibility to make sure that the
address remains valid (especially when it is returned from a function).

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 11

COMPLEX AND SIMPLE SOLUTIONS

• C++ supports both CBR parameters and explicit pointers:

swap(int &a, int *b) {

int t;

t = a; a = *b; *b = t;

}

...

swap(a[p],&a[q]);

Mixing explicit and implicit pointers like this can be very confusing!

• In Python and OCaml, values of both records (objects) and arrays are
boxed. These languages have only call-by-value, but this doesn’t actually
cause copying, even for record or array values.

• Approach is made more feasible because programmer doesn’t have to
worry about lifetime of heap data, due to automatic garbage collection.

• Clever compilers can decide whether smallish objects should be
heap-allocated or kept unboxed, while continuing to give the semantic
effect of the boxed representation.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 12

SUBSTITUTION

One simple way to give semantics to procedure calls is to say they should
behave as if the procedure body was textually substituted for the call,
with the actual parameters substituted for the formal ones.

• This is very similar to macro-expansion , which really does this subsitu-
tion (statically). E.g (in C):

#define swap(x,y) {int t;t = x;x = y;y = t;}

...

swap(a[p],a[q]);

• It even makes sense for recursive procedures (though of course it
cannot be implemented by static substitution in this case).

• BUT blind substitution is dangerous because of possible “variable cap-
ture ,” e.g.,

swap(a[t],a[q])

expands to

{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 13

CALL -BY-NAME (CBN)

• Here t is “captured” by the declaration in the macro, and is undefined at
its first use.

• Note that name of local variable is not important: it could be renamed:

{int u; u = a[t]; a[t] = a[q]; a[q] = u;}

• Call-by-name (first proposed in Algol60) can be thought of as
“substitution with renaming where necessary.”

• In practice, call-by-name is implemented by binding any free variables
in arguments at the point of call (rather than the point of use).

• This makes CBN much less efficient to implement than CBV or CBR.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 14

JENSEN’S DEVICE

• Call-by-name is powerful...

real procedure SIGMA(x, i, n);

real x; integer i, n;

begin

real s;

s := 0;

for i := 1 step 1 until n do

s := s + x;

SIGMA := s; (sets return value)
end

SIGMA(a(j),j,10); (computes Σ10

j=1
aj)

SIGMA(a(k)*b(k),k,10); (computes Σ10

k=1
akbk)

• ...but potentially very confusing in the presence of side-effects.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 15

CALL -BY-NEED

• If language has no mutable variables (as in “pure” functional
languages), call-by-name gives a substitution gives a beautifully simple
semantics for procedure calls.

• Arguments are evaluated only if needed.

foo x y = if x > 0 then x else y

foo 1 (factorial 1000000)

• As a further refinement, pure functional languages typically use call-
by-need (or lazy) evaluation, in which arguments are evaluated at most
once .

foo x y = if x > 0 then x else y * y

foo (-1) (factorial 1000000)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 16

ITERATION VS . RECURSION

Any iteration can be written as a recursion.

For example:

while (t) do e

is equivalent to

void f(bool b) {

if (b) then {

e;

f(t)

}

}

f(t)

where we assume that the variables used by e and t are global.

When can we do the converse? It turns out that a recursion can be
rewritten as an iteration (without needing any extra storage) whenever all
the recursive calls are in tail position . To be in tail position, the call must
be the last thing performed by the caller before it itself returns.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 17

OCAML TAIL -CALL EXAMPLES

List operations can often be made tail-recursive in this way:

let rec last xs = (* tail-recursive *)

match xs with

| [] -> 0

| [x] -> x

| x::xs’ -> last xs’

let rec length xs = (* not tail-recursive *)

match xs with

| [] -> 0

| x::xs -> 1 + (length xs)

let length l = (* use accumulating parameter; now is tail-recursive *)

let rec f xs len =

match xs with

| [] -> len

| x::xs’ -> f xs’ (len+1) in

f l 0

A decent compiler can turn tail-calls into iterations, thus saving the cost
of pusing an activation frame on the stack. This is essential for languages
(like ML) that lack iteration, and useful even for those that have it (like C).

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 18

SYSTEMATIC REMOVAL OF RECURSION

(Adapted from Sedgewick, Algorithms, 2nd ed.. Examples in C.)

But what about general (non-tail) recursion? One way to get a better
appreciation for how recursion is implemented is to see what is required
to get rid of it.

Original program:

typedef struct tree *Tree;

struct tree {

int value;

Tree left, right;

};

void printtree(Tree t) {

if (t) {

printf("%d\n",t->value);

printtree(t->left);

printtree(t->right);

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 19

STEP 1

Remove tail-recursion .

void printtree(Tree t) {

top:

if (t) {

printf("%d\n",t->value);

printtree(t-left);

t = t->right;

goto top;

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 20

STEP 2

Use explicit stack to replace non-tail recursion. Simulate behavior of
compiler by pushing local variables and return address onto the stack
before call and popping them back off the stack after call.

Assume this stack interface:

Stack empty;

void push(Stack s,void* t);

(void*) pop(Stack s);

int isEmpty(Stack s);

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 21

STEP 2 (CONT.)

Here there is only one local variable (t) and the return address is always
the same, so there’s no need to save it.

void printtree(Tree t) {

Stack s = empty;

top:

if (t) {

printf("%d\n",t->value);

push(s,t);

t = t->left;

goto top;

retaddr:

t = t->right;

goto top;

}

if (!(isEmpty(s))) {

t = pop(s);

goto retaddr;

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 22

STEP 3

Simplify by:

• Rearranging to avoid the retaddr label.

• Pushing right child instead of parent on stack.

• Replacing first goto with a while loop.

void printtree(Tree t) {

Stack s = empty;

top:

while (t) {

printf("%d\n",t->value);

push(s,t->right);

t = t->left;

}

if (!(isEmpty(s))) {

t = pop(s);

goto top;

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 23

STEP 4

Rearrange some more to replace outer goto with another while loop.

(This is slightly wasteful, since an extra push, stackempty check and pop

are performed on root node.)

void printtree(Tree t) {

Stack s = empty;

push(s,t);

while(!(isEmpty(s))) {

t = pop(s);

while (t) {

printf("%d\n",t->value);

push(s,t->right);

t = t->left;

}

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 24

STEP 5

A more symmetric version can be obtained by pushing and popping the
left children too.

Compare this to the original recursive program.

void printtree(Tree t) {

Stack s = empty;

push(s,t);

while(!(isEmpty(s))) {

t = pop(s);

if (t) {

printf("%d\n",t->value);

push(s,t->right);

push(s,t->left);

}

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 25

STEP 6

We can also test for empty subtrees before we push them on the stack
rather than after popping them.

void printtree(Tree t) {

Stack s = empty;

if (t) {

push(s,t);

while(!(isEmpty(s))) {

t = pop(s);

printf("%d\n",t->value);

if (t->right)

push(s,t->right);

if (t->left)

push(s,t->left);

}

}

}

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 26

EXCEPTIONS

Programs often need to handle exceptional conditions, i.e., deviations
from “normal” control flow.

Exceptions may arise from

• failure of built-in or library operations (e.g., division by zero, end of file)

• user-defined events (e.g., key not found in dictionary)

It can be awkward or impossible to deal with these conditions explicitly
without distorting normal code.

Most recent languages (Ada, C++, Java, Python, OCaml, etc.) provide a
means to define , raise (or throw), and handle exceptions.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 27

EXAMPLE : EXCEPTIONS IN PYTHON

class Help(Exception): # define a new exception

pass

try:

...

if gone wrong:

raise Help() # raise user-defined exception

...

x = a / b # might raise a built-in exception

...

except Help:

...report problem...

except ZeroDivisionError:

x = -99

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 28

WHAT TO DO IN AN EXCEPTION ?

If there is a statically enclosing handler, the thrown exception behaves
much like a goto. In previous example:

...

if (gone wrong) goto help_label;

...

help_label: ...report problem...

But what if there is no handler explicitly wrapped around the
exception-throwing point?

• In most languages, uncaught exceptions propagate to next
dynamically enclosing handler. E.g, caller can handle uncaught
exceptions raised in callee.

• A few languages support resumption of the program at the point where
the exception was raised.

• Many languages permit a value to be returned along with the exception
itself.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 29

EXCEPTION HANDLING EXAMPLE

class BadThing(Exception):

def __init__(self, problem):

self.problem = problem

def foo():

... raise BadThing("my problem") ...

def bar():

try:

x = foo()

except BadThing as exn:

print ("oops:" + exn.problem)

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 30

EXCEPTIONS VS. ERROR VALUES

An alternative to user-raised exceptions is to return status values, which
must be checked on return:

let rec find (k0:string) (env: (string * int) list)

: int option =

match env with

| [] -> None

| (k,v)::t ->

if k = k0 then

Some v

else

find k0 t

... match find "abc" e0 with

| Some v -> ... v ...

| None -> ...perform error recovery...

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 31

EXCEPTION VS. ERROR VALUES (2)

With exceptions, we can defer checking for (rare) error conditions to a
more convenient point.

exception NotFound

let rec find (k0:string) (env: (string * int) list) : int =

match env with

| [] -> raise NotFound

| (k,v)::t ->

if k = k0 then

v

else

find k0 t

... try

let v = find "abc" e0 q

in ... v ...

with NotFound ->

...perform error recovery...

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 32

IMPLEMENTING EXCEPTIONS (1)

One approach to implementing exceptions is for the runtime system to
maintain a handler stack with an entry for each handler context currently
active.

• Each entry contains a handler code address and a call stack pointer.

• When the scope of a handler is entered (e.g. by evaluating a
try...with expression), the handler’s address is paired with the current
call stack pointer and pushed onto the handler stack.

• When an exception occurs, the top of the handler stack is popped,
resetting the call stack pointer and passing control to the handler’s code.
If this handler itself raises an exception, control passes to the next
handler on the stack, etc.

• Selective handlers work by simply re-raise any exception they don’t
want to handle (causing control to pass to the next handler on the stack).

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 33

EXCEPTIONS ON PURPOSE

• In this execution model, raising an exception provides a way to return
quickly from a deep recursion, with no need to pop stack frames one at a
time.

Example:

exception Zero

let product l =

let rec prod l =

match l with

| [] -> 1

| h::t ->

if h = 0 then

raise Zero

else

h * (prod t) in

try

prod l

with Zero -> 0

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 34

IMPLEMENTING EXCEPTIONS (2)

The handler-stack implementation makes handling very cheap, but incurs
cost each time we enter a new handler scope. If exceptions are very rare,
this is a bad tradeoff.

• As an alternative, some runtime systems use a static table that maps
each code address to the address of the statically enclosing handler (if
any).

• If an exception occurs, the table is inspected to find the appropriate
handler.

• If there is no handler defined in the current routine, the runtime system
looks for a handler that covers the return address (in the caller), and so
on up the call-stack.

• The deliberate use of exceptions in the previous example would
probably be unwise if this implementation approach is used.

PSU CS558 W’13 LECTURE 4 c© 1994–2013 ANDREW TOLMACH 35

