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IMPERATIVE LANGUAGES

Most commonly-used programming languages are imperative : they
consist of a sequence of actions that alter the state of the world.

State includes the values of program variables and also the program’s
external environment (e.g. files the program reads or writes).

High-level imperative languages mimic the style of the underlying Von
Neumann machine architecture, where programs are sequences of
instructions that modify the contents of registers and memory locations.

This makes it relatively straightforward to compile imperative languages
to efficient code:

• High-level variables are mapped to machine locations.

• High-level operations are mapped to (multiple) machine instructions.

Imperative languages are also natural for writing reactive programs that
interact with the state of the “real world.” Examples:

• Reading mouse clicks and modifying the contents of a display.

• Controlling a set of relays in an external device.
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STATEMENTS AND EXPRESSIONS

Many languages put have a separate syntactic category of statements
(or commands ) that includes stateful operations which don’t produce a
result value.

But in some languages, certain expressions can also affect the state (in
which case they are said to have side-effects ) in addition to returning a
result.

Also, most languages support user-defined functions , which contain
statements but return a value and are invoked in an expression context;
this is another way expressions can have side-effects.
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ASSIGNMENT

The basic primitive stateful operation is typically assignment , which
alters a value stored in a location .

Depending on language, assignments are statements (with no result
value), or expressions (maybe with result value).

In the simplest form, the location is associated with a simple variable ,
e.g.,

a := a + 2

(We use := for assignment, = for equality relational operator. C/C++/Java
use =, == respectively: a bad idea, because both form expressions.)

In most languages, the variable name a means different things on the
left-hand and right-hand sides of an assignment.

On the LHS, a denotes the location of the variable a, into which the
value of the RHS expression is to be stored.

On the RHS, a denotes the value currently contained in a, i.e., it
indicates an implicit dereference operation.
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OCAML REFERENCES

In OCaml, ordinary “variables” are immutable , i.e., they are really just
names for values (computed at runtime), rather than for locations. Updat-
able variables, called references , must be explicitly created as such, and
always serve as l-values. The contents of the variable must be explicitly
dereferenced:

let x = ref 2 ;;

x := !x + 2 ;;

!x ;; (* yields 4 *)

let setto10 (y: int ref) = y := 10 ;;

setto10 x ;;

!x ;; (* yields 10 *)

This approach is somewhat more verbose, but removes any confusion
between l-value and r-value.
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INITIALIZATION VALUES

Most languages require variables (and other sources of l-values) to be
declared before they are used: gives them a type and scope, and
optionally , an initializing expression.

In fact, it is surely a bug to use any variable as an r-value unless it has
previously assigned a value. But many languages permit us to write such
code, resulting in runtime errors—either checked (as in Python) or
unchecked (as in C).

The simplest fix is to require an initial value to be given for every
declared variable. OCaml requires this for mutable ref variables (and
also of course for ordinary immutable variables).

Java takes a slightly more sophisticated approach:

• variables do not need to be initialized at the point of declaration; but

• they must be initialized before they are actually used.

But in any reasonably powerful language, checking initialization before
use is an uncomputable problem.
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DEFINITE ASSIGNMENT

So the Java language reference manual carefully details a conservative ,
computable, set of conditions, which every program must meet, that
guarantee there will be no uses before definition.

This is called the definite assignment property; just defining it takes 16
pages of the reference manual.

Some programs that do in fact initialize before use will be rejected
because they violate the conditions.

Legal example:

int a;

if (b) /* b is boolean */

a = 3;

else

a = 4;

a = a + 1;

Illegal example:

int a;

if (b)

a = 3;

if (!b)

a = 4;

a = a + 1;
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ORDER OF EVALUATION

Order of stateful operations affects program semantics (behavior).

Statements are always explicitly ordered, making these differences
obvious.

Expressions can also have side-effects, but order of evaluation is often
under-specified (precedence and associativity don’t always fix order).

ANSI C example:

a = 0;

b = (a = a + 1) - (a = a + 2);

Result (1-3 = -2 or 3-2 = 1 ?) depends on compiler whim.
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HIDDEN SIDE EFFECTS

Side-effects are not always obvious:

int a = 0;

int h (int x, int y) { return x; }

int f (int z) { a = z; return 0; }

h(a,f(2)); // = 0 or 2 ??

Keeping expression evaluation order or argument evaluation order
undefined sometimes lets compiler generate more efficient code.

But most modern languages (e.g., Java) have moved towards precise
definition of evaluation order within expressions (typically left-to-right).
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STRUCTURED CONTROL FLOW

All modern higher-level imperative languages are designed to support
structured programming .

Loosely, a structured program is one in which the syntactic structure of
the program text corresponds to the flow of control through the
dynamically executing program.

Originally proposed (most famously by Dijkstra) as an improvement on
the incomprehensible “spaghetti code” that is easy to produce using the
labels and jumps supported directly by hardware.

More specifically, structured programs use a very small collection of
(recursively defined) compound statements to describe their control
flow.
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K INDS OF COMPOUND STATEMENTS

• Sequential composition: form a statement from a sequence of
statements, e.g.
(Java) { x = 2; y = x + 4;}

(Pascal) begin x := 2; y := x + 4; end

• Selection: execute one of several statements, e.g.,
(Java) if (x < 0) y = x + 1; else z = y + 2;

• Iteration: repeatedly execute a statement, e.g.,
(Java) while (x > 10) output(x--);

(Pascal) for x := 1 to 12 do output(x*2);
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SELECTION : IF

The basic selection statement is based on boolean values

if e then s1 else s2

which translates to

evaluate e into t
cmp t,true
brneq l1
s1
br l2

l1: s2
l2:
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SELECTION : CASE

To test types with more than two values, multi-way selections against
constants are appropriate:

case e of

c1 : s1
c2 : s2
. . .
cn : sn
default : sd

The most efficient translation of case statements depends on density of
the value c1, c2, . . . , cn within the range of possible values for e.
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SPARSE CASES

For sparse distributions, it’s best to translate the case just as if it were:

t := e;
if t = c1 then

s1
else if t = c2 then

s2
else

. . .
else if t = cn then

sn
else

sd
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DENSE CASES

For a dense set of labels in the range [c1, cn], it’s better to use a jump
table :

evaluate e into t
cmp t,c1
brlt ld
cmp t,cn
brgt ld
sub t,c1,t
add table,t,t
br *t

table: l1
l2
...

ln

l1: s1
br done

l2: s2
br done

. . .
ln: sn

br done

ld: sd
done:

The best approach for a given case may involve a combination of these
two techniques. Compilers differ widely in the quality of the code
generated for case.
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ITERATION

The basic loop construct is

while e do s

corresponding to:

top: evaluate e into t
cmp t,true
brneq done

s
br top

done:

A commonly-supported variant is to move the test to the bottom:

repeat s until e

which is equivalent to:

s;
while not e do s
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LOOP EXITS

It is sometimes desirable to exit from the middle of a loop:

loop

s1;
exitif e;
s2

end

is equivalent to:

top: s1
evaluate e into t
cmp t,true
breq done

s2
br top

done:

C/C++/Java have an unconditional form of exit, called break. They also
have a continue statement that jumps back to the top of the loop.
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USES FOR goto?

An efficient program with goto:

int i;

for (i = 0; i < n; i++)

if (a[i] == k)

goto found;

n++;

a[i] = k;

b[i] = 0;

found:

b[i]++;

In most languages (e.g., Modula, C/C++) there is no equivalently efficient
solution without goto.
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MULTI-LEVEL break

But we can do as well in Java, using a named, multi-level break:

int i;

search:

{ for (i = 0; i < n; i++)

if (a[i] == k)

break search;

n++;

a[i] = k;

b[i] = 0;

}

b[i]++;

(This construct was invented by Knuth in the 1960’s, but not adopted into
a mainstream language for about 30 years!)
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COUNTED LOOPS

Since iterating a definite number of times is very common, languages often
offer a dedicated statement, with basic form:

for i := e1 to e2 do s

Here s is executed repeatedly with i taking on the values e1, e1 + 1, . . . ,
e2 in each successive iteration.

The detailed semantics of this statement vary, and can be tricky. Often, s
is prohibited from modifying i, which (under certain other conditions)
guarantees that the loop will be executed exactly e2 − e1 + 1 times.

C/C++/Java have a much more general version of for, which guarantees
much less about the behavior of the loop:

for (e1; e2; e3) s;

is exactly equivalent to:

e1; while (e2) { s; e3 }
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ITERATORS

A number of modern languages support iteration over arbitrary
sequences of values, not just sequences of numbers. For example, in
Python we can write

for x in foo:

# ...do something with x...

where foo is a list, string, tuple, dictionary, file, or in fact any object
(including objects of user-defined classes) that has an iter() method.

We can write iterators using the yield statement to return values, e.g.

def my_iter():

yield "foo"

yield "bar"

yield "baz"

for x in my_iter():

print(x) # prints foo,bar,baz

Here the iterator and the consumer are acting as coroutines .

PSU CS558 W’13 LECTURE 2 c© 1994–2013 ANDREW TOLMACH 21



THE COME FROM STATEMENT

10 J = 1

11 COME FROM 20

12 PRINT J

STOP

13 COME FROM 10

20 J = J + 2

(R. Lawrence Clark, “A linguistic contribution to GOTO-less
programming,” Datamation, 19(12), 1973, 62-63.)

But is this really a joke?

Even with a GO TO, we must examine both the branch and the target label
to understand the programmer’s intent.
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INFORMAL SEMANTICS

• Grammars can be used to define the legal programs of a language, but
not what they do! (Actually, most languages place further,
non-grammatical restrictions on legal programs, e.g., type-correctness.)

• Language behavior is usually described, documented, and
implemented on the basis of natural-language (e.g., English)
descriptions.

• Descriptions are usually structured around the language’s grammar,
e.g., they describe what each nonterminal does.

• Natural-language descriptions tend to be imprecise , incomplete , and
inconsistent .
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EXAMPLE : FORTRAN DO-LOOPS

“DO n i = m1,m2,m3

Repeat execution through statement n, beginning with i = m1,
incrementing by m3, while i is less than or equal to m2. If m3 is omitted, it
is assumed to be 1. m’s and i’s cannot be subscripted. m’s can be either
integer numbers or integer variables; i is an integer variable.”

- from DEC Fortran-II manual, 1974.

Consider:

DO 100 I = 10,9,1

. . .
100 CONTINUE

How many times is the body executed?
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EXPERIMENTAL SEMANTICS

Try it and see!

Implementation becomes standard of correctness.

This is certainly precise : compiler source code becomes specification.

But it is:

• difficult to understand;

• awkward to use;

• subject to accidental change;

• wholly non-portable.

PSU CS558 W’13 LECTURE 2 c© 1994–2013 ANDREW TOLMACH 25



FORMAL SEMANTICS

Aims:

• Rigorous and unambiguous definition in terms of a well-understood
formalism, e.g., logic, naive set theory, etc.

• Independence from implementation . Definition should describe how
the language behaves as abstractly as possible.

Uses:

• Provably-correct implementations.

• Provably-correct programs.

• Basis for language comparison.

• Basis for language design.

(But usually not basis for learning a language.)

Main varieties: Operational, Denotational, Axiomatic.

Each has different purposes and strengths. In this course, we’ll mostly
focus on operational semantics, with brief looks at the others.
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OPERATIONAL SEMANTICS

Define behavior of language on an abstract machine .

Abstract machine should be much simpler than real machines, since
otherwise a compiler for a real machine would be just as good!

Typical mechanisms:

• Characterize the state of the abstract machine (typically as an
environment mapping variables to values) and give a set of evaluation
rules describing how each syntactic construct affects the state.

• Define a simple Von Neumann-style stack machine and describe how
each syntactic construct can be compiled into stack machine instructions.

Some useful things to do with an operational semantics:

• Build an implementation for a real machine by interpreting or compiling
the abstract machine code.

• Explicate the meaning of a language feature by proving that it has the
same behavior as a combination of simpler features.

• Prove that correctly typed programs cannot “dump core” at runtime.
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SEMANTICS FROM INTERPRETERS

In the homework, we’re building definitional interpreters for small
languages that display key programming language constructs.

Our goal is to study the interpreter code in order to understand
implementation issues associated with each language.

In addition, the interpreter serves as a form of semantic definition for
each language construct. In effect, it defines the meaning of the
language in terms of the semantics of Python or OCaml.

(Of course, you’ll also be learning more about the semantics of Python
and OCaml as we go!)
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SEMANTICS AND ERRONEOUS PROGRAMS

An important part of a language specification is distinguishing valid from
invalid programs.

It is useful to define three classes of errors that make programs invalid.
(Of course, even valid programs may behave differently than the
programmer intended!)

Static errors are violations of the language specification that can be
detected at compilation time (or, in an interpreter, before interpretation
begins)

• Includes: lexical errors, syntactic errors (caught during parsing), type
errors, etc.

• Compiler or interpreter issues an error pinpointing erroneous location in
source program.

• Language semantics are usually defined only for programs that have
no static errors.
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RUNTIME ERRORS

Checked runtime errors are violations that the language
implementation is required to detect and report at runtime, in a clean way.

• Examples in Python, OCaml, or Java: division by zero, array bounds
violations, dereferencing a null pointer.

• Depending on language, implementation may issue an error message
and die, or raise an exception (which can be caught by the program).

• Language semantics must specify behavior precisely.

Unchecked runtime errors are violations that the implementation need
not detect.

• Subsequent behavior of the computation is arbitrary . (Error is often not
manifested until much later in execution.)

• Examples in C: division by zero, dereferencing a null pointer, array
bounds violations.

• Language semantics probably don’t specify behavior.

• Safe languages like Python, OCaml, and Java have no such errors!
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AXIOMATIC SEMANTICS

Interpreters give an operational semantics for imperative statements.

(We’ll see other, more formal, operational approaches to semantics later.)

An important alternative approach is to give a logical interpretation to
statements.

• The state of an imperative program is defined by the values of the all its
variables.

• We can characterize a state by giving a logical predicate (or
assertion ), mentioning the variables, which is satisfied by the values of
the variables in that state.

• We can define the semantics of statements by saying how they affect
(arbitrary) predicates.
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TRIPLES INVOLVING ASSERTIONS

We write a Hoare triple

{ P } S { Q }

to mean that if the precondition P is true before the execution of S then
the postcondition Q will be true after the execution of S.

Note that the triple says nothing about what happens if S doesn’t
terminate. So we are only characterizing statements that terminate.

Examples of triples (not all stating true things!)

{y ≥ 3} x := y + 1 {x ≥ 4 }

{x + y = c} while x > 0 do

y := y + 1;

x := x - 1

end {x + y = c}

{ y = 2 } x := y + 1 { x = 4 }

{ y = 2 } x := y + z { x = 4 }
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AXIOMS AND RULES OF INFERENCE

How do we distinguish true triples from false?

Who’s to say which ones are true?

It all depends on the semantics of statements!

If we work in a suitably structured language, we can give a fixed set of
axioms and rules of inference , one for each kind of statement. We then
take as true the set of triples that can be logically deduced from these
axioms and rules.

Of course, we want to choose axioms and rules that capture our intuitive
understanding of what the statements do, and they need to be as strong
as possible.
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ASSIGNMENT AXIOM

{ P [E/x] } x := E { P }

where P [E/x] means P with all instances of x replaced by E.

This axiom may seem backwards at first, but it makes sense if we start
from the postcondition. For example, if we want to show x ≥ 4 after the
execution of

x := y + 1

then the necessary precondition is y + 1 ≥ 4, i.e., y ≥ 3.
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MORE RULES FOR STATEMENTS

Conditional Rule

{ P ∧ E } S1 { Q }, { P ∧ ¬ E } S2 { Q }

------------------------------------------

{ P } if E then S1 else S2 endif { Q }

Composition Rule

{ P } S1 { Q }, { Q } S2 { R }

-------------------------------

{ P } S1; S2 { R }

While Rule

{ P ∧ E } S { P }

--------------------------------

{ P } while E do S { P ∧ ¬ E }
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BOOKKEEPING RULES

Consequence Rule

P ⇒ P ′, { P ′ } S { Q′ }, Q′ ⇒ Q
------------------------------------

{ P } S { Q }

Here P ⇒ Q means that “P implies Q,” i.e., “Q is true whenever P is true,”
i.e. “P is false or Q is true.” Hence we always have False ⇒ Q for any Q !
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PROOF TREE EXAMPLE

-----------------(ASSIGN) -----------------(ASSIGN)

{x+ y + 1 = c+ 1} {x− 1 + y = c}

y := y+1 x := x-1

{x+ y = c+ 1} {x+ y = c}

---------------------(CONSEQ) ----------------(CONSEQ)

{x+ y = c ∧ x > 0} {x+ y = c+ 1}

y := y+1 x := x-1

{x+ y = c+ 1} {x+ y = c}

---------------------------------------------------------(COMP)

{x+ y = c ∧ x > 0}

y := y+1; x := x-1

{x+ y = c}

----------------------------------------------------------(WHILE)

{x+ y = c}

while x > 0 do y := y+1; x := x-1 end

{x+ y = c ∧ ¬ x > 0}

--------------------------------------------------------(CONSEQ)

{x+ y = c}

while x > 0 do y := y+1; x := x-1 end

{x+ y = c}
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ANNOTATED PROGRAM EXAMPLE

Proof trees can be unwieldy. Because the structure of the tree
corresponds directly to the structure of the program code, it is common to
use an alternative representation of proofs in which we annotate
programs with assertions.

{x+ y = c}
while x > 0 do

{x+ y = c ∧ x > 0}
{x+ y + 1 = c+ 1}
y := y + 1;

{x+ y = c+ 1}
{x− 1 + y = c}
x := x - 1

{x+ y = c}
end

{x+ y = c ∧ ¬ x > 0}
{x+ y = c}

To verify that this is a valid proof, we have to check that the annotations
are consistent with each other and with the rules and axioms.
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MERITS AND PROBLEMS OF AXIOMATIC SEMANTICS

Gives a very clean semantics for structured statements.

But things get more complicated if we add features like:

• expressions with side-effects

• statements that break out of loops

• procedures

• non-trivial data structures and aliases

Useful for formal proofs of program properties (though these are seldom
done).

Thinking in terms of assertions is good for informal reasoning about
programs. (And there are beginning to be useful automated theorem
proving support tools too.)

Other forms of semantic definition, e.g., natural semantics , also use
similar logical structures.
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